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Abstract

approaches to screen promising candidates.

sequences.

Background: Antimicrobial resistance is one of our most serious health threats. Antimicrobial peptides (AMPs),
effecter molecules of innate immune system, can defend host organisms against microbes and most have shown a
lowered likelihood for bacteria to form resistance compared to many conventional drugs. Thus, AMPs are gaining
popularity as better substitute to antibiotics. To aid researchers in novel AMPs discovery, we design computational

Results: In this work, we design a deep learning model that can learn amino acid embedding patterns, automatically
extract sequence features, and fuse heterogeneous information. Results show that the proposed model outperforms
state-of-the-art methods on recognition of AMPs. By visualizing data in some layers of the model, we overcome the
black-box nature of deep learning, explain the working mechanism of the model, and find some import motifs in

Conclusions: ACEP model can capture similarity between amino acids, calculate attention scores for different parts
of a peptide sequence in order to spot important parts that significantly contribute to final predictions, and
automatically fuse a variety of heterogeneous information or features. For high-throughput AMPs recognition, open
source software and datasets are made freely available at https://github.com/Fuhaoyi/ACEP.
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Background

Antimicrobial resistance is one of our most serious health
threats. Infections from resistant bacteria are now too
common, and some pathogens have even become resis-
tant to the multiple types of antibiotics [1]. Natural
antimicrobials, known as host defense peptides or antimi-
crobial peptides (AMPs), defend host organisms against
microbes, and most have shown a lowered likelihood
for bacteria to form resistance compared to many con-
ventional drugs [2]. AMPs have been demonstrated to
kill Gram-negative and Gram-positive bacteria, enveloped
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viruses, fungi and even transformed or cancerous cells;
thus, AMPs are considered as potential novel antimi-
crobial compounds [3]. Unlike the majority of conven-
tional antibiotics, AMPs frequently destabilize biological
membranes, form transmembrane channels and may also
have the ability to enhance immunity by functioning as
immunomodulators [4].

Over the last few decades, several AMPs have success-
fully been approved as drugs by FDA, which has prompted
an interest in these AMPs. To aid researchers in novel
AMP discovery, a variety of computational approaches
are proposed for AMP recognition. Many incorporate
machine learning algorithms or statistical analysis tech-
niques, such as artificial neural networks (ANN) [5],
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discriminant analysis (DA) [6, 7], fuzzy k-nearest neigh-
bors (KNN) [8], hidden Markov models (HM) [9], logistic
regression (LR) [10, 11], random forests (RF) [6, 10], sup-
port vector machines (SVM) [6, 12] and deep neural
network (DNN) [13].

To improve the recognition performance of AMPs,
many popular feature extraction methods have been pro-
posed. Basic amino acid counts over the N- and C-termini
or the full peptide are used by the AntiBP2 methods
[14]. The compositional, physicochemical and structural
features are incorporated into the Pseudo-amino acid
composition method [15, 16]. Constructing and selecting
complex sequence-based features that capture informa-
tion about distal patterns within a peptide are used in
the evolutionary feature construction method [17, 18].
Physicochemical properties, such as charge, hydrophobic-
ity, isoelectric point, aggregation propensity and more, are
also used to encode sequences as numerical vectors [19].

In this paper, we improve existing AMP recognition
technology. First, we introduce an amino acid embed-
ding tensor that can map amino acids to tensors of real
numbers automatically, which allows neural networks to
discover similarity between amino acids. We use position-
specific scoring matrices (PSSM) and these tensors to
encode peptide sequences. The PSSMs contain the evo-
lutionary information of sequences, which contributes to
reducing the impact of amino acid variations in peptide
sequences. Second, we design a new deep neural network,
which has better performance on AMP recognition than
existing methods. By applying the convolutional (Conv)
layer and the ‘long short-term memory’ (LSTM) layer to
our DNN, the model can effectively capture sequence
features. Third, we discover some important motifs in
sequences and build a ‘convolution and concatenation’
(CVCA) layer to fuse features by using the attention
mechanism of natural language processing. Fourth, we
‘open’ the black box of ACEP model and explain the rela-
tionship between the patterns in deep neural network and
the characteristics of sequences itself. Finally, we provide
the source code and data on GitHub. The methods can
be used to encode other types of protein sequences and
improve the performance of sequence pattern recogni-
tion.

