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Abstract

Background: Although a safe and effective yellow fever vaccine was developed more than 80 years ago, several
issues regarding its use remain unclear. For example, what is the minimum dose that can provide immunity against the
disease? A useful tool that can help researchers answer this and other related questions is a computational simulator
that implements a mathematical model describing the human immune response to vaccination against yellow fever.

Methods: This work uses a system of ten ordinary differential equations to represent a few important populations in
the response process generated by the body after vaccination. The main populations include viruses, APCs, CD8+ T
cells, short-lived and long-lived plasma cells, B cells and antibodies.

Results: In order to qualitatively validate our model, four experiments were carried out, and their computational
results were compared to experimental data obtained from the literature. The four experiments were: a) simulation of a
scenario in which an individual was vaccinated against yellow fever for the first time; b) simulation of a booster dose ten
years after the first dose; c) simulation of the immune response to the yellow fever vaccine in individuals with different
levels of naïve CD8+ T cells; and d) simulation of the immune response to distinct doses of the yellow fever vaccine.

Conclusions: This work shows that the simulator was able to qualitatively reproduce some of the experimental
results reported in the literature, such as the amount of antibodies and viremia throughout time, as well as to
reproduce other behaviors of the immune response reported in the literature, such as those that occur after a booster
dose of the vaccine.

Keywords: Computational vaccinology, Yellow fever, Mathematical modeling, Computational modeling, Immune
system, Ordinary differential equations

Background
Mathematical and computational modeling is constantly
evolving tool, which can be applied to many distinct
research areas, such as Biology, Physics, Chemistry, Engi-
neering, Biomechanics, Climate Modeling, tsunami and
earthquake prediction, among others [1–23]. With this
type of tool, the phenomenon under study is represented
by mathematical equations which can be solved using
computational simulators. The use of such mathematical-
computational models can help reduce costs, time, risks
and volunteers involved in the research. However, to
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achieve these objectives, the models must be very reli-
able. Since models are always an abstraction of reality,
using simplifications to deal with complexities, many fac-
tors that can contribute to the real phenomenon may be
ignored.
Mathematical models have been used for many years

to represent various aspects of the immune system and
related pathologies, but their application to describe the
effects of vaccines has been rather limited [24]. The
term computational vaccinology has been used to refer to
computer-aided vaccine design [25–28], and its objective
is to use different modeling techniques to aid the develop-
ment and improvement of vaccines at different stages of
their design processes.
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In 1796 Edward Jenner introduced vaccination against
smallpox, which was a major health problem at the
time. Jenner observed that milkmaids were protected
from smallpox after having suffered from cowpox, and
concluded that cowpox could be used as a deliberate
mechanism of protection against smallpox [29]. Jenner
inoculated an 8-year-old boy, James Phipps, with cow-
pox. Subsequently, Jenner inoculated the boy again, this
time with smallpox, and he did not contract the disease
[29]. Jenner concluded that protection was complete. This
is the key of vaccination: expose the body to antigens
from pathogens, in order to stimulate the production of
antibodies and defense cells against a specific disease.
Much of the work on computational vaccinology is

related to the process of creating a new vaccine, such as
in the selection of the best strains for use. In a previous
paper [30] we proposed a new use for computational vac-
cinology, i.e. in the clinical development stage. With the
use of mathematical and computational models, it is pos-
sible to experiment, in silico, different scenarios related to
vaccination, to address important questions that remain
unanswered.
The Yellow Fever (YF) vaccine, available since 1937

[31], is made from live attenuated virus still capable of
triggering an immune response and inducing the produc-
tion of antibodies and memory cells. Live-virus vaccines
induce an immune response similar to that obtained with
exposure to wild virus, but the risk of presenting char-
acteristic symptoms of the disease and its complications,
or death, due to vaccination, is extremely small. The YF
vaccine is considered an effective and safe vaccine, with
high documented seroconversion rates and low rates of
adverse events. It has been effectively used to control a
non-eradicable disease and is one of the vaccines that can
benefit from the new use of computational immunology.
The reason for this is manifold.
Although recognized as an effective and safe vaccine,

some questions remain unanswered or poorly under-
stood, and could be reassessed using new technologies
and tools. As the vaccine was developed decades ago,
some steps of its developmental processes were estab-
lished empirically. A good example is the optimal dose
required for immunization. What is the vaccine dose
with the best immunogenicity/reatogenicity ratio? There
are clinical studies designed to evaluate this [32], but
these studies require time and resources, and there are
methodological restrains to test several different doses.
With the use of mathematical and computational mod-
eling techniques, it is possible to evaluate a larger spec-
trum of doses in a much shorter time, using far less
resources.
Another controversial issue is the need for a booster

dose. Using mathematical and computational modeling,
it is possible to simulate, for an individual, what his/her

antigen levels will be years in the future, in a few min-
utes, to assess the duration of immunity and the need for
booster dose administration, taking into account differ-
ences among individuals and doses,to help in the design
of prospective cohort studies.
Despite being considered a safe vaccine, there are rare

serious adverse events that need to be reassessed, such
as viscerotropic and neurotropic events. There are also
questions regarding the safety for vaccinating specific
populations such as the elderly, people living with Human
Immunodeficiency Virus (HIV)/AIDS and other immuno-
compromised populations. Because the YF vaccine is a
live-attenuated virus vaccine, there is a small but not
insignificant risk of occasional higher viral replication
related either to vaccine virus attenuation aspects or an
inability of the immune system to control the vaccine virus
replication.
Recently, YF outbreaks were recorded in Angola and the

