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Abstract

Background: DNA methylation has been shown to be involved in many biological processes, including X
chromosome inactivation in females, paternal genomic imprinting, and others.

Results: Based on the correlation patterns of methylation levels of neighboring CpG sites among 28 sperm whole
genome bisulfite sequencing (WGBS) data (486 × coverage), we obtained 31,272 methylation haplotype blocks
(MHBs). Among them, we defined conserved methylated regions (CMRs), variably methylated regions (VMRs) and
highly variably methylated regions (HVMRs) among individuals, and showed that HVMRs might play roles in
transcriptional regulation and function in complex traits variation and adaptive evolution by integrating evidence
from traditional and molecular quantitative trait loci (QTL), and selection signatures. Using a weighted correlation
network analysis (WGCNA), we also detected a co-regulated module of HVMRs that was significantly associated with
reproduction traits, and enriched for glycosyltransferase genes, which play critical roles in spermatogenesis and
fertilization. Additionally, we identified 46 VMRs significantly associated with reproduction traits, nine of which were
regulated by cis-SNPs, implying the possible intrinsic relationships among genomic variations, DNA methylation,
and phenotypes. These significant VMRs were co-localized (± 10 kb) with genes related to sperm motility and
reproduction, including ZFP36L1, CRISP2 and HGF. We provided further evidence that rs109326022 within a
predominant QTL on BTA18 might influence the reproduction traits through regulating the methylation level of
nearby genes JOSD2 and ASPDH in sperm.

Conclusion: In summary, our results demonstrated associations of sperm DNA methylation with reproduction traits,
highlighting the potential of epigenomic information in genomic improvement programs for cattle.

Keywords: Sperm DNA methylation, Methylation haplotype blocks, Variably methylated regions, Reproduction traits,
Cattle

Background
Emerging evidence shows that the sperm DNA methy-
lome contributes to not only male fertility but also to early
embryo development [1–4]. DNA methylation in sperm
has been shown to be involved in many biological pro-
cesses, including X chromosome inactivation in females,

paternal genomic imprinting, silencing of transposable ele-
ments and DNA compaction [5–8]. Some alterations of
sperm DNA methylation may persist into the early em-
bryo and thus influence the transcriptome and epigenome
in somatic tissues [9, 10], leading to variation in pheno-
types of offspring [11]. In dairy cattle breeding, we use the
breeding value (e.g., predicted transmitting ability, PTA)
of a sire to measure his contribution to complex traits of
offspring, after correcting for all known systematic effects.
An elite bull often has thousands of daughters due to arti-
ficial insemination, yielding high reliable phenotypes (i.e.,
estimated breeding values). This offers a valuable source
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for understanding the relationships between sperm DNA
methylation and complex traits in mammals, particularly
in males.
Variation of DNA methylation among individuals

has been speculated to affect susceptibility to complex
diseases and resistance to drug treatment in human
[12–14]. The epigenetic polymorphism, termed “vari-
ably methylated regions” or VMRs, were found to be
enriched in various functional genomic features, like
enhancers, CpG shores, 3’UTR etc., indicating their
potential roles in transcriptional regulation [15, 16].
In addition, inter-individual methylation variations
have been demonstrated to be associated with tissue-
specific function and environmental adaptation [15].
For instance, VMRs within co-methylated networks in
fibroblasts were enriched for four clusters of HOX
genes. Furthermore, both genetic factors and environ-
mental exposures like diet, stress, toxic exposure and
exercise contribute to epigenetic variation [17–19].
Analysis of VMRs in human neonatal blood samples
further indicated that VMRs were best explained
mainly by either environmental factors and genotype
interaction (GxE) or their additive effects (G + E) [20].
Additionally, SNPs involved in the significant GxE
models were highly enriched with signals of genome
wide association studies (GWAS) for complex diseases
[20]. Studies have also revealed that, by targeting
VMRs, the statistical power can be improved in epi-
genetic signature detection using epigenetic associ-
ation studies (EWAS) [21]. While VMRs were studied
in human and model organisms, to our knowledge,
no studies have been published to investigate inter-
individual variation of DNA methylation in cattle,
particularly in sperm, which is of importance in dairy
cattle due to the wide use of artificial insemination
technology.
There are different methods to detect VMRs. In previ-

