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Abstract

Background: Recent literature on the differential role of genes within networks distinguishes core from peripheral
genes. If previous works have shown contrasting features between them, whether such categorization matters for
phenotype prediction remains to be studied.

Results: Wemeasured 17 phenotypic traits for 241 cloned genotypes from a Populus nigra collection, covering
growth, phenology, chemical and physical properties. We also sequenced RNA for each genotype and built
co-expression networks to define core and peripheral genes. We found that cores were more differentiated between
populations than peripherals while being less variable, suggesting that they have been constrained through
potentially divergent selection. We also showed that while cores were overrepresented in a subset of genes
statistically selected for their capacity to predict the phenotypes (by Boruta algorithm), they did not systematically
predict better than peripherals or even random genes.

Conclusion: Our work is the first attempt to assess the importance of co-expression network connectivity in
phenotype prediction. While highly connected core genes appear to be important, they do not bear enough
information to systematically predict better quantitative traits than other gene sets.
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Background
Gene-to-gene interaction is a pervasive although elusive
phenomenon underlying phenotype expression. Genes
operate within networks with more or less mediated
actions on the phenome. Systems biology approaches are
required to grasp the functional topology of these net-
works and ultimately gain insights into how gene inter-
actions interplay at different biological levels to produce
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global phenotypes [1]. New sources of information and
their subsequent use in the inference of gene networks
are populating the wide gap existing between pheno-
types and DNA sequences and, therefore, opening the
door to systems biology approaches for the develop-
ment of context-dependent phenotypic predictions. RNA
sequencing (RNA-seq) is one of such new sources of
information that can be used to infer gene networks [2].
Among the many works on gene network inference

based on transcriptomic data, two recent studies aimed
at characterizing the different gene roles within co-
expression networks [3, 4]. Josephs et al. [3] studied the
link between gene expression, gene connectivity [5], diver-
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gence [6] and traces of natural selection [7, 8] in a natural
population of the plantCapsella grandiflora. They showed
that both connectivity and local regulatory variation on
the genome are important factors, while not being able to
disentangle which of them is directly responsible for pat-
terns of selection among genes. Mähler et al. [4] recalled
the importance of studying the general features of biologi-
cal networks in natural populations. With a genome-wide
association study (GWAS) on expression data from RNA-
seq, they suggested that purifying selection is the main
mechanism maintaining functional connectivity of core
genes in a network and that this connectivity is inversely
related to eQTLs effect size. These two studies start to
outline the first elements of a gene network theory based
on connectivity, stating that core genes, which are highly
connected, are each of high importance, and thus highly
constrained by selection. In contrast to these central
genes, there are peripheral, less connected genes, never
far from a core hub. These peripheral genes are less con-
strained than core genes and consequently, they harbor
larger amounts of variation at population levels.
Furthermore, classic studies of molecular evolution in

biological pathways can help us understand the link
between gene connectivity and traits. Several articles
showed that selection pressure is correlated to the gene
position within the pathway, either positively [9–14] or
negatively [9, 15–17], depending on the pathway. Jovelin
et al. [15] showed that selective constraints are positively
correlated to expression level, confirming previous stud-
ies [18–20]. Montanucci et al. [21] showed a positive
correlation between selective constraints and connectiv-
ity, although such a possibility remained contentious in
previous works [22, 23].
While Josephs’ [3] and Mähler’s [4] studies framed a

general view of genes organization based on topological
features described in molecular evolution studies of bio-
logical pathways, a point remains quite unclear so far: to
what extent core and peripheral genes based on connec-
tivity within a co-expression network are involved in the
definition of a phenotype? One way to clarify this would
be to study the respective roles of core and peripheral
genes, as defined on the basis of their connectivity within
a co-expression network, in the prediction of a phenotype.
Even if predictions are still one step before validation by in
vivo experiments, they already represent a landmark that
may not only be correlative but also closer to causation,
depending on the modeling strategy.
Present study aims at exploring gene ability to predict

traits, with datasets representing core genes and periph-
eral genes, as defined by a topological based model. By
making use of twomethods to predict phenotypes of avail-
able traits, a classic additive linear model, and a more
complex and interactive neural network model, we fur-
ther aimed at studying the mode of action of each type

of genes, in order to gain insight into the genetic archi-
tecture of a relatively large range of complex traits. On
the one hand, genes that are better predictors with an
additive model are supposed to have an overall less redun-
dant, more additive, direct mode of action. On the other
hand, genes being better predictors with an interactive
model are supposed to operate with high pervasiveness
and redundancy, through high connectivity. It is not evi-
dent to assign a priori a preferential mode of action and
respective roles to core versus peripheral genes. We could
assume the former to be downstream genes in biological
pathways, closer to the phenotypic expression. The latter
could be upstream genes, further away from the pheno-
type. However, such hypotheses would require levels of
data integration that might not be easily available. More
readily accessible would be the question of the extent to
which connectivity of core genes is captured by models
that are sensible to interactivity, involving high but selec-
tively constrained expression levels [15, 21]. With a lower
variation, we also expect core genes to be worse predic-
tors for traits than peripheral genes unless the former also
bear larger effects.
To answer the questions concerning the respective roles

of core and peripheral genes on phenotypic variation, we
have sequenced the RNA of 459 samples of black poplar
(Populus nigra), corresponding to 241 genotypes, from 11
populations representing the natural distribution of the
species across Western Europe. We also have, for each
of these trees, phenotypic records for 17 traits, covering
the growth, phenology, physical and chemical properties
of wood. They cover two different environments where
the trees were grown in common gardens, in central
France and northern Italy. With the transcriptomic data,
we built a co-expression network in order to define con-
trasting gene sets according to their connectivity within
the network. We then asked whether these contrasting
sets differed in terms of both population and quantitative
genetics parameters and quantitative trait prediction.