Democratic Republic of Congo (DRC), with the latest out-
break still underway in Brazil, starting in December 2016.
From December 2016 to February 22, 2017, 1,345 sus-
pected cases were recorded, of which 295 have been con-
firmed, and 215 deaths reported to the Brazilian Ministry
of Health [33].
YF is not an eradicable disease because of its sylvatic

cycle. Reported cases in the Brazilian outbreaks were
classified as sylvatic YF, but the risk of urban YF reintro-
duction is imminent due to high levels of Aedes aegypti
infestation in Brazilian cities where vaccination coverage
is not routinely recommended. World stocks and YF vac-
cine production capacity are a logistic concerns which
could impact the control of disease transmission, particu-
larly in large outbreaks. In Kinshasa, capital of the DRC,
fractional doses of the YF vaccine were administered for
outbreak control [34].
Concerned about the risk of a global epidemic, the

WHO launched in April 2017 a strategy called Eliminate
Yellow fever Epidemics (EYE), which aims to eliminate
YF epidemics in the world by 2026 [34]. Through early
detection and rapid and appropriate response, it is possi-
ble to minimize suffering, damage and propagation [34].
This strategy has three goals: protect populations at risk,
prevent the international spread of YF and contain out-
breaks quickly. To achieve these goals, the strategy sug-
gests actions on different fronts, including research and
development of better tools and practices. Assessing data
about optimal vaccine dose and duration of immunity
could help the design of new vaccination strategies for
disease control.
This work, therefore, presents a first step towards

an ideal scenario to simulate distinct situations related
to the use of the YF vaccine: a qualitatively vali-
dated mathematical-computational model of the immune
response to the YF vaccine. The model considers the



Bonin et al. BMC Immunology  (2018) 19:15 Page 3 of 17

major populations of Human Immune System (HIS) cells
and molecules important in the process of immunity
acquisition, such as Antigen Presenting Cells (APCs), B
and T lymphocytes, and antibodies, which are consid-
ered the main marker of immunity. The model was then
evaluated using distinct scenarios, and was successful in
qualitatively reproducing experimental results reported in
the literature.
This work is organized as follows. First, Section Related

works presents related works done in this fields.
Section Methods presents the mathematical and compu-
tational models used to reproduce the immune system
response to the YF vaccine. The results are then presented
in Section Results and discussed in Section Discussion,
and finally Section Conclusion presents our conclusions.

Related works
The use of mathematical and computational models to
help vaccine development is not new. In fact, several
works use computational tools to aid vaccine design. For
example, epitope-mapping algorithms have been used for
vaccine design since the 1980s [35]. Since then, new com-
putational tools have been used for selection of vaccine
targets [36–44]. Most of the works focuses on using math-
ematical and computational tools to predict epitopes [45]
or to develop virtual screening approaches (i.e, the iden-
tification of relevant antigens) [46–49]. This traditional
use of computational vaccinology is related to pre-clinical
development. This work focuses on the development of
mathematical and computational models that can be used
in the clinical development stage, i.e., when the vaccine is
first tested in humans. We argue that it is possible to carry
out some experiments in silico, reducing the search space
for experiments in vivo or in vitro, and it is possible to
eliminate, reinforce or weaken hypotheses and to propose
new studies, thus saving time and resources.
Several computational modeling techniques applied to

vaccination are analyzed and discussed by Pappalardo
et al. [24]. The authors describe what mathematical
and computational modeling are and how they can aid
research in vaccination. Modeling is defined as human
activity involving the representation, manipulation, and
communication of everyday real world objects. In their
review, two main types of modeling are considered:
Agent-Based Models (ABM) and mathematical models.
Mathematical models are mainly based on differential
equations, whether ordinary or partial, with delayed
and/or stochastic equations. In this work, we try to quali-
tatively validate a simplified mathematical-computational
model of the immune response to the YF vaccine pre-
sented in a previous work [50], which is based on a live,
attenuated viral strain. The model uses Ordinary Dif-
ferential Equations (ODEs) to model the main cells and
molecules related to adaptive immune response.