ous human studies, VMRs were determined by either
merging the adjacent highly variable CpG sites within
predefined windows [15, 22] or using the highly variable
restriction enzyme (Msp I) fragments from reduced rep-
resentation bisulfite sequencing. However, methylation
levels of each CpG site within VMRs may be variable,
raising a question of which CpG site to choose. For ex-
ample, the most variable CpG site (tagCpG) within each
VMR was often selected to represent it [15, 22]. This
strategy may miss the information provided by other
CpG sites. Some researchers directly utilized the single
CpG site [21], which may be influenced by the technical
noise and sensitivity in measuring single CpG methyla-
tion [23]. Because adjacent CpG sites tend to show the
coordinated methylation statuses due to the progressivity
of the DNA methylation and/or demethylation enzymes
(DNMT1, DNMT3A/B and TET proteins), these co-

methylated CpG sites may form methylation haplotypes,
called methylation haplotype blocks (MHBs) [23]. A pre-
vious study showed that MHBs tend to be enriched in
VMRs and functional regions [23]. Here, we hypothe-
sized that the utilization of MHBs could improve the
definition of VMRs by concentrating on biologically rele-
vant regions, and enhance statistical power by reducing
the multiple testing burden compared to the single-CpG
method.
In this study, we functionally annotated the VMRs

using a range of other information, including gene ex-
pression, predicted transcription factor binding sites,
traditional quantitative trait loci (QTL), gene expression
QTL and selection signatures (Fig. 1). We further associ-
ated VMRs with 41 complex traits and further explore
the cis-SNPs that may regulate the detected significant
epigenetic signatures within ±1-Mb. To our knowledge,
this is the first attempt to reveal the potential impact of
epigenomics on phenotypes on genome wide level.

Results
Identification and characterization of methylation
haplotype blocks
Our correlation analysis of 28 WGBS data within various
genomic elements, revealed that global methylation was
highly conserved among individuals, i.e. Pearson correla-
tions ranged from 0.914 to 0.995 (Additional file 1: Figure
S1a). The top conserved genomic elements included 5′
UTRs, CG islands and promoters, while introns, 3’UTRs
and exons were relatively dynamic among individuals.
We calculated a pairwise “linkage disequilibrium” of

CpG methylation (LD, r2) as previously reported [23], and
partitioned the mappable genome (coverage > = 10; min-
imal size: 80 bp) into blocks using LD (r2) cutoff of 0.5
with at least 3 CpG sites within a block. We identified 31,
272 MHBs (Additional file 2: Table S1) with an average
size of 52 bp (Fig. 2a), and an average of 12 CpG sites per
100 bp (Fig. 2b). Pearson correlation analysis showed that
methylation levels within MHBs were less correlated
among individuals (0.52 ~ 0.86) compared to those of vari-
ous genomic elements (Additional file 1: Figure S1b),
which was concordant with the previous observation that
MHBs were variable among individuals and highly
enriched in VMR [15]. The MHBs also overlapped with
multiple known genomic elements (Fig. 2c). Among all
the MHBs, 64.6, 35.4% were located in intergenic regions
or transcribed regions, respectively. The MHBs were
highly enriched in CpG islands, 5’UTRs, exons and pro-
moters (1000 times of permutation test using RegioneR
[24], P < 0.001), indicating that they may play important
roles in transcriptional regulation (Fig. 2d). Based on the
15 chromatin states in bovine rumen cells predicted using
histone modifications (H3K4me3, H3K4me1, H3K27ac,
H3K27me3) and other epigenome information (ATAC-
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seq and CTCF binding sites) [25], we observed MHBs had
a significant enrichment for flanking bivalent TSS/enhan-
cer (enrichment factor: 17) and active TSS i.e. promoters
(enrichment factor: 11) (Fig. 2e). We also observed an en-
richment of MHBs in imprinted genes (enrichment factor:
2.22) like HOXA genes, IGF2, and IGF2R. One example is
the methylation block containing 15 CpG sites in exon 4
of a predicted maternal imprinted gene GAREM1 (Fig. 2f).
We observed distinct methylation patterns of this region
between sperm and oocytes [26], where sperm were con-
sistently lowly methylated while oocytes were highly
methylated. Collectively, blocks with coordinately methyl-
ated 5mC were likely to capture the epigenetic signatures
associated with transcriptional regulation.
To explore the conservation of MHBs among species,

we compared the detected MHBs between cattle and
human by converting the MHB coordinates to the hu-
man hg19 genome using the liftOver tool in the UCSC
browser. It is noted that human MHBs were predicted
using human somatic tissues instead of sperm, which
were published before [23]. Out of all the bovine
MHBs, 51.8% were successfully converted with the
minimal match of 0.8. A total of 1952 bovine MHBs
were overlapped with those from human [23], and asso-
ciated with 1701 human genes, while the cattle-specific
MHBs were associated with 5832 genes. Interestingly,
genes overlapping with common MHBs between hu-
man and cattle (HCMHBs) showed an enrichment of

GO terms related to early embryonic development,
while those associated with cattle-specific MHBs
(CMHBs) were mainly enriched in the development of
nervous system (FDR < 0.05, Additional file 1: Figure
S2a). We also found HCMHBs overlapped with more
genes (Additional file 1: Figure S2b) and were more
conserved among mammals (indicated as the PhastCon
scores, https://genome.ucsc.edu/goldenPath/help/phast-
Cons.html) than CMHBs (Additional file 1: Figure S2c).
Further study is required to understand the biological
mechanisms underlying the evolution of MHBs among
species.