Results
Wood samples, phenotypes, and transcriptomes
Wood collection and phenotypic data have been previ-
ously described [24]. Further details are provided in the
“Materials and Methods” section. The complete pipeline
is sketched in Fig. 1. Briefly, we are focusing on 241
genotypes coming from different natural populations in
western Europe and planted in 2 common gardens (to
avoid the confounding between genetic and large environ-
mental effects) at two different locations: Orléans (central
France) and Savigliano (northern Italy). Each common
garden is composed of 6 replicated and randomized com-
plete blocks. A total of 17 phenotypic traits have been
collected on these genotypes (7 traits in common between
the two locations, 3 unique to Orléans). These traits could
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Fig. 1 General sketch of the experiment. From the top to the bottom: Map of the location of the different populations sampled for this experiment,
the number of individuals used for the RNA sequencing is indicated between parentheses. From these populations, genotypes were collected and
planted in 2 locations (Orléans, in central France, and Savigliano, in northern Italy). At each site, we planted 6 clones of each genotype, 1 in each of
the 6 blocks, and their position in each block was randomized. For all the blocks, we collected phenotypes: 10 in Orléans (circumference, S/G,
glucose, C5/C6, extractives, lignin, H/G, diameter, infradensity and date of bud flush) and 7 in Savigliano (circumference, S/G, glucose, C5/C6,
extractives, lignin, H/G). Only on the clones of 2 blocks in Orléans, we performed the RNA sequencing and treatment of data. The treated RNA-seq
data were used with different algorithms and in different sets to predict the phenotypes measured on the same trees (in Orléans) or on the same
genotype but on different trees (in Savigliano). Trait category: aGrowth, bChemical, cPhenology, dPhysical
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be organized into four categories depending on the biolog-
ical process they described (Fig. 1), and they appeared to
be quite diverse in terms of genetic control with marker-
based heritability estimates ranging between 0.05 and 1
(data not shown). In Orléans only, we used 2 clonal trees
per genotype (from 2 blocks) to sample xylem and cam-
bium during the 2015 growing season, and pooled them
for RNA sequencing. No tree from Savigliano was used
for RNA-seq. Because of sampling and experimental mis-
takes that were further revealed by the polymorphisms in
the RNA sequences, we ended up with 459 samples for
which we confirmed the genotype identity (comparison
to previously available genotyping data from an SNP chip
[25]. These samples corresponded to 218 genotypes with
two biological replicates and 23 genotypes with a single
biological replicate.
We mapped the sequencing reads on the Populus tri-

chocarpa transcriptome (v3.0) to obtain gene expression
data. We removed from the data the transcripts for which
we did not have at least one count in 10% of the indi-
viduals, yielding 34,229 transcripts. We then normalized
the data (with TMM) and stabilized the variance (with
log2(n+ 1)). RNA collection lasted over a 2-weeks period,
with varying weather conditions along the days. We did
PCA analyses on the cofactors that were presumably
involved in the experience, to look whether any confound-
ing effect could be identified (Suppl. Fig. 1). No clear
segregation was found for any of those, except for the
ones associated with block, date and hour of sampling.
We used a linear mixed-model framework to correct
the effects of these cofactors on each transcript (see the
“Materials and Methods” section for a formal description
of the model used), with R (v3.6.3) [26] and the breedR
R package (v0.12.2) [27], and further computed from the
models the complete BLUP for each genotype. Hereafter,
we refer to this set of BLUPs for the 34,229 transcripts as
the full gene set (83% of annotated transcripts).

Clustering and network construction
The commonly used approach to build a signed scale-free
gene expression network is to use the weighted correlation
network analysis (implemented in the WGCNA R pack-
age (v1.68) [5]), using a power function on correlations
between gene expressions. We chose to use Spearman’s
rank correlation to avoid any assumption on the linear-
ity of relationships. The scale-free topology fitting index
(R2) did not reach the soft-threshold of 0.85, so we chose
the recommended power value of 12, corresponding to the
first decrease in the slope growth of the index, resulting in
an average connectivity of 195.2 (Fig. 2a). We detected 16
gene expression modules (Suppl. Table 1) with automatic
detection (merging threshold: 0.25, minimum module
size: 30, Fig. 2b). Spearman correlations between pheno-
typic and expression data, presented in the lower panel

of Fig. 2b below the module membership of each gene,
displayed a structure when the order followed the gene
expression tree. The traits themselves were line ordered
according to clustering on their scaled values to represent
their relationships (Suppl. Fig. 2). Interestingly, most pat-
terns in the correlation between expression and traits did
not follow what we would have expected, a certain similar-
ity between sites for a given trait (5 traits with unexpected
behavior out of 7 with data in both geographical sites:
Circ, S.G., Glucose, Lignin and H.G.). For instance, in the
group composed of S/G ratios and glucose composition,
the patterns were more similar for different traits in the
same site than for the same trait in the different sites
(Fig. 2b). Complex shared regulations mediated by the
environment seem to be in control of these phenotypes,
suggesting site-specific genetic control. Otherwise, glu-
cose composition in Savigliano, wood basic density, and
extractives in Orléans presented similar patterns, contrar-
ily to what would be expected from the low phenotypic
correlations observed between these traits. These results
from the comparative analysis of correlations pinpoint
some underlying links between traits that are not obvious
from factual phenotypic and genetic correlations between
traits.
To get further insight into the relationships between

module composition and traits, we looked at the strongest
correlations (positive and negative) between the best
theoretical representative of a gene expression module
(eigengene) and each trait, in order to identify genes in
relevant modules with an influence on the trait (Fig. 2c).
Following a Bonferroni correction of the p-values pro-
vided by WGCNA, only 80 correlations remained signif-
icant (p ≤ 0.05) out of the initial 272 traits by module
combinations. Six traits displayed no significant correla-
tions with any module (Glucose.Sav, both C5.C6, Extrac-
tives.Sav, Lignin.Sav and H.G.Sav) and 1 module was
not significantly correlated with any of the traits studied
(purple, Fig. 2c). For those modules showing significant
correlations with traits, it was also observed a significant
correlation between those expression versus trait corre-
lations and the centrality in the modules (represented
by the kME, the correlation with the module eigengene).
Conversely, no correlation was found in poorly correlated
modules (Fig. 2d, Suppl. Fig. 3). In other words, there
was a three-way correlation. The genes with the highest
kME in a given module were the most correlated to the
eigengene and, consequently, were also the most corre-
lated to those traits with the largest correlation with the
module eigengene. Although this is somehow expected,
it underlines the usefulness of kME as a centrality score
to further characterize the genes within each module.
We thus used this centrality score to define further the
topological position of our gene expressions in the net-
work and to serve as a basis for role comparisons between
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Fig. 2WGCNA analysis of gene expression data. a: Selection of the soft threshold (green dot) based on the correlation maximization with scale-free
topology (left panel) producing low mean connectivity (right panel). b: Gene expression hierarchical clustering dendrogram, based on the
Spearman correlations (top panel), resulting in clusters identified by colors (first line of the bottom panel). Spearman correlations between gene
expressions and traits values are represented as color bands on the other lines of the bottom panel, from highly negative correlations (dark blue) to
highly positive correlations (light yellow), according to the scale displayed in panel C. c: Spearman correlation between eigengenes (the best
theoretical representative of a gene expression module) of modules identified in the previous panel and traits, again on a dark blue (highly
negative) to light yellow (highly positive) scale. Stars in the tiles designate correlations with a significant p-value (lower than 5%) after Bonferroni
correction. D: Focus on two modules from the previous graph, representing gene expression correlation with the circumference in Savigliano
against centrality in the module. These two panels represent the strongest (right panel, magenta module, R2 = 0.86) and the weakest (left panel,
brown module, R2 = 0.09) correlations with the corresponding trait

