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Abstract

Background: MicroRNAs (miRNAs) are known to regulate various biological processes, including expression of
cellular gene and virus-induced inflammation. Recently, studies have indicated that some miRNAs could regulate
influenza virus replication. Due to differential sensitivities of influenza A virus strains to different species (avian
and mammalian), variations in host responses may be observed. Therefore, we investigated and compared the
differences in global host miRNA expression in mouse lungs infected with wild type low pathogenicity A/Aquatic
bird/Korea/w81/2005 (H5N2) (w81) or mouse-adapted virulent A/Aquatic bird /Korea/ma81/2007 (H5N2) (ma81) virus.

Results: Although the mice infected with ma81 exhibited much greater mortality than w81-infected mice, the parental
w81 virus induced a higher number of differentially expressed miRNAs compared to the ma81 virus. Between
these 2 viruses, a total of 27 and 20 miRNAs were commonly expressed at 1 dpi and 3 dpi, respectively. It is
noteworthy that only 9 miRNAs (miR-100-5p, miR-130a-5p, miR-146b-3p, miR-147-3p, miR-151-5p, miR-155-3p,
miR-223-3p, miR-301a-3p, and miR-495-3p) were significantly upregulated in both lungs infected with either wild
type w81 or the mouse-adapted ma81 strain at both time points. Notably, expression levels of miR-147-3p, miR-151-5p,
miR-155-3p, and miR-223-3p were higher in the lungs of mice infected with the ma81 virus than those infected with the
w81 virus. To identify potential roles of these miRNAs in regulating influenza virus replication, each group of mice was
intranasally treated with each inhibitor of specifically targeting 4 miRNAs, and then challenged with 5 mouse lethal
dose 50% (MLDsg) of the virulent ma81 virus on the following day. Although the specific miRNA inhibitors could not
completely attenuate mortality or reduce viral replication, the miR-151-5p- and miR-223-3p-inhibitors reduced mortality
of inoculated mice to 70% and substantially delayed death.

Conclusions: Our results suggest that the mammalian adaptation of avian influenza A virus results in a different miRNA
expression pattern in lungs of virus-infected mice compared with its parental strain, and use of specific miRNA inhibitors
to target genes associated with the immune response or cell death may affect virulence and virus replication.
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Background

Influenza A viruses belong to the Orthomyxoviridae
family of RNA viruses and are a persistent cause of re-
spiratory diseases in animals and humans [1]. Variants
of these viruses have been isolated from a broad range of
hosts, including chickens, pigs, human, horses, domestic

* Correspondence: choiki5S5@chungbuk.ackr

Equal contributors

'College of Medicine and Medical Research Institute, Chungbuk National
University, 12 Gaeshin-Dong Heungduk-Ku, Cheongju 361-763, Republic of Korea
Full list of author information is available at the end of the article

( BioMed Central

ducks, and migrant shorebirds [2,3]. They have a single
negative-sense RNA genome packed into 8 gene segments
that encode 11 or 12 viral proteins; however, recent stud-
ies suggest that more viral proteins may be produced by
some strains [4-6]. Constant evolution of influenza viruses
may occur through a number of mechanisms, including
antigenic drift, genetic shift, defective-interfering particles,
and RNA molecular recombination [7], and global virus
pandemics caused by transmission of novel viruses, such
as the 1918 influenza pandemic, have led to disastrous
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outcomes [8]. Activation of the host innate immune sys-
tem in response to influenza infection triggers phagocyt-
osis for viral pathogen elimination; however, the antiviral
response to infection is sometimes ineffective or even det-
rimental in the host. In fact, studies have implicated the
host innate immune system as the cause of severe influ-
enza virulence [9,10], including the abnormal innate im-
mune response responsible for the atypical virulence of
the 1918 pandemic influenza virus [11] and the highly
pathogenic H5N1 variant [9,12,13].

MicroRNAs (miRNAs) are noncoding RNAs 20-22
nucleotides long that bind target miRNAs to cause
their degradation or translational inhibition and thereby
regulate various biological processes [14]. Recently, studies
have implicated miRNAs in viral replication and have in-
dicated they can both inhibit and promote viral infections
[15,16]. Expression of miRNAs has been reported in re-
sponse to several viruses, such as human immunodefi-
ciency virus-1, simian immunodeficiency virus [17,18],
hepatitis B virus [19], hepatitis C virus [20], Epstein-Barr
virus [21], and oncogenic human papillomaviruses [22].
Furthermore, miRNA expression patterns have been pro-
filed in mouse lung and A549 cells infected with pandemic
influenza virus [23,24]. Additionally, differential expres-
sion of miRNAs has been observed in various animals,
including H5N1 influenza virus-infected cynomolgus
macaque lungs [25] and mouse lungs [26], HIN2 virus-
infected pigs [27], and avian H5N3 influenza virus-
infected chickens [28,29]. Such studies provide evidence
that miRNAs play an important role during influenza
virus infection. Moreover, recent studies have indicated
that some cellular miRNAs can inhibit influenza virus rep-
lication or propagation [30,31].

Studies have shown that the acquisition of virulence in
new host through mouse adaptation is associated with
mutations in various gene segments [32-37]. Commonly
identified virulence markers include E627K in PB2 and
the multibasic cleavage site motif in HA, in addition to
mutated PB1-F2 and NS1 proteins [38]. The polymerase
gene, PB2 gene, is an important determinant of virulence
in the HPAI H5N1 and H7N7 viruses [39,40].

