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Abstract

Background: The term pan-genome was proposed to denominate collections of genomic sequences jointly
analyzed or used as a reference. The constant growth of genomic data intensifies development of data structures and
algorithms to investigate pan-genomes efficiently.

Results: This work focuses on providing a tool for discovering and visualizing the relationships between the
sequences constituting a pan-genome. A new structure to represent such relationships – called affinity tree – is
proposed. Each node of this tree has assigned a subset of genomes, as well as their homogeneity level and averaged
consensus sequence. Moreover, subsets assigned to sibling nodes form a partition of the genomes assigned to their
parent.

Conclusions: Functionality of affinity tree is demonstrated on simulated data and on the Ebola virus pan-genome.
Furthermore, two software packages are provided: PangTreeBuild constructs affinity tree, while PangTreeVis presents its
result.

Keywords: Pan-genome, Multiple genome alignment, Affinity tree

Background
Pan-genomes
The amount of genomic data is enormous and its growth
rate is increasing constantly. As an example, bacteria
genomes availability has risen over 10,000-fold over last
25 years [1]. One of the reasons for this phenomenon is
that DNA sequencing technologies are more and more
cost and time efficient. Since sequencing cost is decreas-
ing faster than storing and processing costs, optimization
of these operational expenditures has become a substan-
tial issue [2]. On the other hand, access to numerous
sequenced genomes enhances the potential of compara-
tive genomics.
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Consequently, the idea of a pan-genome has emerged.
Initially proposed as a single data structure for joint anal-
ysis of a group of bacterial genes [3], in the presence of
a variety of whole genome sequences available this term
has evolved. Currently, it refers to a model of joint analysis
of genomes of different organisms. Related data struc-
ture is expected to support various operations, including
construction, comparison, visualization, annotation, read
mapping etc. [4].

Simultaneous access to many genomes makes the data
structure information-rich. Pan-genome can serve as a
demonstration of single organism’s genome compared to
its relatives, but also as a complex scheme exposing the
variety of the component sequences. The first perspective
is particularly important for applications in personalized
medicine, because it makes possible to highlight one’s
individual properties which can be crucial in the mean
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of its phenotype. The other one can be useful when a
reference genome for a population is needed.

Modeling pan-genomes
Several pan-genome models were proposed, ranging from
collections of unaligned sequences to sophisticated (e.g.
HMM-based) models that require complex preprocess-
ing of sequence data [4]. Compromise solutions include
multiple sequence alignment (MSA) and various sequence
graphs.

The classical MSA model has a form of a matrix with
rows obtained from input sequences by inserting gaps in
appropriate positions. This model has several advantages,
e.g. matrix columns naturally define a joint coordinate
system for all input sequences. Additionally, most com-
mon sequence evolutionary events – insertions, deletions
and substitutions – are well highlighted. However, such
representation cannot handle rearrangements that violate
colinearity of input sequences, e.g. duplications or inver-
sions. In order to properly represent such rearrangements,
the whole alignment is usually split into blocks, which rep-
resent aligned fragments of input sequences as classical
colinear MSA. A small example of such block alignment
scheme is presented in Fig. 1.

Sequence graphs naturally represent rearrangements of
any kind. Moreover, in these models identical fragments
of different input sequences may be combined into one,
reducing the MSA redundancy in sequence representa-
tion. Such reduction is particularly important when a
pan-genome is used for read mapping. However, it comes
with the cost of loosing information regarding the input
sequences, so additional graph annotation is required to
provide a common coordinate system.

Graph-based MSA models were also proposed. One of
the first such solutions was probably Partial Order Align-
ment (POA) [5]. In this approach graph nodes represent
residues of input sequences and directed edges represent

consecutive residues. Moreover, undirected edges join
aligned residues with different labels. As illustrated in
Fig. 2, this graph can be constructed from an alignment
matrix straightforwardly: in each column identical letters
are collapsed into one node, undirected edges link nodes
obtained from the same column and directed edges join
nodes representing consecutive residues from at least one
of the sequences.