genes. For each gene, we used its highest absolute score,
which corresponds to its score within themodule to which
it was assigned. We selected the 10% of genes with the
highest global absolute scores to define the core genes
group, and 10% with the lowest global absolute scores to
define the peripheral genes group. Finally, we selected 100
samples of 3422 (10%) random genes as control groups
(Suppl. Fig. 4, bottom panel).
One particular module from the WGCNA clustering

is the grey module. This module gathers genes with low
membership. In our case, it is the 2nd largest mod-
ule, with 7674 genes (23% of the full set). It gathers the
vast majority of genes with very low kME (Suppl. Fig. 4,
bottom panel) and 99% of the peripheral genes set
(Suppl. Table 2). While it is typically discarded in clas-
sic clustering studies, we chose to maintain it and rather
understand its composition and role. Therefore, the
peripheral gene set gathering the 10% lowest kME grey
module genes was added to the comparative study. An

extra gene set was considered to complete the set of
gene scenarios, one that involved low kME genes that
did not belong to the grey module (subsequently called
"peripheral NG", NG for "no grey").

Heritability and population differentiation of modules
To get further insights into the biological role of core
and peripheral genes at population levels, we compared
the distribution of various characteristics among gene sets
(Fig. 3): gene expression level, several classical popula-
tion statistics, including heritability (h2), coefficient of
quantitative genetic differentiation (QST ), coefficient of
genetic variation (CVg), gene diversity (Ht), and a contem-
poraneous equivalent to FST for genome scans (PCadapt
score). Gene expression level, h2,QST , and CVg were com-
puted from gene expression data, while Ht and PCadapt
score [28] were computed from polymorphism data (SNP)
and averaged per gene model. For more details see the
“Materials and Methods” section.
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Fig. 3 Characteristics of several gene sets. Heritability h2, differentiation QST , gene mean expression (in counts per million, power 0.2), genetic
variation coefficient CVg (power 0.05), overall gene diversity Ht and PCadapt score (power 0.2) violin and box plots with median (black line) and
interquartile range (black box) for each of the core (in blue), random (in grey), peripheral NG (in orange) and peripheral (in brown) gene sets

Globally, there is a clear trend from core to random,
to peripheral NG and to peripheral among these char-
acteristics: with an increase for h2, CVg and Ht, and a
decrease for QST , expression and PCadapt score. The
only differences that are not significant according to a
Wilcoxon rank sum test and after Bonferroni correction
are those between peripheral NG and peripheral sets in
gene expression (p-value = 0.14) and between random and
peripheral NG sets in the PCadapt score (p-value = 0.39).
All the other comparisons have p-values below 0.001.
Altogether, these statistics showed clear differences

between core and peripheral genes: core genes are highly
expressed, highly differentiated between populations in
their expression and by their allele frequencies at linked
markers, and with generally low levels of genetic varia-
tion. Contrastingly, peripheral genes are poorly expressed,
poorly differentiated between populations, with generally
higher genetic variation.

Boruta gene expression selection
In addition to previous gene sets building (full, core, ran-
dom, peripheral NG and peripheral), we wanted to have
a set of genes being relevant for their predictability of the
phenotype. Our hypothesis here was that this set would
be the one that enables the best prediction of a given trait

but with a limited gene number. For that purpose, we per-
formed a Boruta (Boruta R package (v6.0.0) [29]) analysis
on the full gene set with 60% of the genotypes (train-
ing set). This algorithm performs several random forests
to analyze which gene expression profile is important
to predict a phenotype. We tested 4 different threshold
p-values for this algorithm, as we originally wanted to
relax the selection and eventually get sets of different
sizes. However, the number of genes selected decreased
while relaxing the p-value (613, 593, 578 and 578 respec-
tively for 0.01, 0.05, 0.1 and 0.2). Among the 4 p-values
tested, 190 genes were systematically selected (114 are
core, 2 are peripheral NG and 2 are peripheral genes),
and 153 were selected on 3 of the 4 p-value sets (73 are
core, 4 are peripheral NG and 4 are peripheral genes). By
averaging across the 4 p-values tested, there was a 6.61
mean over-representation of core genes and 0.30 and 0.31
under-representation of respectively peripheral NG and
peripheral genes (Suppl. Fig. 5). In the end, with a p-value
of 0.01, a pool of 613 unique gene expressions was found
to be important to predict our phenotypes. Traits with the
highest number of important genes are related to growth.
For the other traits, we always have more genes selected
when the trait is measured in Orléans compared to Sav-
igliano (respective medians of 23 and 10), which fits well
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with the fact that RNA collection was performed on trees
in Orléans. On average, genes that were specific to sin-
gle traits represented 94% of selected genes, 1 gene was
shared across sites for a given trait, genes shared by trait
category (growth, phenology, physical, chemical) were 4%,
and genes shared among all traits were 2%.

Phenotype prediction with gene expression
For our 6 genes sets (full, core, random, peripheral NG,
peripheral and Boruta), we trained two contrasting classes
of models to predict the phenotypes: an additive linear
model (ridge regression, LM) and an interactive neu-
ral network model (NN). For the former, we used ridge
regression to deal with the fact that for all gene sets
the number of predictors was larger than the number of
observations. For the latter, we chose NN as a machine-
learning method, which is not subjected to dimensionality
problems [30] and is able to capture interactions with-
out a priori explicit declaration between the entries, here
gene expressions. These contrasting models let us capture
more efficiently either additivity or interactivity and are
thus likely to inform us about the preferential mode of
action of each gene set depending on their relative per-
formances in predictability. Figure 4 shows that for LM

with ridge regression, the best gene set to predict pheno-
types was on average the full set, as expected because it
contains more information, followed, more surprisingly,
by the peripheral and peripheral NG genes set, then the
random, core and Boruta sets (respective mean predic-
tion R2 across all traits of 0.22, 0.21, 0.20, 0.19, 0.18
and 0.17). However, these advantages among sets were
relatively small, when compared to the framework of ran-
dom sets given by the 95% confidence interval from 100
realizations (95% CI, Fig. 4). Specifically, no differences
were observed between random and alternative gene sets
for most of the traits, with no overall set outperform-
ing clearly the others when accounted only for traits
showing significant differences with respect to 95% CI
(Suppl. Fig. 6). For NN and on average terms of R2, ran-
dom genes were the worst set, followed by core, periph-
eral, peripheral NG and Boruta sets (respective mean
prediction R2 across all traits of 0.14, 0.16, 0.17, 0.18 and
0.22). Again, advantages were small when compared to the
reference 95% CI from random realizations. Unlike LM,
however, NN yielded some net advantage for alternative
sets with significant traits being mostly upwardly placed
in their performances (higher R2) with respect to the 95%
CI. Among the sets with most significant cases were the