In our previous study to investigate the molecular
changes that occur during adaptation of a low pathogenic
avian influenza virus subtype to a mammalian host, we
serially passaged a wild bird H5N2 isolate, A/Aquatic
bird/Korea/w81/05 (w81), in the lungs of mice. In contrast
to the parent strain, the resulting mouse-adapted strain
(ma81) was both highly pathogenic and lethal [41]. Full
length sequencing results showed that nonconserved mu-
tations were observed in six viral genes (those for PB2,
PB1, PA, HA, NA, and M) of w81 resulting in ma81.
However, reverse genetic experiments substituting viral
genes and mutations demonstrated that the PA gene
was a determinant of the enhanced virulence in mice,
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and that a Thr-to-Iso substitution at position 97 of PA
played a key role [41]. In growth kinetics studies, ma81
showed enhanced replication in mammalian cell lines,
and a PA97I mutation in w81 was identified to cause
such replication. Because influenza A virus strains have dif-
ferent sensitivities to different mammalian hosts (i.e., avian
versus mammalian strains), it is possible that different host
responses may be observed during infection with wild type
or mammalian-adapted-avian influenza (AI) virus strains
even though they share the same genetic backbones. There-
fore, in the present study, we compared miRNA expression
profiles in the lungs of mice infected with wild type, low
virulence, avian parental w81 (H5N2) virus or the mouse-
adapted highly virulent ma81 strain to investigate whether
mammalian adaptation of the avian influenza virus could
differentially alter the expression of cellular miRNAs. Spe-
cifically, miRNAs were assessed at 1 and 3 days post infec-
tion (dpi), and 27 and 20 miRNAs were differentially
expressed by both viruses at 1 and 3 dpi, respectively, even
though many miRNAs were found to be commonly in-
duced by both viruses. These results suggested that mam-
malian adaptation of avian influenza A virus can alter the
host miRNA expression pattern in lungs of virus-infected
mice, and thus these molecules might play important roles
in viral replication and pathogenesis. In addition, our re-
sults present the feasibility of using miRNAs as therapeutic
targets in the face of a mammalian-adapted, avian influenza
virus infection as inhibition of certain miRNAs reduced
viral replication and increased survival in the mouse model.

Results

Virus titration and clinical manifestations of wild type

w81 and mouse-adapted variant ma81

To compare the pathogenicity of each virus in infected
mice, clinical symptoms, and survival rates were mea-
sured for 14 dpi and lung viral titers were evaluated at 1,
3, 5, and 7 dpi. The lungs harvested from mice infected
with a mouse-adapted variant ma81 showed relatively
higher virus titers ranging from 10*% to 10°® 50% tissue
culture infectious doses (TCIDso/ml) compared to lung
tissues obtained from those inoculated with a wild type
w81 virus which produced titers ranging from 10> to
10°% TCIDso/ml (Figure 1A). Overall, the ma81 strain
replicated more efficiently in infected mouse lungs than
the wild type w81 strain.

All mice infected with ma81 showed rapid body weight
losses and significant disease symptoms, such as hunched
back, ruffled fur, and lethargy until succumbing to death
within 8 dpi. In contrast, no clinical signs of influenza, in-
cluding weight loss and death, were evident in mice in-
fected with the wild type w81 during the experimental
period, and all mice inoculated with w81 survived until
the end of the experiment (Figure 1B and C). These re-
sults clearly demonstrate that mouse-adapted ma81 is
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Figure 1 Comparison of virulence between w81 and ma81 virus infection in C57BL/6 mice. Groups of 18 C57BL/6 mice were inoculated
intranasally with 5 MLD50 of wild type (w81) or mouse-adapted (ma81) H5N2 avian influenza virus. Viral growth kinetics in mouse lungs were
determined by TCID50 at 1, 3, 5, and 7 dpi (A). Data are expressed as mean + SD titers from 3 lungs per time point. Mean body weight
changes (B) and survival rates (C) were monitored in six remaining mice for 14 days. *, P value <0.05; MLD50, mouse lethal dose 50%.

more virulent and more lethal than the parental w81
strain.

Differential miRNA expression in mouse lungs infected
with either wild type w81 or mouse-adapted variant ma81
To investigate the changes in the host gene expression
profile occurring during adaptation of an avian influenza
virus subtype to a mammalian host, global cellular miRNA
expression patterns in mouse lungs infected with either
w81 or ma8l were compared with those of uninfected
controls. In this study, only differentially expressed miR-
NAs with a P < 0.05 and fold change > 2 are described.

A total number of differentially expressed miRNAs in
mouse lungs infected with w81 at 1 dpi and 3 dpi were
presented in Figure 2A. In the lungs of mice infected
with wild type w81 at 1 dpi, 43 miRNAs were differen-
tially upregulated, and 23 miRNAs were downregulated
(the circle to the left of the venn diagram in Figure 2A).
At 3 dpi, a total of 131 miRNAs were differentially up-
regulated, and 2 miRNAs were downregulated (the circle
to the right of the venn diagram in Figure 2A). Altogether,
the expression of 174 miRNAs was significantly altered at
both 1 and 3 dpi. 24 upregulated and 1 downregulated
miRNAs were commonly found at both 1 and 3 dpi (the
overlapping portion of the venn diagram in Figure 2A).
When infected with mouse-adapted ma81, a relatively
small number of differentially expressed miRNAs were
identified in the lung (Figure 2B) with a total of only
72 miRNAs being differentially expressed. At 1 dpi, 35

miRNAs were upregulated while 13 miRNAs were down-
regulated (the circle to the left of the venn diagram in
Figure 2B). At 3 dpi, 32 miRNAs were upregulated,
and 6 miRNAs were downregulated (the circle to the
right of the venn diagram in Figure 2B). Of the 72 dif-
ferentially expressed miRNAs, only 12 miRNAs were
upregulated and 2 miRNAs were downregulated at both 1
and 3 dpi (the overlapping portion of the venn diagram in
Figure 2B).

Differentially expressed miRNAs identified to be com-
monly presented in virus-infected mouse lungs at both 1
dpi and 3 dpi were presented in Tables 1 (mouse lungs
infected with w81) and 2 (mouse lungs infected with
ma8l). It is important to note that only 9 miRNAs
(miR-100-5p, miR-130a-5p, miR-146b-3p, miR-147-3p,
miR-151-5p, miR-155-3p, miR-223-3p, miR-301a-3p,
and miR-495-3p) were significantly upregulated or down-
regulated in both lungs infected with either wild type w81
or the mouse-adapted ma81 strain at all time points
(Tables 1 and 2). Infection with ma81 but not w81 resulted
in the unique upregulation of miR-139-5p, miR-27a-5p,
miR-29b-1-5p, and miR-877-3p and the downregulation of
miR-449a-5p at both 1 and 3 dpi (Tables 1 and 2).