Another work uses an ODE-based approach to model
the human immune response to vaccination against both
YF and smallpox [51] using distinct data and equations
sets, one for each disease. The aim of the authors was to
primarily evaluate the dynamics of CD8+ T cells, while
this work will evaluate the immune response as a whole.
The model proposed here differs from that presented by
Le et al. [51], since it considers important populations
at each stage of the immune response to YF vaccina-
tion, from virus inoculation to APC antigen presentation
and consequent activation of lymphocytes, generation of
antibodies and memory cells.

Methods
Mathematical model
In this section, we present the model we proposed in a
previous work [50], which will be qualitatively validated
in this paper. The model consists of a system of 10 ODEs
representing important populations in the response pro-
cess generated by the body after vaccination. The main
populations are viruses, APCs, CD8+ T cells, short-lived
and long-lived plasma cells, B cells and antibodies. Only
populations related to the YF vaccine are modeled. For
example, only B and T cells whose receptors can recognize
the YF virus are considered in the model.
Equation 1 represents the vaccine virus (V ).

d
dt

V = πvV − cv1V
cv2 + V

− kv1VA − kv2VTE (1)

The virus can not proliferate by itself, it needs to infect a
cell and use it as a factory for new viruses. This is implic-
itly considered in the term πvV , which represents the
multiplication of the virus in the body, with a production
rate of πv. The term cv1V

cv2+V denotes a non-specific viral
clearance by the innate immune system. This function is
similar to the Hill family of equations [52].

y = k1

(
xk2

kk23 + xk2

)

The above equation is a generalization of the hyperbolic
saturation function. The parameter k1 scales the maxi-
mum value to which the function is asymptotic, k2 is a
shape parameter and k3 is analogous to the half-saturation
constant. If k2 = 1, the Michaelis-Menten function is
produced [53].
The term kv1VA denotes specific viral clearance due to

antibody signaling, where kv1 is the clearance rate. The
term kv2VTE denotes specific viral clearance due to the
induction of apoptosis of cells infected by the YF virus,
where kv2 is the clearance rate.
APCs are all cells that display antigens complexes on

their surfaces, such as dendritic cells and macrophages.
Two stages of APCs were considered: immature and
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mature. The first stage, immature APCs (AP), is described
by Eq. 2.

d
dt

AP = αAP (AP0−AP)−βAPAP
(
kAP1 + tanh

(
V − kAP2

))
(2)

The term αAP (AP0 − AP) denotes the homeostasis
of APCs, where αAP is the homeostasis rate. The
term βAPAP

(
kAP1 + tanh

(
V − kAP2

))
denotes the con-

version of immature APCs into mature ones. There-
fore, the same term appears in Eq. 3 with positive sign.
The constant βAP represents the conversion rate and(
kAP1 + tanh

(
V − kAP2

))
is a sigmoidal saturation func-

tion in the form of a hyperbolic tangent.
Equation 3 represents the mature APCs (APM).

d
dt

APM = βAPAP
(
kAP1 + tanh

(
V − kAP2

))−δAPMAPM

(3)

The first term, as explained, denotes the dynamics of
APCs maturation. The second term, δAPMAPM, denotes
the natural decay of the mature APCs, where δAPM is the
decay rate.
Equation 4 represents the population of naïve CD8+ T

cells (TN ).
d
dt

TN = αTN (TN0 − TN ) − πTAPMTN (4)

The term αTN (TN0 −TN ) represents the homeostasis of
CD8+T cells, where αTN is the homeostasis rate. The term
πTAPMTN denotes the activation of naïve the CD8+ T
cells, where πT is the activation rate. Therefore, the same
term appears in Eq. 5 with positive sign.
Equation 5 represents the effector CD8+ T cell popula-

tion (TE).
d
dt

TE = πTAPMTN + kTEAPMTE − δTETE (5)

The term kTEAPMTE represents the proliferation of
effector CD8+ T cells. The term δTETE represents the nat-
ural death of these cells, with δTE representing its decay
rate.
Equation 6 represents B cells (B), both naïve and effector

ones. These populations were not considered separately in
order to simplify the model.

d
dt

B = αB(B0 − B) + πBAPMB − βSAPMB

−βLAPMB − βBMAPMB (6)

The term αB (B0 − B) represents the B cells homeosta-
sis, where αB is the homeostasis rate. The term πBAPM
represents the proliferation of the active B cells. The
terms βSAPMB, βLAPMB and βBMAPMB denote the por-
tions of active B cells that differentiate into short-lived
plasma cells, long-lived plasma cells and memory B cells,

respectively. These terms will appear with positive sign in
Eqs. (7), (8) and (9). The activation rates are respectively
given by βS, βL and βBM .
Equation 7 represents the short-lived plasma cells (PS).

d
dt

PS = βSAPMB − δSPS (7)

The term δSPS denotes the natural decay of short-lived
plasma cells, where δS is the decay rate.
Equation 8 represents the long-lived plasma cells (PL).

d
dt

PL = βLAPMB − δLPL + γMBM (8)

The term δLPL denotes the natural decay of long-lived
plasma cells, with δL representing the decay rate. The term
γMBM represents the production of these cells by memory
B cells, where γM is the production rate.
Equation 9 corresponds to memory B cells (BM).