Several graph-based alignment models were applied to
the problem of whole genome alignment, e.g. A-Bruijn
graph [6], Enredo graph [7], Cactus graph [8] (see [9]
for review). There were also proposed alignment-free
sequence graph models (e.g. colored de Bruijn graphs
[10]), having meaningful advantages in terms of scalability
and performance.

Pan-genome structures
All multiple sequence alignment representations are com-
plex, even classical colinear one. Some MSA applications
require previous extraction of selected properties that
could be represented in a more compact way. For example,
sequence profile is a vector of symbol frequency distribu-
tions in particular MSA columns, consensus sequence is
composed of symbols dominating consecutive columns,
while information content vector quantifies the levels of
that domination.

The above concepts could be straightforwardly
extended to most graph-based alignment models, but
we anticipate possible results unsatisfactory for at least
two reasons. Firstly, the result would be still a sequence
graph with the same or similarly complex structure, and
this structure is what makes the graph alignment hard
to use. Secondly, in all the above objects MSA columns
are treated independently, while graphs encode some
dependency between residues (e.g. two nodes or paths
can represent alternative variants of the same locus). We
find this property an important advantage of graph-based

Fig. 1 Block alignment example
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Fig. 2 PO-MSA construction from multialignment. For each alignment column, identical nucleotides are merged into one node. Undirected edges
connect aligned nodes, while the directed ones reflect consecutive nucleotides

alignment models and expect it to be reflected in the
result.

One of the possible solutions was proposed in [11]:
instead of a single sequence profile or consensus there
should be computed several consensus sequences, which
in common would represent the whole (potentially

heterogeneous) set of aligned sequences. The paper
presents an algorithm identifying homogeneous sequence
subgroups and computing for each subgroup a consensus
sequence. Input alignment for the algorithm is repre-
sented as a POA and each consensus sequence forms a
path in a POA graph.

Fig. 3 Distributions of the value of sequence compatibility with consensuses C1 (top), C2 (middle) and C3 (bottom), computed in consecutive
iterations. Vertical green lines indicate resulting compatibility thresholds, i.e. right ends of the largest gaps between individual compatibility values
(indicated by short vertical blue lines). C1 is calculated from all input sequences, while C2 and C3 – only from sequences having in the previous
iteration compatibility above the threshold. The set of sequences exceeding the compatibility threshold has changed in the second iteration, since
a more homogeneous subgroup was recognized with C2. The third iteration doesn’t change the respective set and the procedure converges.
However, consensus C3 represents selected sequences better than C2, which is reflected by their larger average compatibility
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Our goals
The concept of POA consensus sequences has found several
applications. Examples include paralog separation in EST
alignments [11], gene isoform identification in de-novo
assembly of RNA-seq data [12] and assembly of third
generation sequencing reads [13]. However, to our best
knowledge, it has never been applied to pan-genomic
research.

The aim of this article is to fill this gap. For this purpose we
extend the above concept, based on the following principles:

• pan-genome may be split into different genome
subsets, depending on the assumed subset
homogeneity level,

• subsets of a wide range of levels can contribute to the
description of the relationships between genomes;
the same applies to their consensus sequences,

• the image of the pan-genome structure should be
complemented by subset hierarchy.

In the following sections we introduce the notion of
affinity tree that meets the above requirements. Further-
more, we propose an algorithm computing affinity tree for
given MSA, implemented in the package PangTreeBuild.
Functionality of our approach is evaluated on simulated
data and on the MSA of Ebola virus genomes. Finally,
we present a tool for affinity tree visualization, called
PangTreeVis.

Methods
POA and POA consensus sequences
Partial Order Alignment (POA) [5] was probably one of
the first graph-based MSA models. In this approach graph
nodes represent residues of input sequences (aligned
residues are combined into one if they are labeled alike)
and directed edges join residues that are neighboring in
at least one of the input sequences. Moreover, nodes

representing aligned residues with different labels are
connected with undirected edges.