Distinctions in miRNA expression between wild type w81
and mouse-adapted variant ma81 infections

Differentially expressed miRNAs between mouse lungs in-
fected either with w81 or ma81 were compared (Figure 3).
When comparing the miRNA expression profiles in lungs
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Figure 2 Differentially expressed miRNAs in virus-infected mouse lungs at 1 dpi and 3 dpi. Venn diagram and heat maps indicate
expressed miRNAs during w81 or ma81 infections relative to the mock infection (control). Red and green colors represent up- and down-regulation,
respectively. Fold change 22 or < -2, P value <0.05. A: w81-infected mouse lungs, B: ma81-infected mouse lungs.
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infected with either wild type w81 or mouse-adapted vari-
ant ma81, it became apparent that the number of differen-
tially expressed miRNAs increased over time compared to
the controls. Specifically, there were 87 (Figure 3A) and
151 (Figure 3B) differentially expressed miRNAs detected at
1 and 3 dpi, respectively. Out of 87 differentially expressed
miRNAs, only 18 upregulated and 9 downregulated miR-
NAs were commonly found at 1 dpi with both viruses (the
overlapping portion of the venn diagram in Figure 3A).
Similarly, at 3 dpi, 19 out of 151 differentially expressed
miRNAs were commonly upregulated, and only 1 miRNA
was commonly downregulated (the overlapping portion of
the venn diagram in Figure 3B). Twenty-seven and 20 differ-
entially expressed miRNAs identified to be commonly pre-
sented at 1 and 3 dpi were presented in Tables 3 and 4. Of
these, only miR-100-5p, miR-130a-5p, miR-146b-3p, miR-
147-3p, miR-151-5p, miR-155-3p, miR-223-3p, miR-301a-
3p, and miR-495-3p were commonly upregulated at
both 1 and 3 dpi.

Among the 238 differentially expressed miRNAs, we
selected 4 miRNAs with greater than 2-fold differences
in expression levels in the lungs of mice that were in-
fected with either w81 or ma81 compared to mock control
infections for in-depth analyses (miRNAs are miR-151-5p,
miR-223-3p, miR-147-3p, and miR-155-3p) (Table 5).
These 4 differentially expressed miRNAs identified to
be commonly presented in mouse lungs infected either
with w81 or ma81 at both 1 and 3 dpi. Notably, expres-
sion levels of miR-151-5p, miR-223-3p, miR-147-3p, and
miR-155-3p were higher in the lungs of mice infected with
the ma81 virus than those infected with the w81 virus.

These 4 miRNAs were tested to investigate the potential
roles of miRNAs in virus replication. To verify the expres-
sion patterns of the 4 selected differentially expressed
miRNAs in lungs, real-time RT-PCR was conducted, and
the similar results (w81, ma81) confirmed the upregu-
lation of all 4 miRNAs with deep sequencing analysis
in terms of direction of regulation at each time point
(Additional file 1).

Gene ontology analysis

In order to predict the roles of the selected differentially
expressed miRNAs in response to w81 and ma81 influ-
enza virus infection, potential targets of each of 4 selected
miRNAs were predicted using miRanda version 3.0. A
total of 3763 predicted targets were obtained for the dif-
ferentially expressed miRNAs. These predicted targets
were subjected to GO analysis using DAVID version 6.7.
All enriched GO terms of molecular function for the pre-
dicted targets of the selected differentially expressed miR-
NAs were shown in the Additional file 2. After the cutoff
standard of P < 0.05, a total of 21 GO terms of molecular
function were found to be associated with cell death and
immune regulations (Figure 4). Ten enriched immune-
and cell death-related GO terms of molecular function for
the miR-147-3p were detected (P < 0.05). These enriched
GO terms included programmed cell death, apoptosis,
and regulation of T-helper 2 type immune response,
lymphocyte activation, lymphocyte differentiation, leukocyte
activation, cell death, programmed cell death, apoptosis, and
cell proliferation. There were 3, 4, and 4 immune- and
cell death-related GO terms of molecular function were
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Table 1 Differentially expressed miRNAs identified to be
commonly presented in w81-infected mouse lungs at
both 1 dpi and 3 dpi
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Table 2 Differentially expressed miRNAs identified to be
commonly presented in ma81-infected mouse lungs at
both 1 dpi and 3 dpi

miRNA w81# miRNA mag1#

1dpi 3dpi 1dpi 3dpi

Fold change* P value§ Fold change P value Fold change* P value§ Fold change P value
let-7e-3p 26 0.008 23 0.006 miR-100-5pt 2 0.035 2 0.007
miR-100-5pt 2.1 0.005 26 0 miR-130a-5pt 4.5 0.001 22 0.03
miR-10a-5p 2.1 0.009 2 0.002 miR-139-5p 4 0.031 38 0.003
miR-130a-5pt 34 0.036 32 0.01 miR-146b-3pt 34 0.011 4.1 0.046
miR-146b-3pt 3.1 0014 4.7 0.003 miR-147-3pt 78 0.045 252 0.04
miR-147-3p* 2.7 0.013 228 0.012 miR-151-5pt 73 0.027 22 0.002
miR-148a-5p 23 0.029 24 0.002 miR-155-3pt 6.2 0.024 6.2 0.018
miR-151-5pt 4.5 0.013 2.7 0014 miR-223-3p* 7.1 0.005 89 0.013
miR-155-3p* 23 0.015 35 0016 miR-27a-5p 22 0.035 29 0.023
miR-1843-3p 36 0.022 3.1 0.007 miR-29b-1-5p 2.7 0.043 22 0.021
miR-1943-3p 4 0.01 43 0.049 miR-301a-3pt  -2.8 0.042 -2 0.049
miR-223-3p* 35 0.037 34 0.009 miR-449a-5p =25 0.046 =27 0.016
miR-28-3p 2 0.021 24 0.001 miR-495-3pt 24 0.039 23 0.004
miR-301a-3pt  -6.9 0.019 -2 0.048 miR-877-3p 3.1 0.04 44 0.04
miR-3079-5p 2.8 0.035 24 0.034 $Global cellular miRNA expression patterns in mouse lungs infected with