d
dt

BM = βBMAPMB + kBM1BM

(
1 − BM

kBM2

)
− γMBM

(9)

The term kBM1BM
(
1 − BM

kBM2

)
represents the logistic

growth of memory B cells, i.e., there is a limit to this
growth. The constants kBM1 and kBM2 represent the growth
rate and limits, respectively.
Equation 10 represents the antibodies. The terms πASPS

and πALPL are the production of the antibodies by short-
lived and long-lived plasma cells, respectively. The pro-
duction rates are given by πAS and πAL, respectively. The
term δAA denotes the natural decay of these cells, where
δA is the decay rate.

d
dt

A = πASPS + πALPL − δAA (10)

The model presented in this paper was based on an
earlier study [54], which described a mathematical model
to represent the human immune response to an infec-
tion by YF virus. Therefore, the first difference is that this
paper focus on modelling the effects of the YF vaccine
administered subcutaneously.
The previous work [54] modeled the immune response

to the YF virus from infection of epithelial cells to secre-
tion of antibodies, considering various populations of cells
and molecules, in different stages and compartments.
There were 19 ODEs divided into two compartments: one
representing the tissue where the virus proliferates and the
other the lymph nodes. In order to consider all the cells
and molecules, the model became complex.
Another issue is related to its adjustment to reproduce

some behaviors described in the literature: as the num-
ber of equations and parameters increases, so does the
amount of data and information needed to adjust the
model. The second difference between the two models is
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that the model reproduced here [50] reduces the number
of equations from 19 to 10. The reduced model repro-
duced in this work considers only the main populations
of cells and molecules involved in the response to the
vaccine, and abstracts some details that are not crucial
to represent the behavior of the immune response, such
as the representation of distinct compartments. In addi-
tion, some populations were not considered because no
experimental data are available to validate the simulations,
such as CD4+ T cells. In the near future, more cells or
molecules can be reintroduced in the model if their roles
are important to explain or represent behaviors that the
reduced model [50] could not represent. Table 1 summa-
rizes the main differences between the model presented in
previous work [54] and the one evaluated in this work.
It is important to remember that a mathematical model

is an abstraction of reality and therefore simplifications
are always necessary. This is accentuated when the target
of the model is the HIS response, a complex network that
involves many tissues, organs and cells and that performs
several processes. The level of abstraction depends on the
purpose of the model. HIS can be seen at various levels,
from the level of substances produced by cells, such as
cytokines, to the level of cells andmolecules, as in the case
of the simplified model [50]. It also can reach the level of
an entire population, as in the case of the epidemiologi-
cal models. The use of a simplified model does not imply
that it can reproduce only a limited number of scenarios.
The point is that some of the aspects not directly included
in the model may be indirectly present, as constants. As
such, the choice of distinct values for some constants may
represent distinct behaviors in the system.

Computational model
For the resolution of the ODEs system, a code was
implemented using Python programming language, which
includes libraries for easily solving complex mathematical
problems. The library chosen was SciPy [55]. This library
has a package called “integrate”. One of the functions avail-
able in this package is called “odeint”, and it is used to
numerically solve a system of ODEs. The choice of the
numerical method to be used is made automatically by
the function based on the characteristics of the equations.
The function uses an adaptive scheme for both the inte-
gration step and the convergence order. The function can

Table 1 Main differences between the models

Previous Current

Number of equations 19 10

Number of parameters 54 27

Number of compartments 2 1

Number of populations considered 10 8

solve the ODEs system using either the Backward Differ-
entiation Formula (BDF) or the Adams method [56]. BDF
is used for stiff equations and the implicit Adams method
is used otherwise.
The experiments were performed using Python version

2.7.10 using the Spyder Integrated Development Environ-
ment (IDE). The execution environment was composed by
an Intel Core i5 1.6 GHz processor, with 8 GB of RAM.
The system runs macOS Sierra version 10.12.5.

Results
In order to qualitatively validate our model, four experi-
ments were carried out. The first one simulates a scenario
where an individual was vaccinated against YF for the first
time. The standard dose of the vaccine was used in this
scenario. The results of the simulation were then com-
pared to experimental data obtained from the literature.
The second scenario assesses the immune response fol-

lowing the administration of a booster dose ten years after
the first dose. The standard dose of the vaccine was also
used in this scenario. Although there are no experimental
data from the literature that could be used for comparison
purposes, there is research reporting that the expected
behavior is an individual to present a lower viremia, and to
raise antibodies levels to levels higher than those obtained
after the administration of the first dose [57].
The third scenario simulates the immune response to

the YF vaccine in individuals with different levels of naïve
CD8+ T cells prior to vaccination. This simulation aims to
evaluate the importance of this population of cells in the
control of viremia and in the production of antibodies.
The fourth scenario is based on an experimental study