The superiority of DNN has been proven in many
problems of bioinformatics, such as protein secondary
structure prediction [20], protein folding recognition [21],
membrane protein types prediction [22], drug discov-
ery [23, 24], brain disease detection [25], etc. The tensor
technique has been used for neural network data rep-
resentation. A tensor is a container which can house
data in N dimensions, along with its linear operations.
In the paper, we refer to the data in neural network
as tensors, which are generated during training neural
network.
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The attention mechanism has been used in natural lan-
guage processing [26, 27], computer vision [28] and bioin-
formatics [29] to produce interpretable results for deep
learning models. This strategy assigns different weights
to each input feature, so that the model can focus on the
most crucial features to perform better prediction.

Results and discussion

Model evaluation

We evaluate classification performance in terms of sen-
sitivity (SENS), specificity (SPEC), accuracy (ACC) and
Matthews Correlation Coefficient (MCC), which are
defined using the number of true positive (TP), true neg-
ative (TN), false positive (FP) and false negative (FN)
predictions.

P
Sensitivity = ————— x 100% 1
ensitivity = - TIN X % (1)
Specificit N 100% (2)
=— X
pecificity TN 1 EP b
TP+ TN
Accuracy = + x 100% (3)

TP+ FP+ TN + FN

MCC =
TP x TN — FN x FP (4)
V(TP + FN)(TN + FP)(TP + FP)(TN + FN)

We also make use of the receiver-operating character-
istic (ROC) curve [30] to compare the performance of
various methods. The ROC curve shows the performance
of a classifier as the discrimination threshold is varied. In
ROC curve figure, the x-axis represents the false positive
rate and the y-axis represents the true positive rate. We
calculate the area under the ROC curve (AUC) using the
scikit-learn package in Python to evaluate performance in
a quantitative, comparative setting. AUC ranges from 0.5
(corresponding to a random guess) to 1 (corresponding to
the case when all predictions are correct).

Model performance

Table 1 shows the classification performance, where
columns 1 and 2 list training set and testing set, and
columns 3-7 list SENS, SPEC, ACC, MCC and AUC. In
particular, row 3 shows the performance of ACEP on the
independent testing dataset, and the accuracy exceeds
93%, indicating that the model has a good generaliza-
tion ability. The SENS, SPEC, ACC, and AUC values are
all over 90%, and the MCC score is over 0.85. This row
is used to compare with other AMP recognition meth-
ods. Row 5 shows recognition performance in a 10-fold
cross-validation (CV) setting, where each of 10-folds is
used once as a testing data with the model trained on
the remaining 9-folds. The CV results represents the aver-
age performance of ACEP for out-of-sample data, and
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Table 1 Model performance on different training and evaluation data partitions

Training set Evaluation set SENS(%) SPEC(%) ACC(%) MCC AUC (%)
Train Tune 95.76 83.85 87.80 0.7582 96.67

Train Test 93.39 90.44 91.92 0.8388 97.22
Train+Tune Test 9242 94.17 93.39 0.8663 97.63

All Data All Data 98.26 99.66 98.96 0.9793 99.94

All Data 10-fold CV 91.37(£ 1.05) 93.32(£1.73) 92.46(£ 0.87) 0.8474(£0.01) 96.79(£ 0.47)

Note: Performance is shown for ACEP model built and evaluated on the datasets listed in columns 1 and 2, respectively, on metrics listed in columns 3-7. The bottom line

shows 10-fold CV performance, and the standard deviation is shown in parentheses

the relatively low standard deviation of ACC, MCC, and
AUC indicates that our model has strong performance on
approximately 90% of the data. Examining FN sequences
from ACEP model on the testing set reveals 54 AMPs are
missed (the detailed list is available in the Additional file
Table S1).

Comparison with state-of-the-art methods

We compare ACEP model with 9 state-of-the-art machine
learning methods proposed for AMP recognition between
2010 and 2018. In these methods, AntiBP2 used some new
features based on terminal sequence composition; CAMP
tried several common machine learning classifiers and
a simple artificial neural network; iAMPpred introduced
physicochemical characteristics and PseAAC; AMPScan-
ner used deep learning technology. In Table 2, we list these
methods chronologically, and line 10 shows our model.
The bold in table 2 represent the best performance for a
given metric.