. ma81 were compared with those of uninfected control mouse lungs.

miR-30b-5p 2 0.024 26 0.007 Differentially expressed miRNAs with a P < 0.05 and fold change > 2
miR-30c-5p 25 0038 22 0024 are described.

miR-324-5p 2.1 0.02 31 0

miR-335-3p 2.1 0.004 2.7 0.003
miR-3475-3p 28 0.019 25 0.008
miR-365-3p 2.1 0012 2.2 0.016
miR-495-3pt 2 0.042 29 0.01
miR-652-3p 39 0.042 28 0.0
miR-674-3p 25 0019 2.2 0.001
miR-99b-5p 3.1 0.007 2.5 0

$Global cellular miRNA expression patterns in mouse lungs infected with w81
were compared with those of uninfected control mouse lungs. Differentially
expressed miRNAs with a P < 0.05 and fold change > 2 are described.
*Sequence reads were normalized to determine the number of transcripts per
million (TPM) using the following formula: Normalized expression = Actual
miRNA count/Total count of clean reads*1000000. Then, fold changes of
miRNAs were evaluated using the following formula: Fold

change =log2 (treatment/control).

§P-value was calculated from the normalized expression values as previously
described [66].

tSignificantly upregulated in both lungs infected with either wild type w81 or
the mouse-adapted ma81 strain at all time points.

enriched for the miR-151-5p, miR-155-3p, and miR-223-
3p, respectively. These enriched GO terms included posi-
tive regulation of immune system process, response to
wounding, regulation of innate immune response, somatic
diversification of immune receptors and immunoglobu-
lins, lymphoid progenitor cell differentiation, immuno-
globulin V(D)] recombination, reproductive developmental
process, regulation of cell death, programmed cell death,
and apoptosis (Figure 4).

*Sequence reads were normalized to determine the number of transcripts per
million (TPM) using the following formula: Normalized expression = Actual
miRNA count/Total count of clean reads*1000000. Then, fold changes of
miRNAs were evaluated using the following formula: Fold

change =log2 (treatment/control).

§P-value was calculated from the normalized expression values as previously
described [66].

tSignificantly upregulated in both lungs infected with either wild type w81 or
the mouse-adapted ma81 strain at all time points.

Inhibition of miR-147-3p, miR-151-5p, miR-155-3p, and
miR-223-3p confers viral pathogenesis in mice

To investigate the possible roles of miRNAs in virus rep-
lication, we generated anti-miRNAs and administered
them via intranasal transfection to further evaluate the
roles of miR-147-3p, miR-151-5p, miR-155-3p, and miR-
223-3p in the pathogenesis of influenza infection in
mice. Inhibition of miRNA expressions was examined by
real-time RT-PCR. Expression levels of each miRNA in
the mouse lungs inoculated with ma81 after transfection
of corresponding miRNA inhibitors were significantly
decreased compared to those of the lungs inoculated
with ma81 without miRNA inhibitor transfection (P < 0.05).
In contrast, miRNA negative inhibitor control treatment did
not significantly affect the expression level of the miRNAs
tested (Figure 5). When viral loads were measured at 1, 3,
and 5 dpi, significantly lower influenza virus titers were ob-
served in the lungs of animals treated with anti-miR-151-5p
and anti-miR-223-3p than in untreated controls. In addition,
the survival rate of the anti-miR-151-5p and anti-miR-223-
3p treated mice significantly increased compared to that of
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Figure 3 Comparison of differentially expressed miRNAs in w81-infected and ma81-infected mouse lungs at 1 dpi and 3 dpi. Venn
diagram and heat maps indicate expressed miRNAs during w81 and ma81 infections relative to the mock infection (control) on 1 and 3 dpi. Red
and green colors represent up- and down-regulation, respectively. Fold change 22 or < -2, P value <0.05. A: 1dpi, B: 3dpi.
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the control group (P < 0.05). Approximately 37.5% (6 out
of 16) and 25% (4 out of 16) of mice treated with anti-
miR-151-5p and anti-miR-223-3p, respectively, survived
until the end of the experiment, whereas all untreated
control mice were dead by 7 dpi. Moreover, the mice
treated with anti-miR-151-5p and anti-miR-223-3p began
to gain weight starting at 6 dpi and rapidly recovered their
body weight thereafter (Figure 6). Thus, these results
indicate that inhibition of miR-151-5p and miR-223-3p
reduces influenza replication in the lungs, while the overex-
pression of these miRNAs in the lungs augments influenza
infection. In contrast, all the mice treated with anti-miR-
147-3p and anti-miR-155-3p lost body weight as quickly as
the control mice and died from influenza infection within 8
dpi. Mice treated with anti-miR-155-3p had a tendency to
exhibit higher viral titers than all other groups of mice, al-
though it was not statistically significant compared to nega-
tive inhibitor-treated group (P >0.05) (Figure 6). Therefore,
our results indicate that the inhibition of miR-155-3p expres-
sion was detrimental for mice during the pathogenesis of
influenza infection, suggesting that overexpression of miR-
155-3p might exert a protective function against influenza.