[32] in which distinct doses of the YF vaccine were tested.
Compared to the standard dose, the experimental study
reported that, to some extent, the reduction did not sig-
nificantly affect the percentage of sero-conversion. In this
scenario, computational experiments are executed several
times, using distinct values for the vaccine doses. For com-
parison purposes, the computational experiments were
carried out using the same values of the experimental
study [32].
In addition to evaluating the response of the model

when different doses are administered, we performed
a sensitivity analysis of the parameters related to virus
dynamics. The main results of this analysis are shown in
subsection Sensitivity analysis.
All the initial values used for the variables as well as the

model parameters are presented in Tables 2 and 3. The
parameters were adjusted, except for δA, whose value was
extracted from the literature.
In general, the literature reports two distinct sets of

experimental data. The first one is viremia along time, i.e.,
the amount of virus present in the bloodstream. The sec-
ond dataset reported in the literature is the antibody levels
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Table 2 Model variables and initial values

Variable Description Initial value

V Vaccine virus 27,476

AP Immature APCs 103 a

APM Mature APCs 0

TN Naïve CD8+ T cells 103 a

TE Effectors CD8+ T cells 0

B B cells 103 a

PS Short-lived plasma cells 0

PL Long-lived plasma cells 0

BM Memory B cells 0

A Antibodies 0

Values marked with a were based on [68]

along time. Therefore, in order to validate the model, the
values obtained by Eqs. 1 and (10) will be compared to
experimental values found in the literature.

First vaccination
This section presents the computational results of a sim-
ulation in which an individual was vaccinated against YF
for the first time.
In this computational experiment, a value equal to

27,476 International Units (IU) was used as the standard
amount of virus particles present in the vaccine. This
value is set as the initial condition of the virus population
represented in Eq. 1 by V (all initial conditions are pre-
sented in Table 2). In fact, in the case of the 17DD-YFV the
amount of virus particles varies depending on the vaccine
lot number, ranging from 2.3 to 12 times the minimum

value required by the WHO [32]. The 17DD-YFV is the
YF vaccine developed by Bio-Manguinhos/Fiocruz, one of
the three producers prequalified by the WHO to supply
vaccines to international agencies.
Figures 1 and 2 show the comparison of the antibody

curve generated as a result at 100 and 4,000 simulation
days, respectively, with the experimental results from the
literature [58]. The result of the simulation is presented in
separate figures in order to better observe the increase of
the antibody level in the first days after vaccination.
The levels of antibodies obtained from the literature

[58] are in Geometric Mean Titers (GMT) and refer to
time intervals after vaccination. The time values used in
the graph were obtained by averaging the times of each
interval. For example, the first point was the 30-45 days
post-vaccination interval, the value used was 37 days, the
corresponding antibody level was 8,762.8 IU/mL.
Figure 3 shows the viremia curve obtained by the simu-

lation of the model in comparison with the experimental
data obtained from the literature [32].

Booster dose
The administration of a booster dose was simulated 10
years after the administration of the first dose. The sim-
ulation is quite simple. As in the previous scenario, the
initial value of V was set to 27,476 to simulate the admin-
istration of the first dose. Then, the simulation is executed
until day number 3,650, when the value of variable V is
set again to 27,476. The difference from the beginning of
the simulation is that this time antibodies and memory
cells that were produced after the first dose are present.
Figures 4 and 5 present the antibody curves. The results
of the booster dose simulation were shifted to facilitate its

Fig. 1 Antibody curve obtained by the model (line) and experimental data extracted from the literature [58] (dots)
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Fig. 2 Antibody curve for the first 100 days obtained by the model (line) and experimental data extracted from the literature [58] (dots)

comparison to the results of the first dose. The solid line
curve represents the response to the first dose, while the
dashed curve represents the response to the booster dose.
Figure 6 shows the viremia curves 15 days after the

administration of the vaccine.

Naïve T CD8+ levels
The clearing of the intracellular pathogen via CD8+ cyto-
toxic T lymphocytes appears to be important for recov-
ering from primary viral infection. Based on this obser-
vation found in the literature [57], the authors decided to
compare the immunological response given by the sim-
ulation of the model with different levels of CD8+ T

cells in order to evaluate the impact of this population of
lymphocytes on viral clearance.
Figure 7 shows the viremia curves for different initial

CD8+ T cell values, and Figs. 8 and 9 show antibody
levels.

Dose-response
An experimental work [32] reported that “doses from
27,476 IU to 587 IU induced similar seroconversion
rates and neutralizing antibodies geometric mean titers
(GMTs)”. Based on this study, a second scenario ana-
lyzes the results of our model when different dose val-
ues are administered. The values used in the simulation

Fig. 3 Viremia curve for all period obtained by model (line) and experimental data obtained from the literature [32] (dots). Each dot in time scale
represents a distinct patient
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Fig. 4 Antibody curves 50 days after the first vaccination (full blue line) and after the booster dose (dashed green line)

are the same to those used by the experimental work
[32]: 31 IU, 158 IU, 587 IU, 3,013 IU, 20,447 IU and
27,476 IU.
Figures 10 and 11 show the viremia curves obtained

by the model for distinct vaccine doses. Figure 11 uses a
smaller scale to allow the visualization of the simulated
viremia curve obtained after administration of the dose
with 587 IU (represented by diamonds).
Figure 12 presents the antibody curves generated by

the computational model during a 50-day period for dif-
ferent doses of the vaccine, while Fig. 13 presents the
antibody curves obtained by simulating 4,000 days after
vaccination.