Fig. 4 Predictions scores on test sets. Predictions scores on test sets (R2 on the y axis) for the 2 algorithms (LM Ridge, top panel; neural network,
bottom panel) for each phenotypic trait (on the x axis). The color of each bar represents the gene set that has been used for the prediction. Intervals
for the random set represent the 95% confidence interval of the distribution of the 100 different realizations, while the height of the bar corresponds
to the median. The "+" and "-" signs above the bars indicate predictions respectively above and below the 95% confidence interval of the random set
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Boruta, then peripheral genes, peripheral NG genes, and
Core genes. We have not been able to compute NN mod-
els with the full set as the number of predictors remains
too large to be fitted with the computational power being
available on computing clusters. Across phenotypes, pre-
dictions were generally slightly less variable under NN
than under the ridge regression counterpart (interquartile
range mean division by 1.12).
To further investigate the behavior of genes with dif-

ferent positions in the network with respect to the pre-
diction model used, we computed 2 types of differences:
(i) between LM and NN prediction scores for each gene
set, and (ii) between core and peripheral genes sets for
LM and for NN models (Suppl. Fig. 7). As a null refer-
ence for inference in the comparison between peripheral
and core sets, we computed the differences between all
the 100 random sets, for a total of 4950 differences corre-
sponding to all pairwise differences, excluding reciprocals
and self-comparisons. In the top panel, a positive differ-
ence indicates that LM predicted better than NN and vice
versa, while in the bottom panel, a positive difference indi-
cates an advantage of core genes sets over peripherals
and, conversely, a negative difference indicates an advan-
tage of peripheral genes. In any of the two panels, we
did not detect any systematic difference, favouring one of
the modeling options across traits or one of the gene sets
across traits. Moreover, the few cases where a difference
is to be noted were certainly due to very poor prediction
scores. The only difference that can be noted by its mag-
nitude is the difference between core and both peripheral
genes in NN for the date of bud burst (Date3Doy), in favor
of the peripheral genes.
Finally, we investigated to what extent traith2 or QST

would influence the prediction scores of each combina-
tion of set and algorithm. We found a positive and signif-
icant relationship between trait h2 or QST and prediction
accuracy irrespectively of the gene set or the prediction
method considered (Spearman’s rank correlations ranged
from 0.36 to 0.56 and from 0.27 to 0.47 for trait h2 and
QST , respectively). When looking specifically at sets and
methods, we did not findmany cases showing significantly
higher correlations between h2 or QST and prediction
than the random sets. For h2, only the Boruta set in LM
was above the 95% CI, while for QST , only the Complete
set in LM and the Boruta and Peripheral sets in NN were
above the 95%CI.We further separated traits according to
whether their QST was above or below the 99th percentile
of the FST . The rationale under this split is that because
core genes are more differentiated between populations
than random or peripheral genes, we should expect them
to predict better those traits with a similar structuration
behavior and vice versa. We found that traits above the
99th percentile of the FST were systematically better pre-
dicted than less differentiated traits. However, we did not

find significant differences between gene groups once the
difference between traits was taken into account.

Discussion
Characterizing the way genes contribute to phenotypic
variation could prove highly valuable to better understand
the genetic architecture of complex traits.With the advent
of omics data, a huge amount of information is nowadays
becoming available to fill the gap between variations at
the DNA and phenotype levels [31]. Such gap-filling can
be obtained from multiple sources. For instance, account-
ing for the number of shared neighbors between two
genes informs on subsequent protein-protein interactions
bringing further biological meaning [32]. It is by the use of
gene expression data that the present study aimed at gain-
ing insights into the genetic architecture behind complex
traits.
One key premise in the study was the availability of

a common garden experiment comprising relevant sam-
ples of natural variation, in our case black poplar from
Western Europe. Such an experimental setting makes it
possible to accurately evaluate phenotypes to calibrate
and serve as a target for predictions. Indeed, evaluating
all the genotypes in a given location with experimen-
tal design and replicates enabled to unravel the con-
founding between genotype and macro-environment (or
micro-environment) that typically occur when consider-
ing genotypes in the wild [33]. Likewise, RNA-seq data
were collected on up to two biological replicates in the
common garden and also corrected for environmental and
design covariables, to obtain the genotypic BLUP, which
is the genetic value of the genotype. Such adjustments
at both phenotypic and genomic ends provided proper
grounds with reasonable confidence in the absence of
undesirable effects for the study of associations between
the two sources of data.
Two recent works used RNA-seq in natural populations

of plants to build co-expression networks and study the
relationship between network topology and patterns of
natural selection [3, 4]. While they found differences in
natural selection among genes given their connectivity
within networks, they did not investigate how these differ-
ences affect phenotypic variation. We thus embraced the
commonly used WGCNA approach [5] to build the co-
expression network within our dataset in order to study
the relationship between gene connectivity and pheno-
typic prediction. This clustering of genes gave us different
groups that we found to be differently correlated to traits
values and according to sites. However, this method was
simply for us a way to obtain a centrality or connectiv-
ity score for each gene, with the subsequent possibility
to classify them into core and peripherals. The biologi-
cal interpretation of correlations between gene groups and
traits would clearly deserve further work which is beyond



Chateigner et al. BMC Genomics          (2020) 21:416 Page 9 of 16

the scope of the present study. We based our definition
of core and peripheral on Mähler et al. [4], as respectively
the 10% most central and most peripheral genes. The only
specificity of our work here is that we did not discard, as
it is classically done (called pruning in the WGCNAman-
ual), the genes from the grey group, i.e. those showing
a poor membership to any other module. We consid-
ered instead two alternative peripheral sets by keeping or
excluding genes from the grey group. The pertinence of
kME as a classification criterion became evident in our
study when looking at the differences between core and
peripherals in terms of classic quantitative and population
genetic parameters. Core genes (high kME) showed high
levels of population differentiation, mostly in quantitative
genetic terms (QST ), while being simultaneously less vari-
able than the rest of the genes. Such results would suggest
that core genes are genes potentially subjected to diver-
gent selection, with subsequently reduced levels of genetic
variation, and involved in local adaptations. Contrarily,
peripherals (low kME) showed larger levels of variation
with respect to their expression level and little structure
across populations, suggesting less selection pressure or
weaker connection to selected traits, with mostly stabi-
lizing selection patterns across populations. Therefore,
despite the fact that a subdivision in core and peripherals
is somehow an oversimplification, an extreme contrast of
an otherwise continuous phenomenon, it helped to reveal
the different natures of genes characterized by extreme
values of kME.
To further test whether this gene categorization mat-