From Table 2, we can see that our method has the best
performance in terms of SPEC, ACC, MCC and AUC. The
random forests CAMPr3-RF achieves the highest SENS
score (0.29% higher than our method). AMPScanner

Table 2 Performance comparison on the AMP dataset testing

partition

Method SENS(%) SPEC(%)  ACC(%) MCC AUC(%)
AntiBP2 87.91 90.80 89.37 0.7876 89.36
CAMPr3-ANN 83.00 85.11 84.05 0.6813 84.05
CAMPr3-DA 87.07 80.75 83.91 0.6797 89.97
CAMPr3-RF 92.69 82.44 87.57 0.7553 93.63
CAMPr3-SVM 88.62 80.47 84.55 0.6933 90.62
IAMP-2L 83.99 85.86 84.90 0.6983 84.90
iAMPpred 89.33 87.22 88.27 0.7656 94.44
gkmSVM 88.34 90.59 89.46 0.7895 94.98
AMPScanner 89.88 92.69 91.29 0.8261 96.30
ACEP 9241 93.67 93.04 0.8610 97.78

Note: Recognition performance on the testing dataset is shown for state-of-the-art
methods (listed in column 1) on the metrics listed in columns 2-6. The best
performance on a metric is marked in bold. Our deep neural network is shown in
row 10

attains a similar performance (ACC and MCC values are
reduced by approximately 2% and 0.04, respectively, com-
pared with our method) due to using a Convolutional
LSTM neural networks. The overall performance of the
latest version of iAMPpred is also very good (ACC and
MCC values are reduced by 4.7% and 0.1, respectively
compared with our method). In addition, the AntiBP2
method limits the length of input sequences, so 211
test sequences are excluded when using this method for
testing.

Figure 1(a) compares the performance of various meth-
ods intuitively by plotting ROC curves. As shown in
Table 2, AUC ranges from 84.05% to 97.78%. The
AUC of ACEP (blue ROC curve) is approximately 1%
higher than the suboptimal AMPScanner (orange ROC
curve). The ROC curves of these methods are sorted
in descending order according to AUC. CAMPr3-ANN
does not provide the probability value of prediction
results, so straight line is used to approximate the ROC
curve.

To assess the stability of ACEP model in training pro-
cess, we use training history data recorded by Keras to
plot the curve of accuracy and training epochs, as shown
in the Fig. 1(b). The red line is the accuracy of training
data, and the green line is the accuracy of testing data.
During training, the accuracy of training data and test-
ing data increased steadily with the number of training
epochs.

Model visualization and analysis

To overcome the black-box nature of deep learning and
enhance the interpretability of ACEP, here we visualize
four important tensors in the neural networks, including
the amino acid embedding tensor, the attention scores in
the CVCA layer, the fusion tensor and the attention scores
in the LSTM layer.

First, we extract the embedding tensor (E) carrying evo-
lutionary information from the deep neural network. We
use scikit-learn’s k-means algorithm [31] to cluster these
amino acids into 5 clusters. Then, we use t-SNE algo-
rithm [32] to reduce the dimensions of each amino acid
tensor to 2D. Figure 2a shows the clustering results of
20 amino acids in E after dimension reduction. In this



Fu et al. BMIC Genomics (2020) 21:597 Page 4 of 14
(a1 2) ROC curve for various methods (b) Model accuracy
—8— Train
0.95 | —®— Test
= 0.8
2
= 0.90
c
Q
006
@ o
© £ 0.85
2
204 <
3 —— ACEP:97.78% 0.80
e AMPScanner:96.30%
E —— CAMPr3-RF:93.63%
02 —— CAMPr3-SVM:90.62% 0751
—— CAMPr3-DA:89.97%
—— CAMPr3-ANN:84.05%
0.0 0.70 +— f ; . y f : : :
0.0 0.2 0.4 0.6 0.8 1.0 0 5 10 15 20 25 30 35 40
False Positive Rate (1 - Specificity) Epoch
Fig. 1 a ROC curves for the various methods compared, ordered by AUC. b Training history curves

case, the distance indicates the similarity of amino acids.
The amino acids with a shorter projection distance have
more similar activation patterns, and these with longer
projection distance have more differences.

In Fig. 2a, the negative amino acids aspartic acid (D)
and glutamic acid (E) are clustered together because they
both contain a negatively charged side chain. The amino
acids with uncharged side chains, such as serine (S), thre-
onine (T), asparagine (N) and glutamine (Q), are also
close together in the cluster C1. Cysteine (C), which forms
disulfide bonds, stands on its own in the top right, because
it plays a unique role in structure formation or ligand
interactions. It is perhaps unsurprising to see proline (P) is
slightly isolated and distant. Proline-rich AMPs are shown
to inactivate an intracellular biopolymer in bacteria with-
out destroying or remaining attached to the bacterial cell
membrane, and as such emerged as viable candidates for
the treatment of mammalian infections [33]. These amino
acid tensors are automatically generated by ACEP model
during training.