Lee [11] presented a tool for calculating POA consen-
sus sequences. In this method each edge is assigned a
weight corresponding to the number of covering input
sequences. Then HeaviestBundle algorithm searches the
heaviest path in the graph using dynamic programming.
Next, the algorithm calculates the compatibility of each
sequence with the consensus, defined as

Cij = Nij

Ni

where Ni is the length of seuquence i and Nij is the number
of POA nodes belonging to both the sequence i and the
consensus j. The sequence is assigned to the consensus,
if the result is larger than the assumed threshold. Finally,
edge weights are recalculated and the whole procedure is
repeated for remaining sequences until all sequences are
assigned or none of them exceeds a compatibility thresh-
old. This forms a partition of the input sequences into
subsets with assigned consensus paths.

Affinity tree
As opposite to the flat division produced by the algorithm
of Lee [11], affinity tree allows to represent the hierar-
chy of sequence subsets. Each node of this tree has the
following attributes assigned:

• a subset of input sequences,
• a consensus sequence being their common

representation,
• minimum of the sequence-consensus compatibilities

(minComp).

The value of the minComp attribute reflects node’s
homogeneity level. The root node has all input sequences

Fig. 4 Compatibility threshold selection using three different P values. For P = 0.25 the biggest gap is between values 0.74 and 0.841 which
originate from 0.3 and 0.5. For P = 4 the treshold is in 0.522 which comes from value 0.85. The largest gap among original values of compatibilities
(P = 1) is between 0.5 and 0.72 so 0.72 is the boundary chosen as treshold in this case
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assigned and each non-leaf node has at least two chil-
dren nodes that form a partition of the sequences assigned
to their parent into more homogeneous subsets. Subsets
with homogeneity level bigger than the assumed parame-
ter stop form leafs.

Affinity tree building algorithm
The input of the algorithm consists of a set of aligned
sequences, represented with the POA model. Affinity
tree is created in BFS ordering: starting from the root,
sequences assigned to consecutive nodes are split into
smaller, more homogeneous subsets until the stop homo-
geneity level is achieved. The pseudocode of the algorithm
is shown in Algorithm 1.

The procedure of splitting sequences into subsets is sim-
ilar to that of Lee [11], but we introduced some important
modifications. The first one regards the choice of subset
consensus sequences. In Lee’s algorithm they are com-
puted for the whole current set of sequences and then
sequence subsets are selected based on the compatibility
with the consensus. The artifact of this approach is that
fragments of the consensus sequence may be representa-
tive to sequences not assigned to it rather than assigned
ones. In the case of longer (e.g. genomic) sequences this
behavior occurs more commonly than in the case of short
ones which Lee’s algorithm was designed for. In order to
avoid this artifact we recalculate consensuses based on
selected sequences only and repeat this procedure until
convergence. We observed that very seldom more than
two iterations are needed, typical case is presented on
Fig. 3.

Fig. 5 Using PangTreeBuild via PangTreeVis interface

Algorithm 1 Affinity Tree generation algorithm
procedure AFFINITYTREE(sequences, stop)

consensus = HeaviestBundle(sequences)
comps = CalcCompatibilities(sequences, consensus)
minComp = min(comps)
root = MakeNode(sequences, consensus, minComp)
tree = MakeTree(root)
leftNodes = EmptyQueue()
if minComp < stop then

leftNodes.Append(root)
end if
while leftNodes �= ∅ do

node = leftNodes.Pop()
leftSeqs = node.Sequences
minComp = node.MinCompatibility
siblingComps = ∅
while leftSeqs �= ∅ do

child = GetChild(leftSeqs, minComp, siblingComps)
tree.AddChildToNode(child, node)
leftSeqs -= child.Sequences
siblingComps.Add(child.MinCompatibility)
if child.MinCompatibility < stop then

leftNodes.Append(child)
end if

end while
end while
return tree

end procedure

Another problem with a direct application of Lee’s algo-
rithm is that the nodes of the tree have various homogene-
ity levels, which are not known a priori. In order to avoid
using an arbitrarily chosen threshold of Lee’s approach,
we invented a data-driven compatibility threshold selec-
tion method. The idea is that the compatibilities between
sequences and a consensus should form clusters corre-
sponding to homogeneous subsets. In particular, good
candidates for consensus-assigned sequences should be
separated from poor ones by a large difference in com-
patibility. Therefore, as the cutoff threshold we choose
the right boundary of largest gap in sorted compatibility
values.