Doses using 31 IU and 158 IU did not produce viremia
nor antibody titers, so the curves are superimposed on the
x-axis.

Sensitivity analysis
The sensitivity analysis identifies the impact caused by the
variation of parameters and initial conditions of the math-
ematical model in the dependent variables [59]. If a small
change in a parameter is responsible for a drastic change
in the result of the problem, it means that the problem
is sensitive to that particular parameter. Otherwise, this
parameter has a low impact on the model. This analy-
sis is used to help the understanding of the mathematical

Fig. 5 Antibody curves 250 days after the first vaccination (full blue line) and after the booster dose (dashed green line)



Bonin et al. BMC Immunology  (2018) 19:15 Page 9 of 17

Fig. 6 Viremia curves 15 days after the first vaccination (full blue line) and after the booster dose (dashed green line)

model, since it allows the identification of the most rel-
evant parameters, that is, the values of these parameters
must be carefully defined.
A brute-force approach was used to examine the influ-

ence of all parameters of the model. The parameter val-
ues were varied from -10% to + 10% (in 5% intervals)
from their original values. The original values are pre-
sented in Table 3 and were obtained after adjustment
using experimental data from the literature [32, 58, 60, 61].
For each parameter, the curves that simulate the level of
antibodies and viremia were evaluated, since they are the
main populations of interest and on which there is experi-
mental data. Only the parameters to which the model was
most sensitive will be presented in this section.

As expected, the model was sensitive to most of the
parameters of the equation describing the virus dynam-
ics (Eq. 1). The antibody curves were not significantly
affected by them, therefore only the viremia curves
will be presented. Figure 14 shows the distinct viremia
curves obtained for different values of πv. This param-
eter represents the viral replication rate and, as one
could expect, the model was very sensitive to it. The
more the virus can multiply, the more difficult it is
for the HIS to contain it and the higher the viremia
level is.
Figures 15 and 16 present the viremia curves obtained

by simulation of the model for different values of kv1
and kv2, respectively. These parameters represent the

Fig. 7 Viremia curves for different initial conditions of CD8+ T cells
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Fig. 8 Curves of antibody levels obtained by the 50-day simulation of the model, for different initial values of CD8+ T cells

neutralization rates of the YF virus per unit of neutralizing
antibodies (kv1) and CD8+ T cells (kv2).
If we consider that the parameter kv1 represents the abil-

ity of antibodies to neutralize the YF virus, its value can be
understood as its affinity/specificity to the YF virus and,
if it is more specific and can neutralize the virus better,
viral replication will be better controlled and viremia will
be lower.
It is easy to understand why the model, especially the

viremia curve, is so sensitive to parameter kv2. It rep-
resents the ability of CD8+ T cells to induce apopto-
sis of an infected cell. Thus, the higher this ability, the
fewer the number of infected cells. Since YF viruses use
infected cells to reproduce themselves, the viremia level
is reduced.

Discussion
As can be observed from Figs. 1 and 2, from a qualitative
point of view, the values obtained from the computational
experiments are very close to the experimental results.
Also, the literature reports that the antibody concentra-
tion in the bloodstream peaks at about two weeks after
vaccination [62], a value close to the one obtained in the
computational experiments.
Figure 3 shows that, in the simulation, the peak viremia

value occurs on the fifth day, consistent with the literature,
which reports that it occurs between four and six days
after vaccination [63], as well as with experimental results
[32]. In addition, the literature reports that ten days after
vaccination, viremia is undetectable [63], which is con-
sistent with the computational results. For some patients,

Fig. 9 Curves of antibody levels obtained by the 4,000-day simulation of the model, for different initial conditions of CD8+ T cells
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Fig. 10 Viremia curves obtained by the model when distinct initial values of V (vaccine virus) are used. The values represent distinct vaccine doses.
For doses equal to 31 IU and 158 IU, viremia was equal to zero

however, viremia can be detectable, as one experimental
result has shown [32].
Figures 4 and 5 show that the behavior described in the

literature [57] resembles that obtained by the simulation
of the model: the neutralizing antibodies levels are slightly
increased after the booster dose.
The viremia curves shown in Fig. 6 demonstrate that

viremia reaches much lower levels after the administra-
tion of the booster dose than those seen after the admin-
istration of the first dose. Although the viremia level is
lower after the administration of the booster dose than

the first dose, it is not possible to say that this level is
below the threshold of detectable viremia as described in
the literature: “viremia has not been documented in per-
sons receiving a booster dose of YF vaccine” [64]. This
occurs because of the use of distinct units to measure
viremia, and the fact that it is not trivial to convert one
unit to another. For this reason, this work considers only
qualitative results, and not quantitative ones. This result
still needs to be quantitatively compared to experimental
data in order to better validate our model, but the qual-
itative behavior presented is satisfactory since the level