ACEP model can fuse evolutionary information (EI),
raw sequence information (RI) and supplementary infor-
mation (SI) into a fusion tensor. The attention score (u")
in CVCA layer can indicate which information ACEP
model tends to pay attention to. We collect attention
scores of 1424 sequences and plot the statistical graph
of attention scores vs. sequence length, as Fig. 2b shows.
We find that the attention score of EI increases with the
sequence length because the phylogenetic information is
more abundant for long sequences. And the attention
score of SI decreases as the sequence length increases
because amino acid composition only becomes available
at short sequences; the attention score of RI remains
almost unchanged because it’s not related to length. These
attention scores are predicted by ACEP model, thus we

speculate that the DNN model has learned a concept
consistent with our cognition.

The fusion tensor (Fye) is a new representation of
sequences generated by ACEP after integrating EI, RI
and SI. In order to evaluate the quality of fusion tensors
into which three types of information are fused, the 1424
sequences in testing dataset are projected onto a 2D space
by using t-SNE. Figure 2c shows the raw sequences, and
Fig. 2d shows the fusion tensors. The AMPs are repre-
sented by blue dots, and the non-AMPs are represented
by orange dots. The fusion tensor forms two clusters in
space, thus they are very effective to distinguish AMPs and
non-AMPs.

The attention scores (B’) in the LSTM layer indicates
which parts of a sequence are the most important (the
length of sequences changes from 200 to 40 after pass-
ing through the pooling layer with a window of length
5). We calculate the average attention scores of 712 AMP
sequences at 40 different positions and plot Fig. 3a. In
Fig. 3a, the average attention score increases from 0 to 0.3
along sequence direction because the first half is invalid
padding parts and the last half is the real sequence. The
attention scores of the padding are close to Os, indicating
ACEP model can automatically ignore the padding and
can effectively process variable-length sequences. We only
list the results of P21 to P40, and the attention scores of P1
to P20 are all close to 0 (the complete results are shown in
the Additional file Figure S3).

Next, we randomly select 10 AMP sequences and use
ACEP model to calculate the attention scores of each
part in the sequences. Through the attention mecha-
nism, we can discover some important motifs in AMP
sequences. Figure 3b shows the attention scores of 10
AMP sequences, and the brightness of blocks correspond
to the attention scores. In subsequent calculations, the
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DNN will pay more attention to the parts with higher
scores and ignore the parts with lower scores. Fig. 3c
corresponds to the first three sequences in Fig. 3b, and
the relatively high attention scores of some clips in the
sequences imply that these parts may be active motifs
and functional parts. For instance, the attention scores
of sequence 1 have four peaks, which are the P27, P31,
P36 and P39, and they exactly correspond to four a-helix
structures in the sequence shown in PDB database (PDB
ID: 1L9L) [34]. The subsequence ‘QRSVSNAATRVCRT-
GRSRW’ has some consecutive relatively high attention
scores because it’s an active motif against B. subtilis and E.
coli [35]. In sequence 2, the part P33-P35 with the high-
est attention scores corresponds to the structure of two
B-strands connected by a turn (PDB ID: 2RNG) [36]. In
sequence 3, the attention score of P30 is almost 0 due to
no secondary structure, and the P36 and P38 are higher

attention scores due to corresponding to two «-helix (PDB
ID: 2N8P) [37]. In addition, we analyze the clips of AMP
sequences with attention scores over 0.2 and find 67 clus-
ters of similar clips. Taking cluster 1 for instance, the
DNN model pays more attention to these clips that are
quite similar, which implies that these clips may have some
potential patterns contribute to peptide design. Based on
the number of similar clips in each cluster, we ordered
these clusters. In Fig. 3d, we show the first five clusters
(the complete data is shown in the Additional Data).