This rule works well in the case of the first child
of a node. However, in the other case this procedure
would force splitting remaining sequences into smaller
and smaller subsets with inadequately high homogeneity
levels. Therefore, after creating the first child of a node,
for the purpose of threshold selection we introduce two
modifications to the list of sequence compatibilities:

• parent minComp value is added,
• all but the smallest compatibilities larger than all

minComp values of already created siblings are
removed.

Since the parent minComp value is smaller than all con-
sidered compatibilities, the first modification allows (and
defines criteria for) creating a node covering all remaining
sequences. The second modification restricts searching to
compatibility gaps overlapping the interval covering the
minComp values of a parent and already created siblings
(however, the right end of the gap still can be larger).
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Although the restriction could potentially cause choosing
an accidental threshold, the interplay between data-driven
threshold selection and iterative consensus recalculation
(see Algorithm 2 for details) minimizes this effect.

Algorithm 2 Get child algorithm
procedure GETCHILD(sequences, minComp, siblingComps)

sequences = leftSequences
consensus = HeaviestBundle(sequences)
consensusNotSet = True
while consensusNotSet do

comps = CalcCompatibilities(sequences, consensus)
if siblingComps �= ∅ then

comps.Add(minComp)
comps.RemoveLargerThan(max(siblingComps))

end if
threshold = FindLargestInterval(comps)
qualSequences = sequences[comps > threshold]
qualConsensus = HeaviestBundle(qualSequences)
if qualConsensus == consensus then

consensusNotSet = False
end if
consensus = qualConsensus

end while
return MakeNode(qualSequences, consensus, threshold)

end procedure

Finally, we introduced an additional parameter P that
controls the granularity level of the resulting tree. For the
purpose of calculation of the largest gap compatibilities
and minComp values are transformed according to the
formula

tp(c) = cp

For P > 1 the distance between smaller compatibilities
decreases and the distance between higher compatibili-
ties increases. Consequently, the sequence set assigned to
a particular node is split into smaller and more homoge-
neous subsets and hence more children are created for the
node. The opposite happens for P < 1. The effect of this
parameter is presented in Fig. 4.

Implementation
The algorithm was implemented in software called
PangTreeBuild, which is available as a Python 3.6 pack-
age or a console application for Linux operating system.
Moreover, it could be executed from the PangTreeVis web
browser interface (see Fig. 5).

As an input PangTreeBuild requires a block alignment
in MAF format, which is widely used to represent whole
genome alignments and can be interpreted as a pan-
genome model. PangTreeBuild internal data model is
POA so alignment blocks are converted to it as shown
in Fig. 2. Subsequently, edges between blocks are filled in
and the connections that create cycles are identified and
removed using the Mafgraph tool [14]. Next, unaligned
fragments of input sequences, which are usually absent
in MAF files, are complemented from NCBI database or
provided FASTA files.

Given such a pan-genome model and parameters P and
stop, AffinityTree procedure is run. The constructed data
model together with the resulting affinity tree are saved
as a JSON file, which can be visualized using PangTreeVis
tool.

PangTreeVis is an interactive browser application. The
visualization has two parts (see Fig. 6). The first one –
pan-genome graph – consists of two views: general (for
navigating purposes) and detailed (single residue resolu-
tion). The second part is affinity tree visualization and
contains tree diagram featured by its detailed characteris-
tics and metadata that could be provided in advance for
PangTreeBuild.

Results
The PangTreeBuild algorithm was applied to two types
of MSA datasets: simulated (yielded from genome
sequence evolution simulations) and real-life (computed
for Ebolavirus genomes).

Simulated data
To test whether affinity tree correctly discovers evolu-
tionary patterns, we generated MSA following sequence
evolution simulation. We applied the scheme used in
the data simulated for the purpose of Alignathon assess-
ment [15]: MSA was generated using genome simulation
software Evolver [16] together with evolverSimControl
[17] – a wrapper for running Evolver’s simulations guided
by phylogenetic trees.