Discussion

MiRNAs have the potential to regulate gene expression
through base pairing with complementary sequences in
target miRNAs, resulting in translational inhibition or
miRNA degradation. Furthermore, it is now acknowl-
edged that the complexity of diverse disease phenotypes,
including viral infections, is linked to the altered expres-
sion of host miRNAs [42]. Specifically, viruses such as

human immunodeficiency virus, respiratory syncytial
virus, hepatitis B virus, and Epstein-Barr virus have been
shown to alter the expression of host miRNAs [43-46],
and miRNA expression profiles have been assessed in the
context of various disease phenotypes caused by different
influenza strains [47,48]. However, our study is unique in
that we looked at the differences in phenotypes through
making comparisons between a mouse-adapted variant
and its parental virus strain that share relatively small
differences in viral genetics. In terms of virulence, the
A/Aquatic bird/Korea/ma81/2007 (H5N2) (ma81) variant
proved more pathogenic than the parental A/Aquatic
bird/Korea/w81/2005 (H5N2) (w81) strain, as all mice in-
fected with the mouse-adapted virus died within 8 dpi
while the w81-infected mice survived (Figure 1). This re-
sult suggests that even though both viruses have the same
genetic backbone, mouse adaptation of an avian influenza
virus alters the disease phenotype. In order to determine
whether host cell gene expression also differs following
infection with these viruses, we compared miRNA ex-
pression profiles in mouse lungs using a Solexa deep
sequencing approach. In lungs of infected animals, miRNA
expression profiles induced by w81 and ma81 were ob-
tained, and differentially expressed miRNAs were com-
pared. While identification of the mechanisms underlying
the virulence of ma81 will require further study, the results
presented here underscore the feasibility of using miRNAs
as prognostic markers or therapeutic targets in the face of
a mammalian-adapted, avian influenza virus infection.

A total of 174 and 72 differentially expressed miR-
NAs were detected in lungs infected with w81 and
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Table 3 Differentially expressed miRNAs identified to be
commonly presented in mouse lungs infected either with
w81 or ma81 at 1 dpi
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Table 4 Differentially expressed miRNAs identified to be
commonly presented in mouse lungs infected either with
w81 or ma81 at 3 dpi

miRNA w81# ma81# miRNA w81# ma81#
1dpi 1dpi 3dpi 3dpi
Fold change* P value§ Fold change P value Fold change* P value§ Fold change P value

let-7e-3p 26 0.008 25 0.048 miR-100-5pt 26 0 2 0.007
miR-100-5pt 2.1 0.005 2 0.035 miR-130a-5pt 3.2 0.01 2.2 0.03
miR-130a-5pt 34 0.036 45 0.001 miR-132-3p 33 0.01 36 0
miR-146b-3pt 3.1 0.014 34 0.011 miR-132-5p 26 0.015 2.7 0.049
miR-147-3pt 2.7 0.013 7.8 0.045 miR-146b-5p 36 0.004 3.2 0.009
miR-151-5pt 45 0.013 7.3 0.027 miR-146b-3pt 4.7 0.003 4.1 0.046
miR-155-3pt 23 0.015 6.2 0.024 miR-147-3pt 22.8 0.012 252 0.04
miR-1843-3p 36 0.022 2.5 0.046 miR-151-5pt 2.7 0.014 2.2 0.002
miR-190a-5p -5 0.033 =31 0.045 miR-154-3p 48 0.001 35 0.031
miR-2145 25 0.017 35 0.024 miR-155-3pt 35 0.016 6.2 0018
miR-219-5p =35 0.005 -2 0.039 miR-1943-3p 43 0.049 33 0.033
miR-223-3pt 35 0.037 7.1 0.005 miR-212-3p 37 0 36 0.048
miR-299a-5p 23 0.004 2.1 0.018 miR-214-3p 3 0.007 26 0.026
miR-29b-3p -36 0.012 =27 0.047 miR-223-3pt 34 0.009 89 0013
miR-301a-3pt  —69 0.019 -28 0.042 miR-27a-5p 39 0.001 29 0.023
miR-30c-5p 25 0.038 26 0.035 miR-29b-1-5p 2.1 0.037 2.2 0.021
miR-30e-5p —43 0 =27 0.022 miR-301a-3pt -2 0.048 -2 0.049
miR-328-3p 4.1 0011 37 0.034 miR-361-3p 26 0.032 23 0.009
miR-33-5p -6.5 0.024 —4.2 0.042 miR-495-3pt 29 0.01 23 0.004
miR-3475-3p 2.8 0.019 23 0.011 miR-652-3p 2.8 0.011 2.7 0.032
miR-434-3p 23 0 3 0 $Global cellular miRNA expression patterns in mouse lungs infected either

. with w81 or ma81 were compared with those of uninfected control mouse
MiR-449a-5p 32 0016 =25 0.046 lungs. Differentially expressed miRNAs with a P < 0.05 and fold change > 2
miR-495-3pt 2 0042 24 0039 are described. _ ) )

*Sequence reads were normalized to determine the number of transcripts per

miR-503-5p -26 0.007 —2.6 0.029 million (TPM) using the following formula: Normalized expression = Actual

. miRNA count/Total count of clean reads*1000000. Then, fold changes of
miR-671-5p -26 0038 =35 0017 miRNAs were evaluated using the following formula: Fold
miR-700-5p 2 0.003 26 0026 change =log2 (treatment/control).

’ ' ) §P-value was calculated from the normalized expression values as previously

miR-99b-5p 3.1 0.007 3.1 0.032 described [66].

$Global cellular miRNA expression patterns in mouse lungs infected either
with w81 or ma81 were compared with those of uninfected control mouse
lungs. Differentially expressed miRNAs with a P < 0.05 and fold change > 2
are described.

*Sequence reads were normalized to determine the number of transcripts per
million (TPM) using the following formula: Normalized expression = Actual
miRNA count/Total count of clean reads*1000000. Then, fold changes of
miRNAs were evaluated using the following formula: Fold

change =log2 (treatment/control).