Comparison of modules

In ACEP model, the modules R1, R2 and R3 are used to
process EI, RI and SI, respectively. We list all the com-
binations of these modules to compare the impact of
each module on the overall performance of the system.
In these combinations, when only one module is used, we
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disabled R4 (fusion module); when more than two mod-
ules are used, we integrate the output tensors of each
module through R4. Table 3 shows the performance of
the system in each case. In lines 1 to 3, the predicted
performance in a single module is shown. Due to car-
rying EI, the R1 performs well in long sequences, with
ACC exceeding 93%, but has poor performance for short
sequences, with ACC about 89%. In lines 4 to 6, the per-
formance integrated with two modules is shown. Because
the amino acid composition contributes to the recognition
of short sequences, the R1 + R3 is very effective for both
long sequences and short sequences, with overall ACC
exceeding 92%. The performance of the R2 + R3 is the
worst for long sequences due to the lack of EI, with ACC
about 88%.

Conclusions

In this study, we developed a new protein classification
algorithm for AMP recognition. In the encoding part, we
use embedding tensor to capture hidden patterns between

Table 3 The performance of different modules

Module  Sequence length< 30 Sequence length> 30 All sequences
ACC(%) MCC ACC(%) MCC ACC(%) MCC

R1 89.74 0.7946 93.11 0.8623 9129 0.8258
R2 91.03 08214 90.06 0.8013 90.58 0.8124
R3 89.09 0.7816 90.36 0.8077 89.67 0.7938
R1+R2 89.61 0.7926 9250 0.8500 9094 08188
R1+R3 91.03 0.8206 9418 0.8846 9248 0.8500
R2+R3 9142 0.8284 8837 0.7716 90.02 0.8018
R1+R2+R391.16  0.8236 9434 0.8867 9262 08527
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amino acids and integrate EI into sequence encoding. In
the modeling part, the convolutional layer and LSTM layer
are used to generate feature tensor; the attention mech-
anism is used to calculate the scores of each part in a
sequence; the CVCA layer designed by us is used to fuse
three types of feature tensors.

The latest comprehensive AMP data from APD
database are used in training and testing of our DNN
model. The results show that the performance on ACEP
is better than the state-of-the-art methods. In addition,
we overcome the black-box nature of deep learning and
visualize some tensors of ACEP model, thereby discover-
ing some similar amino acids and some meaningful motifs
and explaining the working mechanism of the model. We
offer all open source code of ACEP, including data pre-
processing, model training and visualization. By loading
pretrained weights, high-throughput AMP recognition
can be easily performed on ordinary computers.

There are still several directions that can be further
explored to advance this topic. ACEP model can accept
and integrate a variety of heterogeneous information or
features. At present, only EI and AAC are used in the
research. In following research, some physicochemical
features that are helpful to measure the antibacterial activ-
ity of sequences will be added to the model. The informa-
tion of these biological processes will further expand the
potential of ACEP model. It is also significant to integrate
constantly updated AMP database. Relying on rich data,
we can build a special predictor for AMPs with different
activities and functions, and large-scale data are helpful to
develop better algorithms.

In addition, ACEP model can encode sequences into a
very effective multi-dimensional representation. If we use
the DNN with SVM or Random Forest, it is likely to fur-
ther improve recognition performance [38]. And it is also
interesting to explore whether the model can identify the
entire sequence of long AMP or the regions of sequences,
and we will carry out this work in the future.

In conclusion, we hope that our method can help to
find more AMPs and accelerate the research and develop-
ment of AMP drugs. We also hope that ACEP model can
be applied to a wider range of protein sequences analysis
tasks.

Methods

Datasets

In this study, we hope that the training data can cover
widespread AMPs and some newly discovered AMPs. In
2018, Daniel Veltri et al. [13] constructed a benchmark
dataset of experimentally validated AMPs (released on
AMPScanner website [39]). In the benchmark dataset,
the positive samples consisted of 1778 AMPs that were
active against Gram-positive and Gram-negative bacte-
ria, which were screened from the largest comprehensive
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AMP repository APD [40]; the negative samples con-
sisted of 1778 peptide sequences in cytoplasm, which
were screened from UniProt [41] and filtered out antibi-
otic, antiviral, antifungal, effector or excreted character-
istics. In addition, about 97.5% of the sequences were
between 11AA and 100AA in length, and about 2.5% of
the sequences were between 101AA and 200AA in length
(some yet important antimicrobial proteins). The aver-
age length of all data is 34AA with a standard deviation
of 22AA. The detailed sequence length distribution was
shown in Figure S1 in the Additional file. The dataset of
3556 peptide sequences was divided into three parts: 1424
for training, 708 for tuning and 1424 for testing.