ters for trait prediction, we decided to go one step further
by trying to predict traits from the different gene sets.
We also wanted to have a gene set designed to be com-
posed of good predictors of the traits. We thus used
the Boruta algorithm [29] that performs random forest
predictions by selecting the genes with the highest predic-
tion importances. We have to keep in mind that random
forest algorithms allow for implicit interactions between
predictors (here gene expressions [34–36]). Results pin-
pointed again one feature differentiating the behavior of
core and peripheral genes. Cores were largely overrepre-
sented in the different Boruta selections (by at least 38%
of Boruta genes), involving systematically the same 114
genes across all threshold p-values (or 153 over 3 val-
ues). Peripherals were systematically underrepresented to
a very large extent (less than 7%). Although the remaining
genes, neither cores nor peripherals according to our pre-
vious definition, were the majority (53%) among the ones
selected by Boruta, they were sampled from a vaster pool
of more than 27,000 genes. Another important result from
the Boruta selections is the fact that relaxing the p-value
threshold (from 0.01 to 0.2) did not increase the size of
the resulting selection set, while the set itself could change
partially in composition across different thresholds. One

can assume that relaxing the threshold would lead to
increasing the number of features if these acted inde-
pendently and contributed with novel information. The
fact that numbers did not change substantially, while
the composition was indeed impacted, leads to think-
ing that features are deeply interconnected and do not
add up independently. This would suggest that different
arrangements of genes could contain comparable levels
of information or, in other words, that genes bear some
redundancy through networks of interactivity.
With these 6 genes sets, we predicted 17 phenotypic

traits with 2 alternative algorithms, one expected to cap-
ture mostly additivity between predictors (LM), the other
one interactivity (NN). As expected, the full set resulted in
best predictions with the LMmodel (NN not available), as
it comprised all available genetic information but it rarely
predicted above the random 95% CI. Furthermore, core
genes were far from being the best set to predict the differ-
ent traits under either of the two algorithms. Such results
would be a priori surprising considering previous state-
ments on the composition of Boruta selection where cores
had an important contribution. The key difference, how-
ever, is that cores were not the only contributors to the
Boruta sets. It seems that cores are able to summarize
key information for quality predictions but require a com-
plementary contribution from other interacting genes to
round up the optimal set. This is better reflected by the
performance of the Boruta set, which obtained the best
performance predicting traits under the NN algorithm. To
some extent, the NN algorithm exploits the interactivity
between features (genes) already present in the Boruta set,
itself obtained through the random forest heuristics that
are particularly sensitive to interactions. The high connec-
tivity of high kME value core genes is well captured by
interaction sensitive algorithms to improve prediction.
In a contrasting way, the core set performed poorly

under LM modeling, where the two classes of peripher-
als obtained the best predictabilities. Such a performance
from peripherals is somehow surprising, in the sense
that this class of genes, notably the grey module, is usu-
ally pruned from transcriptomic studies, while they seem
nonetheless to harbor important biological information
that is relevant to the trait variation. Judging from the
nature of the LM modeling, peripherals would have more
a type of additive gene action, which could be in turn
a penalizing feature when a reduction in the number of
genes operates to focus only on themost relevant ones (i.e.
underrepresentation of peripherals in Boruta set). Thus,
peripherals appear to be relevant when allowed to con-
tribute cumulatively to prediction, although they can be
otherwise easily summarized by more integrative genes
when variable selection procedures operate to obtain opti-
mal sets. It is important to note, however, that adding
peripherals (following an increasing kME) beyond the
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numbers present in their original sets did not improve
predictability (Suppl. Fig. 8), suggesting the existence of
a plateau in their capacity to explain trait variation. The
low connectivity of peripheral genes, reflecting indepen-
dent features, is best exploited by linear model approaches
capturing mostly additive genetic actions.
Finally, random sets offered a convenient framework for

inferences when comparing gene sets. Their performance
in terms of predicting quality was never the best under
either of the alternative modeling approaches (LM or NN)
but was good enough to suggest that relevant informa-
tion can be nevertheless obtained from many different
gene sets, pointing at some degree of pervasive redun-
dancy in the genetic architecture of traits. In practical
terms, when a trait prediction is required but there is
no biological a priori on the choice of genes, a random
set modeled through LM appears like a satisfying solu-
tion. This is not far from the SNP based counterpart in
genome-wide evaluation [37], where markers are often a
choice that is not driven by biological context. However, if
some previous selection of genes is required, the combi-
nation of Boruta selection and subsequent NN modeling
has been shown here to be a good option for predictabil-
ity on a reduced genic panel. Indeed, Boruta or any other
NN option are advantageous alternatives in genomic eval-
uation for breeding to more classic methods, often based
on the imposition of a priori constraints for shrinkage or
variable selection [38].
One of the particularities of core genes, that of showing

highly structured genetic variation among populations,
led us to think that they might be preferentially involved
in traits also showing high levels ofQST . Such a hypothesis
was not confirmed by our results, where highly structured
traits were generally better predicted than traits with no
apparent structure, but with no clear differences in such
an advantage between gene sets. Therefore, the highly
structured core genes did not contribute to improving the
prediction of highly structured traits, suggesting that trait
covariation between populations is affected by other genic
sources not conveniently unraveled here. It is important
to note that prediction quality is highly variable between
traits, somehow masking the differences that might be
found between gene sets. We have already pinpointed
the relevance of kME in establishing a gradient of genes
whose extremes show different behaviors in quantitative
and population genetics statistics. These extremes also
contribute differently to the explanation of phenotypic
variability, through the light of different prediction mod-
els. One aspect that remained unanswered, however, is to
what extent kME is also relevant to prediction without cir-
cumscribing our scope to the extremes. When computing
the correlations between connectivity (kME) and predic-
tion coefficients (importance in terms of effect) from LM
across all the full set of genes, results showed that there

are some strong positive correlations for three of the traits
(Circ.Orl, S.G.Orl and Extractives.Orl). However, there is
not a systematic trend across all the traits, suggesting that
other differences in their genetic variability and genomic
architectures might be also of importance here.
In the end, differential connectivity as reflected by our

kME gradient from gene expressions pinpoints the impor-
tance of mechanisms of gene interactions in the genetic
architecture of traits. On top of the DNA sequence, the
superposing layer of transcriptomics adds up the inter-
mediate pattern of gene interactions and physiological
epistasis, before the final level of phenotypic expression
[39]. It is important to note, however, that such gene
interaction at the transcriptomic level is not directly or
necessarily related to epistasis in the context of statisti-
cal genetics literature, i.e. the interaction effect between
alleles from different loci on a given phenotype [40]. The
extent to which connectivity or transcriptomic interactiv-
ity relates to that level of epistasis is beyond the scope of
current work but clearly deserves further investigation.