The root sequence consisted of two 100kbp-long
fragments of human chromosomes 20 and 21. Two
evolutionary parameter sets were prepared, both based
on the example provided in the evolverSimControl repos-
itory. In the first parameter set, possible evolutionary
events were restricted to substitutions, deletions and non-
duplicative insertions, resulting in colinear MSAs (i.e.
without rearrangements). In the second one, genome
rearrangement events were added: intra-chromosomal
inversions, tandem repeats, transpositions and duplica-
tions, as well as inter-chromosomal transpositions and
duplications.

The simulations were guided by a phylogenetic tree of
138 yeast strains (reconstructed in [18] and deposited in
TreeBASE repository under accession no. S12670). From
each simulation, the MSA reflecting simulated evolution-
ary events was created (see [17] for details) and restricted
to chromosome 20 sequences of leaf genomes. In this way
10 sequence sets and their MSAs were generated for each
simulation parameter set. All input datasets, parameters
and simulation scripts are provided as example data in the
PangTreeBuild repository.

For each MSA affinity trees were generated by
PangTreeBuild with parameters stop= 0.999 and P ∈
{0.25, 1, 4}. Similarly, Lee’s algorithm was applied to each



Dziadkiewicz and Dojer BMC Genomics 2020, 21(Suppl 2):274 Page 7 of 13

Fig. 6 Pan-genome visualization in PangTreeVis. Consecutive panels present: input data and parameters, general view on the pan-genome graph,
detailed view on the fragment selected on the general view panel, affinity tree visualization and details of the genome set division yielded by the
cut selected on the affinity tree panel
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Fig. 7 Robinson-Foulds distances between phylogenetic tree and affinity trees. Each bar represents RF distance averaged over replicates of
simulated data and algorithm parameters (as described under bar). The horizontal blue line represent the number of non-trivial splits in the
phylogenetic tree (i.e. maximal possible height of the blue bars)

MSA with three compatibility thresholds: 0.98, 0.99 and
0.995. Resulting partitions were converted to affinity trees
in the following way: each leaf was a child of the root
and represented either a subset of Lee’s partition or an
original sequence not assigned to any subset. For the pur-
pose of comparison with the original phylogenetic tree
using the Robinson-Foulds (RF) metric, we added to each
leaf children, representing original sequences assigned to
a corresponding subset. Results are presented on Fig. 7.

RF distance is defined as the number of splits that are
induced by one of the trees but not by the other. The
number of splits induced by a single tree equals the num-
ber of its nodes. For a fixed number of leafs, the largest
possible number of splits is obtained by bifurcating trees.
In our case phylogenetic tree is bifurcating, while affin-
ity trees are highly multifurcating, since they are intended
to express only the most evident partitions. Consequently,
the part of the RF distance that is due to splits induced
by the phylogenetic tree only reflects the granularity of
affinity trees rather than the inconsistency between trees.
As is shown on Fig. 7, such splits contribute to > 80% of
the distances for PangTree affinity trees and > 95% of the
distances for Lee’s affinity trees. However, in the last case
this is very close to the total number of non-trivial splits
in the phylogenetic tree (i.e. 137), which means that only
very few of them are shared by Lee’s affinity trees.

The above observation is confirmed by Fig. 8, which
presents more detailed analysis of the reconstruction of
splits induced by the phylogenetic tree. PangTree algo-
rithm reconstructs splits induced by most of longer
edges, especially in the case of datasets without
rearrangements, while Lee’s algorithm performs very
poorly.

The red bars on Fig. 7 represent the splits that can
be considered as false positives (i.e. supported by affinity
trees, but absent in the original phylogenetic tree).
Absolute numbers of such splits are visibly higher for the
PangTree algorithm than for Lee’s algorithm, which is due
to the difference in the total number of splits yielded by
both methods. The proportion of false positive splits (i.e.
false discovery rate) for the PangTree algorithm is near the
half of the one for the Lee’s algorithm.

In order to evaluate the behavior of minComp as a subset
homogeneity measure, we compared it against the cor-
responding measure in the phylogenetic tree – maximal
distance from an internal node to its leafs. Results are
presented on Fig. 9.