§P-value was calculated from the normalized expression values as previously
described [66].

tCommonly upregulated at both 1 and 3 dpi.

ma8l, respectively (Figure 2). Influenza A virus can
alter expressions of numerous miRNAs, and individual
miRNAs have the potential to regulate multiple gene
expressions. Thus, the complexity of regulation of gene
expression caused by miRNAs greatly expands the
number of possible virus-host regulatory interactions
[47]. Since no global patterns of miRNA expression in

tCommonly upregulated at both 1 and 3 dpi.

response to virus infection have been uncovered, a
focus has been placed on the regulation of gene ex-
pression by individual miRNAs and their potential
roles in disease pathogenesis [46,47,49,50]. Therefore,
we also investigated individual miRNAs that were dif-
ferentially expressed in lungs infected with either w81
or ma8l. Among differentially expressed miRNAs, we
selected 4 miRNAs with greater than 2-fold differences
in expression levels in lungs infected with either w81
or ma81 compared to controls for more in-depth ana-
lysis. These miRNAs include miR-151-5p, miR-223-3p,
miR-147-3p, and miR-155-3p (Table 5). Potential func-
tions of the selected differentially expressed miRNAs
are summarized in Table 5. These 4 miRNAs are
known to be involved in cell death or immunity or
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Table 5 Potential functions of the investigated miRNAs
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ID w81 ma81 functions
1dpi 3dpi 1dpi 3dpi
miR-147-3p 2.7 22.8 7.8 252 Inducing toll-like receptor stimulation and regulating murine macrophage inflammatory
responses [49]
miR-151-5p 45 2.7 73 22 Regulating in tumor cell migration and spreading of hepatocellular carcinoma [50]
miR-155-3p 23 35 6.2 6.2 May inhibit malignant growth, viral infections [51,52,54,55]
miR-223-3p 35 34 7.1 89 Promoting granulocytic differentiation [53,56]

inflammatory responses. Specifically, these miRNAs
have been implicated in immune responses (miR-223-
3p and miR-147-3p), viral infection (miR-155-3p), and
cell migration (miR-151-5p) [50-56].

In our study, while miR-155-3p and miR-223-3p were
highly expressed following infection with both w81 and
ma8l, their expression was more than 2-fold greater in
pathogenic ma81-infected lungs than in w81-infected
lungs. Previous studies on expression of miR-155 and
miR-223-3p in relation to immune responses and viral
infections [52,55-58] have reported that miR-155-3p ex-
pression may inhibit malignant growth and viral infections
[51,52,54,55]. A role for miR-155 in the mammalian im-
mune system was suggested by the finding that immune
responses are defective in miR-155 knockout mice due to
altered lymphocyte differentiation, which is likely a result
of disregulated cytokine production [58]. In accordance
with these findings, our results demonstrate that the in-
hibition of miR-155-3p expression was detrimental to
mice during the pathogenesis of influenza infection. Spe-
cifically, mice treated with anti-miR-155-3p rapidly lost
body weight and died from influenza infection within 8
dpi, and they had higher viral titers in the lungs than other

groups of mice (Figure 6). Although the wide range of bio-
logical functions attributed to each miRNA during influ-
enza infection precludes the conclusion that miR-155-3p
is responsible for induction of the cellular antiviral effect,
the results from our study along with those from Thai
et al., at least, indicate that overexpression of miR-155-3p
is one of the defense mechanisms working against influ-
enza infection [58]. Another study suggested the possible
regulation of influenza virus infection by miR-155 in
chickens due to its targeting of the chicken anti-influenza
gene MX1 and activation of the JUK pathway [28].
Multiple functions for miR-223-3p have been previ-
ously reported [56], and miR-223-3p is known to pro-
mote granulocytic differentiation [53,56]. The current
study confirms highly upregulated expression of miR-
223-3p during influenza A virus infections, which has
previously been reported following infection with patho-
genic 1918 pandemic HIN1 influenza in mouse lungs
infected with H5N1 and in pig lungs infected with
HIN2 [23,26,27,48,59]. Additionally, significantly lower
influenza virus titers were measured in the influenza-
infected lungs treated with anti-miR-223-3p than in
non-treated lungs. In addition, 25% of mice treated with

A
miR-147-3p
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regulation of lymphocyte activation
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regulation of leukocyte activation
regulation of cell death Jud
regulation of programmed cell desth |l
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o 2 4 6 8 10

I

miR-155-3p
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immunoglobulin V(D) recombination |
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Figure 4 GO terms of molecular function involved in cell death or immunity or inflammatory responses for the predicted targets of
the selected differentially expressed miRNAs. Potential targets of each of 4 selected miRNAs were predicted using miRanda version 3.0. These
predicted targets were subjected to GO analysis using DAVID version 6.7. A: miR-147-3p, B: miR-151-5p, C: miR-155-3p, D: miR-233-3p. X-axis represents
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3 MOCK-infected
= w1

B masdi1

@B Negative inhibitor
33 miRNA inhibitor

mIRNA expresslon level (Fold Change)

miR151-5p miR155-3p miR223-3p

Figure 5 Inhibition of 4 miRNAs after miRNA inhibitor treatment. Mock-infected group was inoculated with sterile PBS without any treatment.
Mice in w81 and ma81 groups with no treatment were inoculated with w81 and ma81, respectively. Mice in treatment groups were transfected with
the individual miRNA inhibitors (Bioneer Co. Ltd, Daejeon, Korea) or negative inhibitor control (miRNA negative inhibitor control #1; Bioneer Co. Ltd,
Daejeon, Korea) as indicated, and then intranasally challenged with 5 MLD50 of ma81 H5N2 virus. RNA isolation in mouse lungs (n = 3/group) were
conducted at 1 dpi. The miRNA expression levels were measured by qRT-PCR, and were normalized with RNU6. *, P value <0.05. Mock-infected:
no treatment, then inoculated with sterile PBS. w81: no miRNA inhibitor, then inoculated with w81. ma81: no miRNA inhibitor, then inoculated
with ma81. Negative inhibitor: miRNA inhibitor negative control #1 (Bioneer Co. Ltd, Daejeon, Korea) treatment, then inoculated with ma81. miRNA
inhibitor: miRNA inhibitor (Bioneer Co. Ltd, Daejeon, Korea) treatment, then inoculated with ma81.

anti-miR-223-3p regained their body weight and sur- further study, based on the results of this study and sev-

vived lethal influenza infection (Figure 6). These results
indicate that overexpression of miR-223-3p is detrimen-
tal to the host during influenza infection. Thus, inhib-
ition of miR-223-3p might reduce the pathogenicity of
this influenza virus in the host during infection. Al-
though identification of the precise roles of miR-155-3p
and miR-223-3p during influenza infection will require

eral others, it is apparent that miR-155-3p and miR-223-
3p contribute to pathogenicity [23,26,27,48,58].