Conclusion
This work shows that all genes seem important to some
extent to predict phenotypes. If the Boruta selection leads
us to think that core genes may be very important, pre-
diction results across a range of phenotypes underlined
that they are not the only ones. The information that
those core genes contain has to be completed by other
complementary genes. Likewise, on the other extreme
of our networks, peripherals seem also to bear enough
biological information to build up sounding predictions.
Our analytical approach, by looking at the specific roles
of genes with different networking connectivities, high-
lights the importance of the gene system as a whole in
explaining phenotypic variation rather than that of par-
ticular sets of genes. Our work is globally in accordance
with the recent work on the omnigenic model [41, 42],
stating that all genes expressed in an organ participate
in the traits of that organ. We were also able to predict
phenotypes of an organ or at the organism level, with
gene expression from another organ. However predicting
and explaining are 2 different things, and the information
beared by some genes may be too redundant to lead us to
good mechanistic models, without further integration of
biological information filling the gap between sequences
and phenotypes.

Methods
Samples collection
As described in previous works [24, 43], we established in
2008 a partially replicated experiment with 1160 cloned
genotypes, in two contrasting sites in central France
(Orléans, ORL) and northern Italy (Savigliano, SAV). At
ORL, the total number of genotypes was 1,098 while at
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SAV there were 815 genotypes. In both sites, the geno-
types were replicated 6 times in a randomized complete
block design. The experiments were carried out in accor-
dance with local legislation. At SAV, the trees were pruned
at the base after one year of growth (winter 2008–2009) to
remove a potential cutting effect and were subsequently
evaluated for their growth and wood properties during
winter 2010–2011. At ORL, the trees had the same prun-
ing treatment after two years of growth (winter 2009–
2010) and were also subsequently evaluated for growth
and wood properties after two years (winter 2011–2012).
After evaluation, we pruned again for a new growth cycle.
In their fourth year of growth of this third cycle (2015),
241 genotypes present in two blocks of the French site
were selected to perform sampling for RNA sequencing.
In the end, we obtained transcriptomic data from 459
samples, 218 genotypes duplicated in the two blocks and
23 genotypes available from only one block. These 241
genotypes were representative of the natural west Euro-
pean range of P. nigra through 11 river catchments in
4 countries (Fig. 1). More details on the origin of these
genotypes including their depositary are available in the
GnpIS Information System [44], using the keys "Black
poplar" and "POPULUS_NIGRA_RNASEQ_PANEL" for
the fields "Crops" and "Germplasm list", respectively.
We described 14 of the 17 phenotypic traits in previous

work [24]. Briefly, these traits can be divided into two cat-
egories, growth traits and biochemical traits which were
all evaluated on up to 6 clonal replicates by genotype at
each site after two years of growth in the second cycle.
The first set is composed of the circumference of the tree
at a 1-meter height measured in Savigliano at the end of
2009 (CIRC2009.Sav) and in Orléans at the end of 2011
(CIRC2011.Orl). The second set is composed, each time
at both sites, of measures of ratios between the different
components of the lignin, p-hydroxyphenyl (H), guaia-
cyl (G) and syringyl (S) (H.G.Orl, H.G.Sav, S.G.Orl and
S.G.Sav), measures of the total lignin content (Lignin.Orl
: measure of the lignin in Orléans, Lignin.Sav: measure
of the lignin in Savigliano), measure of the total glucose
(Glucose.Orl and Glucose.Sav), measure of ratio between
5 and 6 carbon sugars (C5.C6.Orl and C5.C6.Sav) and
measure of the extractives (Extractives.Orl and Extrac-
tives.Sav). For each of these traits, we computed mean
values per genotype previously adjusted formicroenviron-
mental effects (block or spatial position in the field).
The 3 remaining traits were measured in 2015 on the

trees harvested for the RNA sequencing experiment (2
replicates per genotype). They include the mean diam-
eter of the stem section harvested for RNA sequencing
(MeanDiameter), the date of bud flush of the tree in 2015
(Date3Doy) and the basic density of the wood (Infraden).
Date of bud flush consisted of a prediction of the day of
the year at which the apical bud of the tree was in stage

3 according to the scale defined in Dillen et al. [45]. Pre-
dictions were done with a lowess regression from discrete
scores recorded at consecutive dates in the spring of 2015.
Wood’s basic density was measured on a piece of wood
from the stem section harvested for RNA sequencing fol-
lowing the Technical Association of Pulp and Paper Indus-
try (TAPPI) standard testmethod T 258 "Basic density and
moisture content of pulpwood".

Transcriptome data generation
We sampled stem sections of approximately 80 cm long
starting at 20 cm above the ground and up to 1 meter
in June 2015. The bark was detached from the trunk in
order to scratch young differentiating xylem and cam-
bium tissues using a scalpel. The tissues were immediately
immersed in liquid nitrogen and crudely ground before
storage at -80°C pending milling and RNA extraction.
Prior to RNA extraction, the samples were finely milled
with a swing mill (Retsch, Germany) and tungsten beads
under cryogenic conditions with liquid nitrogen during 25
seconds (frequency 25 cps/sec). About 100 mg of milled
tissue was used to isolate separately total RNA from xylem
and cambium of each tree with RNeasy Plant kit (Qiagen,
France), according to manufacturer’s recommendations.
Treatment with DNase I (Qiagen, France) to ensure the
elimination of genomic DNA was made during this purifi-
cation step. RNA was eluted in RNAse-DNAse free water
and quantified with a Nanodrop spectrophotometer. RNA
from xylem and cambium of the same tree were pooled in
an equimolar extract (250 ng/μL) before sending it to the
sequencing platform.
RNA-seq experiment was carried out at the plat-

form POPS (transcriptOmic Platform of Institute of
Plant Sciences - Paris-Saclay) thanks to IG-CNS Illumina
Hiseq2000. RNA-seq libraries were constructed using
TruSeq_Stranded_mRNA_SamplePrep_Guide_15031047
_D protocol (Illumina®, California, U.S.A.). The RNA-seq
samples have been sequenced in single-end reads (SR)
with an insert library size of 260 bp and a read length of
100 bases. Images from the instruments were processed
using the manufacturer’s pipeline software to generate
FASTQ sequence files. Ten samples by lane of Hiseq2000
using individually barcoded adapters gave approximately
20 millions of SR per sample. We mapped the reads on
the Populus trichocarpa v3.0 transcriptome with bowtie2
v2.4.1 [46], and obtained the read counts for each of
the 41,335 transcripts by homemade scripts (a median
of 17 millions of reads were mapped per sample, with a
minimum of 6 and a maximum of 42 million). Populus
trichocarpa is considered the reference genome for the
Populus genus with a high quality annotation, which is
why we used it to map and quantify our data. In addi-
tion, the coding region is highly conserved between the
two species and, as a result, 94% of our reads mapped

https://urgi.versailles.inra.fr/faidare/
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on the Populus trichocarpa reference. Initially, we consid-
ered using the genotype means to reduce our data volume.
However, differences between replicates were not nor-
mally distributed, because of variation in gene expression
due to plasticity. We thus could not summarize our data
with their mean, as it would have removed this informa-
tion and finally we chose to keep replicates as separate
data samples.