Fig. 11 Viremia curves obtained by the model when distinct initial values of V (vaccine virus) are used. The values represent distinct vaccine doses.
The scale was changed to better illustrate the viremia induced after administration of a dose with 587 IU. For doses equal to 31 IU and 158 IU,
viremia was equal to zero
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Fig. 12 Antibody curves generated by the computational model. The model simulates the antibody concentrations during a 50-day period for
different doses of the vaccine. For doses equal to 31 IU and 158 IU, the antibody curves were equal to zero

of antibodies and/or memory cells was able to contain
viral replicationmore efficiently than it was observed for a
naïve individual. Furthermore, the viremia level was almost
4 times lower for the booster dose than for the first dose.
As show in Fig. 7, as the number of CD8+ T cells is

reduced, the viremia increases and lasts longer, reinforc-
ing the importance of CD8+ T cells in the control of viral
replication. Figures 8 and 9 show that this variation in ini-
tial CD8+T cell values did not significantly affect antibody
production nor duration of immunity.

As observed in the Figs. 10 and 11, all doses greater
than 3,013 IU produce high levels of viremia. Although
the viremia increases with the use of doses with higher
concentrations, the antibody response presents a very
subtle difference, as can be observed in Fig. 12. The
587 IU dose, which presented a much smaller, unre-
markable viremia (Fig. 10) compared to the doses with
higher concentrations, was also able to induce an anti-
body response similar to that induced by formulations
with higher concentrations.

Fig. 13 Antibody curves generated by the computational model. The model simulates the antibody concentrations during a 4,000-day period for
different doses of the vaccine. For doses equal to 31 IU and 158 IU, the antibody curves were equal to zero
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Table 3 Model parameters

Parameter Equation Description Value

πV 1 Viral replication rate 4.0
(
day−1)

cv1 1 Maximum viral clearance rate by the innate system 2 × 103
(
virus titer × day−1)

cv2 1 Half saturation constant 3 × 101 (virus titer)

kv1 1 YFV neutralization rate per unit of neutralizing antibodies 4.875 × 10−4
(
day−1 × A−1

)
kv2 1 YFV neutralization rate per unit of CD8+ T cells 1.5694 × 10−3

(
day−1 × T−1

E

)
αAP 2 Homeostasis rate of immature APCs 2.5 × 10−3

(
day−1)

βAP 2,3 APC maturation rate 3.0 × 10−1
(
day−1)

kAP1 2,3 With βAP , defines the minimum production rate of APM 1.0 (dimensionless)

kAP2 2,3 Defines the saturation point of APM 2 × 102 (virus titer)

δAPM 3 Death rate of mature APCs 5.38 × 10−1
(
day−1)

αTN 4 Homeostasis rate of CD8+ T cells 2.17 × 10−4
(
day−1)

πT 4,5 Activation rate of naïve CD8+ T cells 1 × 10−2
(
day−1)

kTE 5 Replication rate of effector CD8+ T cells 1 × 10−5
(
day−1)

δTE 5 Death rate of effector CD8+ T cells 1 × 10−1
(
day−1)

αB 6 Homeostasis rate of B cells 6.0
(
day−1)

πB 6 Replication rate of active B cells 1.77 × 10−3
(
day−1)

βS 6,7 Differentiation rate of active B cells in short-lived plasma cells 6.72 × 10−1
(
day−1)

βL 6,8 Differentiation rate of active B cells in long-lived plasma cells 8.05 × 10−3
(
day−1)

βBM 6,9 Differentiation rate of active B cells in memory B cells 1 × 10−3
(
day−1)

δS 7 Death rate of short-lived plasma cells 2.0
(
day−1)

δL 8 Death rate of long-lived plasma cells 2.22 × 10−4
(
day−1)

γM 8,9 Differentiation rate of memory B cells in long-lived plasma cells 1.95 × 10−6
(
day−1)

kBM1 9 Proliferation rate of memory B cell 1 × 10−5
(
day−1)

kBM2 9 Maximum growth constant 10.0 (BM)

πAS 10 Antibody secretion rate (short-lived plasma cell) 5 × 10−1
(
day−1)

πAL 10 Antibody secretion rate (long-lived plasma cell) 1.7 × 10−1
(
day−1)

δA 10 Antibody death rate 4 × 10−2
(
day−1)a

The value marked with a was extracted from [66, 67] apud [68]