Potential roles of miR-151-5p may be related to the pre-
viously identified function of this molecule in the regulation
of tumor cell migration and spreading of hepatocellular
carcinoma [60]. Ding et al. highlighted the detrimental
role of overexpressed miR-151-5p in the pathogenesis

A _ , : .
T = * y [ Negative inhibitor
2 6 [ 147-3p inhibitor
g " | | @3 151-5p inhibitor
= B3 155-3p inhibitor
= W 223-3p inhibitor
< 3
=
57
2
= 14
[P
> 1 3 5
Days post infection
120 o 100 =
= =+ Negative inhibitor 204 =& Negative inhibitor
S0 -= 147-3p inhibitor 80 -= 147-3p inhibitor
-g =& 151-5p inhibitor ; 704 =& 151-5p inhibitor
@ 100 - 155-3pinhibitor 2 g -» 155-3p inhibitor
3; 5 -+ 223-3p inhibitor 5 504 -+ 223-3p inhibitor
o w
= E o *
£ 80 y
8 E 204 *
s 104
0123456678 851011121314 01234567 891011121314

Days post infection

Figure 6 Impact of miRNA inhibitor transfection on virus infection with invivofectamine. Groups of 8 (done twice, total 16) or 9 (lung viral
titration) C57BL/6 mice were inoculated intranasally with ma81 H5N2 avian influenza virus (5 MLD50) 24 hours after individual transfection of

30 pg miRNA inhibitors (miR-147-3p, miR-151-5p, miR-155-3p, miR-223-3p) or an miRNA negative inhibitor control (miRNA negative inhibitor
control #1; Bioneer Co. Ltd, Daejeon, Korea). Viral growth kinetics in mouse lungs were determined by TCID50 at 1, 3, and 5 dpi (A). Data are
expressed as mean + SD titers from 3 lungs per time point. Mean body weight changes (B) and survival rates (C) were monitored in six

remaining mice for 14 days. *, P value <0.05.

6
Days post infection
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of hepatocellular carcinoma (HCC). In their study, sig-
nificantly increased HCC cell migration and invasion
were observed when miR-151-5p, together with its
host gene (encoding focal adhesion kinase), was over-
expressed. In our study, the expression of miR-151-5p
in lungs infected with the influenza virus was found to
be upregulated at all time points examined. Further-
more, inhibition of miR-151-5p expression reduced in-
fluenza virus titers compared to those of infected lungs
from mice not treated with the inhibitor, and 30% of
mice treated with anti-miR-151-5p regained their body
weight and survived influenza infection (Figure 6).
Altogether, we can speculate that the silencing of miR-
151-5p expression alters the pathogenesis of the influ-
enza virus and promotes the antiviral ability of the
host during influenza infection. In this study, the ex-
pression of miR-151-5p was found to be upregulated at
all time points assessed, in contrast to reports that its
expression was downregulated in response to infection
with HIN1 and H5N1 [25,61]. This discrepancy may
be due to the different experimental design. For ex-
ample, we used lung tissues to evaluate expression of
each miRNA, while Tambyah et al. analyzed miRNA
expression levels in human blood. Also, avian influenza
virus was inoculated into Myxovirus resistance (Mx1)
protein-deficient C57BL/6 mice in this study because
avian strains are more susceptible to the antiviral effect of
Mx proteins, while the other studies used human influ-
enza virus and different animals.

In addition, expression of miR-147-3p was upregu-
lated at all times in lungs infected with either w81 or
ma8l. MiR-147-3p has been shown to be associated
with Toll-like receptor stimulation and regulation of
murine macrophage inflammatory responses [62,63]. Even
with their known immunological functions (Table 5),
downregulation of miR-147-3p or miR-155-3p by each
miRNA inhibitor could not alter the viral replication
and mortality in infected mice. Therefore, elucidation
of the potential roles of miR-147-3p in host cells dur-
ing influenza infection will require further study.

Conclusions

The importance of miRNAs as gene regulators in the host
during influenza infections has been broadly defined, al-
though the exact functions of these molecules in viral patho-
genesis remain to be determined. The study presented here
highlights differentially expressed miRNAs in mouse lungs
infected with wild type, low pathogenic H5N2, and its
mouse-adapted, highly pathogenic variant. Furthermore, this
study suggests that some of the miRNAs identified are cap-
able of boosting the pathogenesis of influenza. Thus, some
of these miRNAs may be useful as potential prognostic or
therapeutic targets in the face of avian influenza A virus in-
fections in mammalian hosts.
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Methods

Virus and cell

Virus strain A/Aquatic bird/Korea/w81/05 (H5N2) (w81)
was isolated from wild birds. A/Aquatic bird/Korea/ma81/
07 virus was derived from w81 (H5N2) (ma81), mouse-
adapted highly pathogenic H5N2 [41]. Both w81 and
ma8l were propagated and maintained in Madin-Darby
canine kidney (MDCK) cells in Eagle’s Minimum Essential
Medium (EMEM), supplemented with 5% fetal bovine
serum (FBS) and incubated at 37°C in 5% CO2.

Mouse experiments and viral titration in lungs for
pathogenicity of ma81

C57BL/6 female mice (5-week-old) were anesthetized
with ketamine-xylazine and infected by intranasal instil-
lation with 30 ul of 10* TCIDg, of w81 or ma81. Lung
tissue from 3 mice per group was harvested on 1, 3, 5,
and 7 days post infection (dpi). To assess survival, groups
of 6 mice were inoculated with virus and monitored daily
for 14 days. Viral load in mouse lungs was titrated on
MDCK cells as previously described [64].

RNA isolation from lung tissue and miRNA Deep
Sequencing

For total RNA extraction, entire lungs from mice in-
fected by w81 or ma81 were harvested at 1 and 3 dpi, 3
lungs per time point. Total RNAs of lung samples were
isolated using Trizol (Invitrogen, Carlsbad, CA), RNeasy
Total RNA Kit (Qiagen, Chatsworth, CA, USA) accord-
ing to manufacturer’s protocol.