Encoding

Amino acid embedding

The 20 canonical amino acids can be classified accord-
ing to their properties, and some important factors are
charge, hydrophilicity or hydrophobicity, size, aggrega-
tion propensity and functional groups [42]. These prop-
erties can affect the function of amino acids, thus some
amino acids with similar properties may also have simi-
lar functions. According to their side chains' pK, values
and charges carried at physiological pH (7.4), 20 standard
amino acids can be divided into five groups, as shown in
the Table 4.

A single value to encode amino acids can’t reflect the
similarity (distance) between amino acids [43]. To enable
the DNN to automatically capture the hidden pattern of
amino acids, we propose to use trainable tensors to rep-
resent individual amino acids. For each amino acid ug,
we use a 64-dimensional embedding tensor to encode
it, called the E;, and 20 amino acids are mapped to 20
embedding tensors as follows:

ur —> Er k=1,2,..,20 (5)

As Fig. 4a shows, we vertically stack the Ej, Eo, ..., Ex
into a trainable embedding tensor E and initialize it
with a uniform distribution. During training, the E is
updated constantly with the back-propagation algorithm.
The advantage of using embedding tensor is that the
similarity of amino acids can be measured by geometric
distance between tensors.

Table 4 Groups of amino acids according to their properties

Groups Amino Acids
Electrically Charged Side Chains(Positive) RH,K
Electrically Charged Side Chains(Negative) D,E

Polar Uncharged Side Chains STN.Q
Hydrophobic Side Chains ALLMFEWYV
Special Cases CGP
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Sequence tensor constructing

Due to the heredity and mutation of sequences in
the process of evolution, the amino acid at each posi-
tion of sequences may mutate into other amino acids.
We obtain EI from the position-specific scoring matrix
(PSSM) that contained the probability of occurrence
of each type of amino acid at each position along
with insertion or deletion. Hence, PSSM is consid-
ered as a measure of residue conservation in a given
location [44].

We treat PSSM as the weight matrix of the sequence
and rename it as P. The row corresponds to the position
in the sequence and the column corresponds to 20 types
of amino acids. The value p;; in P represents the weight
of k amino acid in i position in the sequence. Thus, the
EI for each amino acid is encapsulated in a vector of 20
dimensions, and the size of the P matrix of a peptide with
n residues is n x 20 as Fig. 4b shows.

For each sequence, the P matrix can be obtained during
PSI-BLAST [45] search against Uniref50 database of pro-
tein sequences at online server POSSUM [46], and three
iterations of searching at threshold e-value of 0.001 are set.

Next we calculate the weighted sum of amino acids at each
position in the sequence, called X;, the specific definition
is as follows.

Definition 1 The E is the embedding tensor of 20 types of
amino acid, and Ey is one of the E. The p; i is the weight of
amino acid k at position i. The tensor X; at each position of
sequence L satisfies formula (6). A sequence with n residues

can be encoded as L, =[X1, X2, ..., X,] as follows:

20
Xi=Zpi,/<~Ek k=1,2,...,20 (6)
k=1

where i represents the position index of the sequence, and
subscript k = 1,2, ...,20 represents the numerical index
of amino acids.

We call L, the sequence tensor with EI To facilitate the
calculation of the DNN model, we define L, as a nx 64 ten-
sor of X1, X»,...,X, stacked vertically in order, as shown
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in Fig. 4d. In this case, the L, can be quickly calculated
using the formula (7), as shown below:

L, = Pyx20 - Exoxea (7)

Compared with the use of some fixed numbers encod-
ing sequences, the use of the weighted sum of amino
acid embedding tensors encoding sequences can solve
the problem of residue variation in sequences. At the
same time, the embedding tensor can find the similar-
ity between amino acids, thus the DNN can have better
generalization ability and help to develop more abundant
patterns of sequences.

Next, we encode the raw sequences to the one-hot vec-
tors as the second input of ACEP. The amino acids in
each position of a sequence are represented by a 20-
dimensional one-hot vector. For a sequence of length n, we
construct an # x 20 matrix O, as shown in Fig. 4c. Through
replacing the P with the O, we can obtain L,, we call L, the
sequence tensor with RI, as shown in formula (8). The O
matrix only carry the raw information of the sequence.

L, = Oy,x20 - Exox64 (8)

In the above two methods of encoding sequences, the
dimensions of tensors depend on the length of sequences.
And the short sequences encoded as lower-dimensional
tensors are easily ignored by DNN. Therefore, we add
amino acid composition (AAC) as a supplementary infor-
mation to improve the sensitivity of DNN to short
sequences. AAC is a most frequently used feature descrip-
tor that can capture global compositional information of
peptides [47]. We compute the occurrences of 20 types of
amino acids in the sequence, and the feature vector for the
AAC descriptor is as follows:

AAC: (le VZ;"' 1Va""v20) (9)

where V,; denotes the occurrence number of the amino
acid type a.