Fig. 14 Sensitivity analysis of the parameter πv in the viremia curves 15 days after vaccination
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Fig. 15 Sensitivity analysis of the parameter kv1 (neutralization rate of YF virus per unit of neutralizing antibodies) in viremia curves 15 days after
vaccination

Figure 13 suggests that the duration of immunity does
not appear to be affected by vaccine formulations with
distinct concentrations: all doses above 587 IU present
similar results. For now, it seems that yellow fever vac-
cine can be used in much lower doses than usual: the
computational experiments indicate that vaccine formu-
lations with 587 IU can produce the same seroconversion
rates than the 27,476 IU formulation, in accordance to
the experimental data [32]. Although the reference paper
investigated the duration of immunity for a smaller period
of time, approximately 10 months after vaccination [32],
its conclusions were similar to those obtained by the
computational experiments: “GMTs of each group were
not statistically different from the reference vaccine". The

computational results are also in agreement with other
studies. One paper [57] concluded: “there was no cor-
relation between the level and duration of detectable
17D viremia and the postvaccination nAb level". Another
paper presents a similar conclusion [65]: “the serologi-
cal response was not related to virus dose as the titres
obtained with high or low doses of virus was at the same
level".
The results of the simulations for these four scenarios

have shown that the model was able to reproduce, from a
qualitative perspective, clinical results reported in the lit-
erature, despite all simplifications [50]. Some aspects not
directly included in the model may be indirectly present,
as constants. Therefore, the choice of distinct values for

Fig. 16 Sensitivity analysis of the parameter kv2 (neutralization rate of YF virus per unit of CD8+ T cell) in viremia curves 15 days after vaccination
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a constant may represent distinct behaviors in the sys-
tem. For example, one paper [58] points out that “The
decreasing trend in antibody titres with the time since vac-
cination appeared stronglymodified by age". In ourmodel,
the effects of age in the production of antibodies could
be reproduced increasing or decreasing the values used
for the antibody secretion rate (Eq. 10, πAS and πAL). For
this reason, our model does not need to include age as
one of its parts. The same applies for other aspects of the
immune system that are not directly included in the set of
equations.
In this work we consider that the vaccine does not

cause adverse events, such as Yellow fever vaccine-
associated viscerotropic disease (YEL-AVD) and Yellow
fever vaccine-associated neurotropic disease (YEL-AND),
due to their rarity.
This model was developed and adjusted based on the

immune system response to the YF vaccine, but it should
be noted that the concept presented in the mathematical
model is generic enough to represent the action of other
diseases or vaccines in theHIS. For this, changes in both initial
conditions and parameters values are probably needed.
Obtaining experimental data to adjust and validate

the model is not a trivial task. Studies on the duration
of immunity are difficult to interpret because different
groups use distinct methods to evaluate seroprotection.
There is no well-established serological value of protec-
tion in humans and cellular immunity data are very scarce.
Also, as stated above, the values reported for viremia use
distinct units, which cannot be converted into other units
due to the different methods used to obtain such data.
These factors made it difficult to obtain experimental data
compatible with the standards and units used in themodel
presented in this work, and consequently to use more
studies available in the literature to adjust and validate it.
Although the results found are qualitatively in agree-

ment with the few experimental data found in the liter-
ature, more tests and refinement of the model may be
needed to adjust it. To do so, experimental data to bet-
ter validate the simulated scenarios needs to be obtained,
in particular for booster dose and CD8+ T cells. With
this, it would be possible to also evaluate the model
from a quantitative perspective and, if necessary, to bet-
ter adjust it. With more data available, the model may be
improved, making it more reliable and sufficiently accu-
rate to be used to help answer open questions about
YF vaccine.
One of the next steps in this work is to reintro-

duce CD4+ T lymphocytes in the model. This could
be important to simulate the effects of the YF vaccine
in immunosuppressed individuals, such as people living
with HIV. Since many of the YF endemic countries are
in Africa, where the HIV infection rates are also high,
the investigation of the best YF vaccination scheme for

these individuals is relevant, since they have, in general,
fewer CD4+ T lymphocytes, which are important to the
activation of other lymphocytes and consequently to the
production of antibodies. This population deserves spe-
cial attention because the YF vaccine is made with live
virus, therefore the risk of systemic lethal infection exists.

Conclusion
This work presented the qualitative validation of a
reduced mathematical-computational model to represent
the immune response to the YF vaccine using four distinct
scenarios. The first one simulates the immune response
to the administration of the standard dose of the 17DD-
YFV. The second one simulates the immune response to
distinct doses of vaccine. The third scenario simulates the
administration of a booster dose ten years after the first
dose. Finally, we evaluated the impact of changing the
CD8+ T cells values. The results of a sensitivity analy-
sis of the model was also shown. Two populations, virus
and antibodies, were the main focus of the simulations
because more experimental data are available and quali-
tative behaviors are described in the literature for these
populations. The results of the simulations were collected
and compared to the values reported in the literature.
From a qualitative point of view, the results obtained
by the computational model satisfactorily reproduced the
clinical results.
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