A small RNA library was constructed and sequenced
at Theragen (Suwon, Korea) using the Solexa high-
throughput platform [Illumina, San Diego, CA]. In brief,
this consisted of gel purification of the RNA bands cor-
responding to size fractionation of 18-30 nt, ligation of
adapters to 3’ and 5 regions of small RNA using T4-
RNA ligase, cDNA synthesis using RT-PCR, and final
PCR amplification for Solexa sequencing.

MiRNA analysis

To minimize the effects of random sequencing errors,
we eliminated sequences with <18 bases and sequences
that contained more than 1 undetermined nucleotide
(N). Sequencing quality (sQ) was evaluated as follows,
where E indicates sequencing error rate [Illumina, San
Diego, CAJ:

logi

sQ=-10x 1°F

log10

Sequences having more than 6 bases with sQ value of < 13
were discarded. The resulting quality-controlled se-
quence reads were mapped to the database, miRNA
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precursor/mature of mouse, in miRBase 15.0 and Gene-
bank using the SOAP alignment program [65].
Complete alignment of the sequences was required
and no mismatches were allowed. We compared the
known miRNA expression levels between 2 treatment
samples to identify the differentially expressed miRNAs.
Briefly, sequence reads were normalized to determine
the number of transcripts per million (TPM) using the
following formula: Normalized expression = Actual
miRNA count/Total count of clean reads*1000000. Then,
fold changes of miRNAs were evaluated using the follow-
ing formula: Fold change =log2(treatment/control). P-
value was calculated from the normalized expression
values using the following formula:

P-value formula [66]: x, y, N1 and N2 represent number
of miRNAs surveyed, number of homologous miRNAs in
controls, total number of clean reads in controls, and total
number of clean reads in treatments, respectively.

N, (X + y)'
) = (1) L
xly! (1 + fo)
ySYmin
C(Y<Yn¥) = > p(y[x)
y=0

oo

c(YSYmad[¥) = D PYIX)

Y<Ymin

Confirmation of miRNA expression profiles by
quantitative real-time PCR

Quantitative real-time PCR was used to validate miRNA
expression using the same total RNA samples for small
RNA library constructions. Briefly, cDNA was synthe-
sized by using an miScriptll RT Kit (Qiagen, Hilden,
Germany). qRT-PCR was performed using miScript SYBR
Green PCR Kit (Qiagen, Hilden, Germany) on a Rotor
Gene RG-3000 (Corbett Research, Sydney, Australia). The
following primer sets were purchased from the miScript
Primer Assays (Qiagen, Hilden, Germany) and used in this
study: mmu-miR-147-3p, mmu-miR-151-5p, mmu-miR-
155-3p, and mmu-miR-223-3p. Cycling conditions were
95°C for 15 min followed by 45 cycles at 94°C for 15 sec,
55°C for 30 sec, and 70°C for 30 sec. U6 was used for
normalization. Data were analyzed using the 2-224Ct PCR.

Gene ontology analysis

Gene ontology analysis was conducted as previously de-
scribed [28]. Briefly, miRanda version 3.0 was used to
predict potential target genes of 4 miRNAs with greater
than 2-fold differences between expression levels in
lungs infected with either w81 or ma81 compared to the
control [67]. Then all target genes of each miRNA were
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used for the gene ontology (GO) analysis using DAVID
version 6.7 [68]. Functional category enrichment was
evaluated based on the GO terms of each miRNA. The
enrichment of GO terms was selected with a cutoff
standard of P < 0.05.

MiRNA inhibition

Based on the original miRNA sequences, all inhibitors
were designed and synthesized by Bioneer Co. Ltd (Daejeon,
Korea). Groups of mice (n=25) were transfected with 30
ug of miRNA inhibitors (miR-147-3p, miR-151-5p, miR-
155-3p, miR-223-3p) or an miRNA negative inhibitor con-
trol (miRNA negative inhibitor control #1; Bioneer Co. Ltd,
Daejeon, Korea). Briefly, each miRNA inhibitor (3 mg/ml)
was mixed with invivofectamine complexation buffer and
reagent (Invitrogen, Life technologies Corporation, USA),
then the mixed solution was transferred to a pre-washed
Amicon Ultra-15 centrifugal tube, which was centrifuged
at 4000xg for 30 min according to manufacturer proto-
cols. The final concentration of each inhibitor was 1.5 ug/
ul, and mice were transfected intranasally with 30 ug of
each inhibitor.

On day after infection, miRNA inhibitor treated mice
were infected by intranasal instillation with 30 ul of 104
TCID50 of ma81 virus. Lung tissues from 3 mice per
group were harvested on 1, 3, and 5 days post infection
(dpi) for viral titration, and survival rates were moni-
tored daily for 14 days.

Statistical analysis

The Mantel-Cox log rank test implemented in GraphPad
Prism software version 5 (GraphPad Software, La Jolla,
CA) was used for the survival analysis, and Student’s
t-test were used to compare viral titers, percent body-
weight, and expression levels of miRNAs between groups.
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The study protocols for the use of mice were carried out
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garding animal handling as mandated under the Guide-
lines for Animal Use and Care of the Korea Center for
Disease Control (K-CDC) and were approved by the Med-
ical Research Institute of Chungbuk National University
(approval number CBNU-IRB-2012-GMO1).

Additional files

Additional file 1: Expression level of 4 miRNAs was verified by
qRT-PCR. Groups of 3 (done twice, total 6) C57BL/6 mice were
inoculated intranasally with 5 MLD50 of w81 or ma81 H5N2 avian
influenza virus. RNA isolation in mouse lungs were conducted at 1 and
3dpi, and then the miRNA expression levels were measured by gRT-PCR in
triplicate. The similar results confirmed the upregulation of 4 miRNAs with
deep sequencing results. *, P value <0.05.
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Additional file 2: GO terms of molecular function for the predicted
targets of the selected miRNAs. Potential target genes of 4 selected
miRNAs were predicted using miRanda version 3.0. Then all target genes
of each miRNA were used for the gene ontology (GO) analysis using
DAVID version 6.7.
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