As shown in Fig. 5, each sequence is encoded as the L,
the L, and the AAC. Then, they are sent to ACEP model
to generate the feature tensors, and these feature tenors
carry the EI, RI and SI. Finally, ACEP model integrates
these feature tensors to predict results.

Although the PSSM profiles of short sequences contain
almost no EI, we still convert short sequences into PSSMs
in order that all length sequences can be represented by
consistent descriptors, which makes the subsequent neu-
ral network easier to be trained. In addition, the neural
network we designed can automatically select suitable
descriptors, and these descriptors with insufficient infor-
mation can be filtered by the attention mechanism in
module R4.
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Architecture of proposed dNN

We design a new model based on deep learning called
ACEP (Attention mechanism, Convolutional neural net-
works and Embedding tensor for antimicrobial Peptide
recognition) to enhance the recognition of AMPs. We
build ACEP model with the Keras framework [48] running
on the TensorFlow [49] deep learning library (Detailed
architecture of the model and the setting of parameters
are shown in Figure S2 in the Additional file).

ACEP model consists of four main functional modules.
Module R1 and R2 are used to generate the feature ten-
sor of L, and L,, and module R3 is used to adjust the
dimension of AAC, and module R4 is used to fuse the fea-
ture tensors generated by the first three modules, as Fig. 6
shows.

Feature extraction

In module R1, we use 1D convolution to automatically
extract local features of L,, the ConvlD layer has 64 con-
volution kernels of size 16. And the max pooling layer
downsamples sequences by sliding a non-overlapping
window of length 5 and selecting the largest value. This
layer prevents overfitting and speeds up calculations.
Next, the LSTM layer with 64 units is applied to iden-
tify sequential patterns along the sequence direction. The
LSTM is set to return a complete sequence, and the fea-
ture tensor at each time step is passed to next layer. The
Dropout [50] in the LSTM layer helps prevent overfitting
by randomly ignoring 30% of inputs. Each LSTM unit con-
tains the input gate, output gate, hidden gate, forget gate,
candidate cell gate and cell activation gate. These gates
enable the model to remember or ignore the old informa-
tion passed along the time step and prevent the gradient
vanishing. In particular, the R1 and R2 are two indepen-
dent modules with the same structure but have different
parameters and inputs.

A growing number of biological studies point that dif-
ferent parts of an AMP sequence may be used for differ-
ent purposes. Flexible termini may be important to dis-
rupt membranes, and specific hydrophobic regions may
serve as anchors to initiate interactions [51]. The atten-
tion scores (which can also be considered as weights)
for different parts of a peptide sequence derived by the
attention mechanism allow one to spot those important
parts that significantly contribute to the final predictions
[52]. Hence, the attention mechanism is a suitable tech-
nique to aid the discovery of the functional patterns of
AMP sequences. In module R1, the attention layer and the
merge layer work together to give different attention to
different parts in the sequence. The attention layer pre-
dicts scores for each position in a sequence, and the merge
layer merges the out of each position to form a new fea-
ture tensor using weighted sum. Finally, by training the
model, the attention layer has ability to assign high scores
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Fig. 5 The flowchart of encoding sequences. The subsequent neural networks use the encoded tensors to generate the feature tensors with
evolutionary information, raw sequence information and supplementary information

to those parts that are more useful for recognition, and
quickly ignores the padding characters.

As Fig. 7a shows, we simplify the attention mecha-
nism in natural language processing. The tensors returned
in each time step in the LSTM layer are stacked ver-
tically to form the tensor A. The attention layer cal-
culates the score B for A, and these scores measure
the importance of each position in a sequence, as
follows:

B=b+Aw (10)

where w is the weight of the fully connected layer in
the attention module, b is the bias, and each fully con-
nected layer shares the same parameters. Then, feed
B into the Softmax layer and normalize it to B’, as
follows:

B’ = Softmax(B) (11)

The merge layer receives A and B’ from the LSTM layer
and the attention layer, then calculates the feature tensor
F; by weighted sum, as follows:

Fi=pA (12)

In module R2, the feature tensor F, is calculated in
the same way as above. In addition, module 3 contains
the fully connected layer with 64 units and the dropout
layer, which is used to process AAC. The fully connected
layer can map a 20-dimensional AAC vector to a 64-
dimensional feature tensor F3 in order to fusing with other
two feature tensors.