Filtering the non-expressed genes, normalization and
transformation to obtain a Gaussian distribution
We started cleaning our raw count data by removing the
transcripts without at least 1 count in 10% of the indi-
viduals. From the original 41,335 genes, 7,106 were thus
removed, leaving 34,229 genes. After this first filtration,
we normalized the raw count data by Trimmed Mean of
M-values (TMM, edgeR v3.26.4 [47]). As most features
are not differentially expressed, this method takes into
account the fact that the total number of reads can be
strongly influenced by a low number of features. Then, we
calculated the counts per millions (CPM [48]).
To make the CPM data fit a Gaussian distribution, we

computed a log2(n + 1) instead of a log2(n + 0.5) typi-
cally used in a voom analysis [48], to avoid negative values,
which are problematic for the rest of the analysis.

Computing the BLUP, heritability, and QST while correcting
the co-variables
As the sampling ran along 2 weeks, we expected environ-
mental variables to blur the signal. To understand how our
data were impacted, we ran a PCA analysis to identify the
impact of each cofactor (Suppl. Fig. 1). We identified the
block and the sampling date and time as cofactors with a
substantial impact.
A 12k bead chip [25] provided 7,896 SNPs in our popu-

lation. A genomic relationship matrix between genotypes
was computed with these SNPs with LDAK [49], and fur-
ther split into between (mean population kinship, Kb)
and within-population relationship matrices (kinship kept
only for the members of the same population, all the oth-
ers are equal to 0, Kw). These matrices were used in a
mixed linear model to compute the additive genetic vari-
ances between and within populations for the expression
of each gene:

y = β0 + Zbb + Zww + ε (1)

Where, y is a gene expression vector across individ-
ual trees, β0 is a vector of fixed effects (overall mean or
intercept); b andw are respectively random effects of pop-
ulations and individuals within populations, which fol-
low normal distributions, centered around 0, of variance
σ 2
bKb and σ 2

wKw. σb and σw are the between and within-
population variance components and Kb and Kw are the
between and within-population kinship matrices. Zb and

Zw are known incidence matrices between and within
populations, relating observations to random effects b and
w. ε is the residual component of gene expression, follow-
ing a normal distribution centered around 0, of variance
σ 2

ε I, where σε is the residual variance and I is an identity
matrix.
We used the function "remlf90" from the R pack-

age breedR (v0.12.2) [27] to fit the model, with
the Expectation-Maximization method followed by one
round with Average-Information algorithm to compute
the standard deviations. From the resulting between and
within-population variance components, we computed
the best linear unbiased predictors of between and within
population random genetic effects (b̂ and ŵ, respectively)
and summed them up to obtain the total genetic value
for each gene expression (BLUP). We also computed heri-
tability (h2) and population differentiation estimates (QST )
for each gene expression as follows:

h2 = σ 2
b + σ 2

w
σ 2
b + σ 2

w + σ 2
ε

(2)

QST = σ 2
b

σ 2
b + 2σ 2

w
(3)

Finally, we computed for each gene expression the coef-
ficient of genetic variation (CVg) by dividing its total
genetic variance (σ 2

b + σ 2
w) by its expression mean.

Other population statistics
We further used a previously developed bioinformatics
pipeline to call SNPs within our RNA sequences [50].
Briefly, this pipeline involves cleaning and quality con-
trol steps, mapping on the P. trichocarpa v3.0 reference
genome, and SNP calling using the combination of four
different callers. We ended up with a set of 874,923 SNPs
having less than 50% of missing values per genotype.
The missing values were further imputed with the soft-
ware FImpute [51]. We validated our genotyping by RNA
sequencing approach by comparing the genotype calls
with genotyping previously obtained with an SNP chip on
the same individuals [25]. Genotyping accuracy based on
3,841 common positions was very high, with a mean value
of 0.96 and a median value of 0.99. The imputed set of
SNP was then annotated using Annovar [52] in order to
group the SNPs per genemodel of P. trichocarpa reference
genome. For each SNP, we computed the overall genetic
diversity statistics with the hierfstat R package (v0.4.22)
[53] and this statistic was then averaged by gene model
in order to get information on the extent of diversity. We
further computed PCadaptscore with the pcadapt R pack-
age (v4.3.3) [28] with 8 retained principal components.
Here again, PCadapt scores were then summarized (aver-
aged) by gene-model in order to get information about
their potential involvement in adaptation. Based on the
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principal component analysis, pcadapt is more powerful
to perform genome scans for selection in next-generation
sequencing data than approaches based on FST outliers
detection [28]. We found a positive correlation between
FST and PCadapt score (data not shown), but PCadapt
score highlighted differences between Core, random and
peripheral gene sets (Fig. 3) while FST did not.

Hierarchical clustering
We performed a weighted correlation network analysis
with the R package WGCNA (v1.68) [5] on our full RNA-
seq gene set. We followed the recommended approach,
except that we first ranked our expression data, to work
subsequently with Spearman’s non-parametric correla-
tions and avoid problems due to linear modeling assump-
tions. We first chose the soft threshold with a power of 12,
which is the recommended value for signed networks (and
default value in WGCNA) (R2 = 0.81, connectivity: mean
= 195.17, median = 9.23, max = 1403.96, Fig. 2a). Then,
we used the automatic module detection (function "block-
wiseModules") via dynamic tree cutting with a merging
threshold of 0.25, a minimum module size of 30 and bid-
weight midcorrelations (Fig. 2b). All other options were
left to default. This also computes module eigengenes.
To sort the traits, we clustered their scaled values with
the pvclust R packages (v2.2.0) [54], the Ward agglomera-
tive method ("Ward.D2") on correlations (Fig. 2b, Fig. 2c,
Suppl. Fig. 2). The clustering on euclidean distance results
in the exact same hierarchical tree. Correlations between
traits and gene expression or module eigengenes were
computed as Spearman’s rank correlations (Fig. 2b, c).