Ebola dataset
Ebola outbreak in 2014 intensified studies concerning this
dangerous virus. As it is crucial to find cure and vaccine
for the illness it causes, a large set of sequenced sam-
ples was prepared. The data and associated studies are
collected in UCSC Ebola Portal [19]. The dataset include
MSA of 158 genomes of ebolavirus and 2 genomes of mar-
burgvirus (the closest Ebola relative). Every sequence from
this alignment is assigned to one of the seven groups:
Ebola 2014, Bundibugyo 2007, DRC 2007, Reston 1989-90,
Sudan 1976, Zaire(DRC) 1967-7 and Marburg 1987. This
division slightly differs from official taxonomy [20], the
comparison is presented in Table 1.

The length of a single genome of Ebola or Marburg virus
is ∼ 19kbp. Due to high sequence similarity POA for
all 160 genomes contains only 70603 nodes. Affinity tree
computed with the parameters P = 0.25, stop= 0.99 is
presented in Fig. 10.
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Fig. 8 Phylogenetic tree and the affinity trees’ support of its nodes. The size of circles on the branches represent the number of affinity trees
inducing identical leaf split (in particular, root splits are supported by all trees, so they have maximal possible size). Pie-charts inside the circles
represent proportions of contributing affinity trees that were calculated with respective parameters. Top row: PangTree algorithm, bottom row:
Lee’s algorithm. Left column: simulations without rearrangements, right column: simulations with rearrangements

As we can see, the only non-leaf child of the root sepa-
rates all ebolavirus genomes from marburgvirus genomes.
Ebolavirus genomes are later split into 5 subsets, cor-
responding to 5 ebolavirus species represented in the
dataset: Tai Forest, Bundibugyo, Reston, Sudan and Zaire.
The subsets differ in homogeneity: minComp ranges from
∼ 0.96 for Sudan and Reston ebolavirus to ∼ 0.99 for
Zaire ebolavirus.

In order to look into details of the relationships between
species, we calculated compatibilities between their con-
sensus sequences. Results are presented in Table 2. All

the compatibilities are around 0.6, but slightly higher are
those between Zaire ebolavirus and other species, as well
as those between Tai Forest and Bundibugyo ebolaviruses.

The compatibility measure describes similarity aver-
aged over the whole sequence. In order to analyze its
variation over the genome sequence, we calculated local
compatibilities between consensuses of the ebolavirus
species. Results presented on the Fig. 11 show that local
compatibilities for all species pairs share similar patterns.
Firstly, compatibility significantly decreases in non-coding
areas. Secondly, there are few regions of lower similarity
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Fig. 9 Homogeneity of sequence groups measured in affinity trees and in the phylogenetic tree. Each inner node of an affinity tree is represented
by a single dot. Homogeneity of the corresponding sequence group is measured in the affinity tree by 1 − minComp (X-axis) and in the
phylogenetic tree by the maximum distance from leafs representing these sequences to their lowest common ancestor (Y-axis). Top row: PangTree
algorithm, bottom row: Lee’s algorithm. Left column: simulations without rearrangements, right column: simulations with rearrangements

in coding areas. One of them, near the 3’ end of gene
L (around position 16.5kbp), is known to exhibit some
interspecies variation [21].

Performance
Computational requirements of affinity tree calculations
for datasets used in this study are compared in Table 3.
All the computations were performed on a laptop with
a 1.8GHz Intel Core i7-8565U CPU and 16GB RAM.

Table 1 Ebola and Marburg viruses taxonomy compared to
genome classification in UCSC Ebola Portal

ebola-/marburgvirus species Matching groups in Ebola Portal

Zaire

Ebola 2014

DRC 2007

Zaire(DRC) 1967-7

Bundibugyo
Bundibugyo 2007

Tai Forest

Reston Reston 1989-90

Sudan Sudan 1976

Bombali -

Marburg Marburg 1987

The requirements seem to scale linearly with respect to
the size of input data, so PangTreeBuild probably may
be applied to hundreds of virus genomes or dozens of
bacterial ones. However, the impact of MSA complexity
could be crucial and is hard to estimate.