Feature fusion

In module R4, for the purpose of fusing the feature ten-
sor F1-F3, we designed a ‘Convolution and Concatenation’
layer.
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feature tensors generated by the first three regions. In module R1, the Conv layer and the LSTM layer extract sequence features, and the attention
layer predicts scores for different parts in sequences. In module R3, two fully connected layers are used to map 20-dimensional AAC vectors to
64-dimensional feature tensors. In module R4, we use the CVCA layer and the attention mechanism to fuse F1-F3 into Fieg, then Freg is passed to a

F = Concat([ F1, Fy, F3])

Cr = Conv(F)

F/ = Concat([F;,Cr]) i=1,2,3 (13)
nw=b+Fw

w = Softmax(p)

Feg = W'F

As shown in the CVCA layer in Fig. 7b, F;-F3 consti-
tute a tensor F, and a 1D convolution is used to con-
volve F to generate the convolutional tensor Cr. Next, we
respectively concatenate Cp with F;-F3 to form F;-Fj, and
vertically stack them into a tensor F’. Concatenating Cr
with other three feature tensors makes attention scores
more stable and effective. Then F’ is fed into the atten-
tion layer in order to generate the fusion score u, and
p is normalized to p’ by the Softmax function. Finally,
we use attention scores to calculate the weighted sum of

the three feature tensors (F1-F3). And Fyeg stands for the
fusion tensor containing the EI, RI and SI. In formula
(13), w is the weights of the fully connected layer, b is
the bias, and each fully connected layer shares the same
parameters.

Prediction

Fiyeg is fed into a Sigmoid function to predict classification
results. We train ACEP model with 30 epochs and set the
maximum length of the input sequences to 200AA, which
can accept the longest sequence (183AA) in our dataset.
For the sequences less than 200 in length, we fill L, and L,
with 0s, making their dimensions 200 x 20. During train-
ing, the parameters in E are updated together with other
parameters in ACEP model. The threshold value of the
prediction probability > 0.5 is identified as AMP, and the
probability <0.5 is identified as non-AMP.
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Amino acid clustering
We extract the E from ACEP model, and cluster the
embedding tensor of 20 types of amino acids using the
k-means algorithm [31] in scikit-learn. To find the natu-
ral number of clusters, we calculate the average silhouette
and the sum of squared distances under different k values,
as shown in Fig. 8. The silhouette of a instance is a mea-
sure of how closely it is matched to data within its cluster
and how loosely it is matched to data of the neighbor-
ing cluster, i.e., the cluster whose average distance from
the datum is lowest [53]. The sum of squared distances
measures the distance between the sample and the cluster
center.

We draw the within-cluster sum-of-squares curve and
the silhouette curve to determine the real k value. We

expect the silhouette value of k to be as large as possi-
ble on the premise that the sum of squared distances is as
small as possible. In Fig. 8, it can be noticed that the value
of the silhouette is the largest when k = 2, but the sum of
squared distances is also very large, approximately 6.7, so
the datum instances are far from the cluster center. As the
trade-off between the silhouette and the sum of squared
distances, we choose k = 5 as the cluster numbers.

Model tuning and cross-validation

By using the scikit-learn API provided by Keras, we pack-
age ACEP as a scikit-learn model to optimize hyperpa-
rameters. The RandomizedSearchCV of scikit-learn [54]
is used to search optimal hyperparameters. The tun-
ing step uses only the training dataset and the tuning
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Fig. 8 a The sum of squared distances under different k values. b The average silhouette under different k values
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dataset. After the hyperparameters are selected, the train-
ing model is established by combining the training dataset
and the tuning dataset, and the performance is evaluated
on the testing dataset.

We use CV to estimate how accurately our predictive
model will perform in practice. Specifically, we split all
the data (training, tuning and testing dataset) into k folds
(k = 10), a single fold is retained as the validation data
for testing the model, and the remaining k — 1 folds are
used as training data. The CV process is then repeated k
times, with each of the k folds used exactly once as the
validation data. The k results can be averaged to produce
a single estimation. During CV, the hyperparameters that
were selected via model tuning are not changed. In sum-
mary, CV averages the measures of fitness in prediction
to derive a more accurate estimate of model prediction
performance.

Supplementary information
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https://doi.org/10.1186/512864-020-06978-0.
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