Machine learning
Boruta gene expression selection
In addition to the inconvenience of working with a large
number of features (time and power consumption), most
machine learning algorithms perform better when the
number of predicting variables used is kept as low as the
optimal set [55]. We thus performed an all relevant vari-
able selection [56] with the Boruta function [29] from the
eponym R package, with 4 p-value thresholds (1, 5, 10 and
20%), on the training subpart of the full gene expression
set, for each phenotype independently. Then, features that
were not rejected by the algorithm were pooled together,
so that all the important genes were in the selected gene
pool, one pool for each p-value threshold. The enrichment
or depletion in core or peripheral genes in each of these
pools was evaluated by Fisher’s exact test for count data
("fisher.test" function in the stats R package (v3.6.3) with
default parameters).

Models
Both additive linear model (ridge regression) and inter-
active neural network models were computed by the R

package h2o (v3.30.0.2) [57]. They both used the gene
expression sets as predictors and one phenotypic trait at
a time as a response. Datasets were split by the function
"h2o.splitFrame" into 3 sets, a training set, a validation
set and a test set, with the respective proportions of 60%,
20%, and 20% . We checked that the split preserves the
distribution of samples within populations. The training
set was used to train the models, the validation set was
used to validate and improve the models, while the test
set was used to compute and report prediction accura-
cies as R2 between observed and predicted values within
this set and using the function "R2" of the R package com-
positions (v1.40.2) [58]. This set has never been used to
improve the model and therefore represents a proxy of
new data, avoiding the report of results from overfitted
models. All the reported predictions scores were com-
puted on this test set. These results are thus representing
real-life predictions and are not subject to over-fitting.
For linear models, we used the function "h2o.glm" with

default parameters, except 2-folds cross-validation and
alpha set at zero to perform a ridge regression. The same
splits and score reporting methods were used.
Neural networks have the reputation to be able to pre-

dict any problem, based on the Universal approximation
theorem [59, 60]. However, this capacity comes at the cost
of a very large number of neurons in one layer, or a rea-
sonable number of neurons per layer in a high number of
layers. Both settings lead to difficult interpretation when
very many gene expressions are involved. In that sense,
we chose to keep our models simple, with two layers of a
reasonable number of neurons. This obviously comes at
the price of lower prediction power. However, we believe
that these topologies give us the power to model 2 levels
of interactions between genes (1 level per layer). Further-
more, since both methods yielded comparable prediction
R2 (median ridge regression R2 = 0.19, mean neural net-
work R2 = 0.173), this complexity seemed appropriate. To
find the best models for neural networks, we computed a
random grid for each response. We tested the following
four hyperparameters: (i) activation function ("Rectifier",
"Tanh", "RectifierWithDropout" or "TanhWithDropout");
(ii) network structure; (iii) input layer dropout ratio (0 or
0.2) (iv) L1 and L2 regularization (comprised between 0
and 1 × 10−4, with steps of 5 × 10−6). Network struc-
ture corresponded to the number of neurons within each
of the two hidden layers, which was based on the num-
ber of input genes (h). The first layer was composed of
h, 2

3h or 1
3h neurons. The second layer had a number of

nodes equal or lower to the first one and was also com-
posed of h, 2

3h or 1
3h neurons. This represented a total of

6 different structures. We performed a random discrete
strategy to find the best search criteria, computing a max-
imum of 100 models, with a stopping tolerance of 10−3

and 10 stopping rounds. Finally, "h2o.grid" parameters
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were the following: the algorithm was "deeplearning",
with 10 epochs, 2 fold cross-validation, maximum duty
cycle fraction for scoring 0.025, and constraint for a
squared sum of incoming weights per unit 10. All other
parameters were set to default values. The best model
was selected from the lowest RMSE score within the
validation set.
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https://doi.org/10.1186/s12864-020-06809-2.

Additional file 1: Suppl. Table 1. Module membership of each gene.

Additional file 2: Suppl. Table 2. Distribution of core, peripheral and
peripheral no grey genes across modules.

Additional file 3: Suppl. Fig. 1. PCA score plots on gene expression data.
Each plot represents the distribution of the individuals on the 2 first axes of
the PCA (representing 17,7% of the variation), colored by class of various
experimental factors (Xylem and cambium scraper, extractor and
extraction method, population, sequencing column, line and plate, the
growth rate at harvest, sampling date, time, temperature, solar radiation,
humidity and wind speed). Cofactors related to weather are presented in
the 6 lower plots.

Additional file 4: Suppl. Fig. 2. Traits hierarchical ascendant clustering
dendrogram. Clustering was performed from the correlations between
traits with Ward method ("Ward.D2") by the R package pvclust.
Approximately Unbiased (au, in red) and Bootstrap Probability (bp, in green)
p-values indicated the degree of belief associated with clusters. Highly
supported modules are framed by a red square, grouping (a) the mean
sample diameter with the two circumference traits, (b) the S/G ratios with
glucose composition, (c) the two C5/C6 together, and (d) the H/G ratios.

Additional file 5: Suppl. Fig. 3. Relationship between Spearman’s
correlations between module-trait (y-axis) and gene significance-kME
(x-axis).

Additional file 6: Suppl. Fig. 4. Histograms of the centrality scores without
(top) or with (bottom) the grey group. Core, peripheral and peripheral
without grey sets are represented respectively by the blue, dark orange
and orange bars. Random sets are distributed across the histogram and do
not appear on this figure. Distribution of genes clustered in the grey
module is represented by the grey bars, white bars are for other genes.

Additional file 7: Suppl. Fig. 5. Histograms of the centrality scores for the
genes selected by Boruta at different p-values thresholds. Repartition of
selected genes within the following gene sets is hilighted, with core in
blue, peripheral NG in orange, peripheral in brown and other (NA) in black.
Four p-value thhresolds for Boruta selections were considered: 0.01, 0.05,
0.1 and 0.2.

Additional file 8: Suppl. Fig. 6. Proportion of linear model (LM, top row)
and neural network (NN, bottom row) predictions with a R2 above (left
column) or below (right column) the 95% confidence interval computed
from the predictions with the random sets of genes for each gene set (there
is no neural network model computed for the Complete BLUP full set).

Additional file 9: Suppl. Fig. 7. Difference of prediction scores between
algorithms (top) and sets (bottom). On the top panel, the difference
between LM and NN prediction scores for the core (in blue), random (in
grey), peripheral (in brown), peripheral (in orange) and Boruta gene sets (in
green). On the bottom panel, the LM differences are in red and the NN
differences in turquoise and the color filling the bar represents the
difference between core and peripheral genes in brown, core and
peripheral NG in orange and between the random sets in grey. For the
random pairs, error bars represent the first and third quartiles of the
differences between pairs of randomized sets and the bar corresponds to
the median.

Additional file 10: Suppl. Fig. 8. Predictions scores on test sets for
increasing numbers of the peripheral genes. Violin and boxplots of
prediction R2 for the LM Ridge algorithm and for increasing sizes of the
peripheral genes set (in brown) and the peripheral NG genes set (in
orange), used for the predictions (in percent of the full set).
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