Discussion
The relationships between homologous sequences are
usually represented using two complementary structures
– phylogenetic tree and multiple sequence alignment. In
the current work we proposed a novel structure, called
affinity tree, which joins both perspectives. As opposite
to phylogenetic trees, affinity trees are not intended to be
a detailed reconstruction of evolutionary history. Instead,
they provide:

• hierarchy of most evident homogeneous sequence
subgroups,

• subgroup reference (or consensus) sequences,
• graph-based multiple sequence alignment, joining

input and reference sequences,
• local and global sequence homogeneity measures.

Consequently, affinity tree can serve as a pan-genome
model, supporting interesting features for comparative
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Fig. 10 Affinity tree for Ebola dataset

Table 2 Compatibilities between consensus sequences for Ebola
species

species Zaire Sudan Reston Bundibugyo Tai Forest

Zaire 1.000 0.635 0.634 0.658 0.647

Sudan 0.639 1.000 0.575 0.573 0.563

Reston 0.639 0.576 1.000 0.580 0.570

Bundibugyo 0.659 0.570 0.576 1.000 0.637

Tai Forest 0.648 0.560 0.566 0.637 1.000

Each entry contains the compatibility of the consensus sequence for the species
from the first column with the consensus sequence for the species from the header
(note the asymmetry in the compatibility definition)

genomics studies. Given a whole-genome alignment,
affinity tree specifies homogeneous subgroups of con-
tributing genomes. Each subgroup is characterized in
terms of its consensus sequence and subgroup genetic
diversity. Graph-based alignment induced on consen-
sus sequences represents spatial distribution of similarity
between subgroups, while alignment between sequences
constituting a subgroup and their consensus – of similar-
ity within the subgroup. Furthermore, spatial distribution
of compatibility of mixed individual’s genome with con-
sensus sequences of various subgroups can delineate the
mosaic structure of that genome. In summary, graph-
based alignment of consensus sequences can serve as a
diversified population reference genome.
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Fig. 11 Local compatibilities between consensus sequences of ebolavirus species. Each plot shows local compatibilities (i.e. calculated within 400bp
windows) with the consensus sequence of the species from the caption. Compatibilities of the same sequences are drawn in the same color on all
plots, as denoted in the legend. Dark background indicates coding sequences, respective genes are listed below

Several practical issues should be considered when
using affinity trees in comparative genomics studies. First,
joint visualization of the features supplied by the affin-
ity tree model is challenging. PangTreeVis provides the
visualization of the alignment graph (on both genome-
scale and nucleotide level) and of the tree structure,
enables interactive subgroup selection and viewing
genome-subgroup relationships. Although the basic
requirements are satisfied, the advantages of the affinity
tree model could be highlighted better if some extensions
were provided, e.g. graph visualization on intermediate
scale levels, support for local genetic diversity layer and
additional layers (annotation, experimental etc.).

Second, the quality of the affinity tree hardly depends
on the provided whole-genome alignment. PangTreeBuild
algorithm was designed to pan-genomes with limited
number of structural variants. It performs well on datasets

examined in the current study, but our experiments show
that large-scale rearrangements influence both the algo-
rithm efficiency and the quality of resulting affinity tree.
Consequently, complex alignment graphs may require an
adjusted building algorithm.

Conclusions
Affinity tree and its generation algorithm support the
pan-genomic research field. Apart from hierarchical divi-
sion of aligned genomes, affinity tree describes homo-
geneity of resulting subgroups and provides subgroup
reference sequences. The introduced method gives new
insight into multiple sequence alignment analysis – its
result can serve as both taxonomic study and a popula-
tion reference pan-genome. Two complementary software
packages: PangTreeBuild and PangTreeVis enable affinity
tree construction and visualization.

Table 3 Performance of the PangTreeBuild algorithm

Dataset Number of genomes Total sequence length MSA file size Computation time Memory peak

Ebola pan-genome Simulated 160 3Mbp 4.9MB 2m44s 280MB

- without rearrangements 138 13.8Mbp 24MB 20m25s 1.18GB

- with rearrangements 138 13.8Mbp 27MB 24m46s 1.38GB
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