Inter-individual variation and conservation in sperm DNA
methylome
MHBs were previously shown to have an extremely high en-
richment in VMRs [23]. To characterize the methylation dy-
namics among individual bulls, we defined three categories
of regions from MHBs in terms of their methylation varia-
tions (See Methods), 1) highly variable methylation regions
(HVMRs, n = 1681) with extremely high methylation varia-
tions, 2) conserved hypomethylated regions (hypo-CMRs,
Average methylation level < =0.2, n = 3371), 3) conserved
hypermethylated regions (hyper-CMRs, Average methyla-
tion level > =0.8, n= 1594) (Additional file 2: Table S2). As
expected, moderately methylated MHBs were more likely to
be variable among individuals than highly or lowly methyl-
ated MHBs (Fig. 3a). We further observed that methylation

Fig. 1 Schematic overview of the current study. We defined methylation haplotype blocks (MHBs) using whole genome bisulfite sequencing
(WGBS) data of 28 sperm samples. We then detected the highly variably methylated regions (HVMRs), conserved hypomethylated regions (Hypo-
CMRs) (average methylation level < 20%) and conserved hypermethylated regions (Hyper-CMRs) (average methylation level > 80%) based on the
methylation variations among individuals. We next functionally annotated them by integrating DNA methylation, gene expression, GO/KEGG,
transcriptional factor binding sites, QTL and WGCNA module-trait relationship. We further detected the variably methylated regions (VMRs) using
lenient criteria. We associated the methylation levels of VMRs with 41 complex traits. We also annotated the significant VMRs by examining the
functional annotation of their associated genes, and their corresponding expression across 91 tissues. We finally conducted cis-methylation QTL
(± 1-Mb) analyses for significant VMRs
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differences between HVMRs and CMRs persist into mul-
tiple somatic tissues, such as rumen, ovary and placenta
(Fig. 3b). We collected bovine transcriptomes of 91 tissues/
cells from published data of previous studies. Similarly, ex-
pression differences between HVMR- and CMR-associated
genes (genes overlapped with MHB regions in promoters
and gene bodies) were also consistent in 91 bovine tissues/
cells. Genes associated with hypo-CMRs generally had the
highest expression, followed by genes associated with hyper-
CMRs and genes associated with HVMRs (Fig. 3c). Func-
tional annotation further revealed that genes associated with
hypo-CMRs were engaged in basic cell-function, including
transcription, DNA binding and nuclear chromatin (Add-
itional file 1: Figure S3a), suggesting that these genes were
mainly house-keeping genes. For example, Hypo-CMRs
were enriched for developmental motifs, like HOXD13, and
motifs involved in cell proliferation and differentiation, like
MYB, KHDRBS2 and SRSF10. Hyper-CMRs were enriched

in motifs associated with hemopoietic development and al-
ternative splicing, like MZF1 and CELF2. In contrast, we
speculated that HVMRs may be more likely to harbor
tissue-specific expressed genes. Furthermore, our transcrip-
tion factor binding motif analysis validated that the HVMRs
were enriched for motifs with divergent functions, such as
ZNF711 for cognitive disability, PBX3 for leukemia and
PKNOX1 for adult spermatogenesis [27] (Additional file 1:
Figure S3b). Additionally, human orthologous genes in
HVMRs were also enriched in tissue-specific expressed
genes (enrichment factor: 1.84; P = 5.52 × 10−6; Fisher’s
exact test), while human orthologous genes in hypo-CMRs
and hyper-CMRs were enriched in house-keeping functions
(enrichment factor: 1.49 and 1.64; P= 7.01 × 10−8 and 6.86
× 10−7) (Additional file 1: Figure S3c). We further over-
lapped HVMRs, hypo- and hyper-CMRs with multiple types
of expression QTLs, including splicing QTLs (sQTLs), gene
expression QTLs (geQTLs) and exon expression QTLs

Fig. 2 Characterization of sperm methylation haplotype blocks (MHBs) in cattle. a Length distribution of MHBs. b CG density (CG number per
base pair) distribution of MHBs. c Co-localization of MHBs with known genomic elements. d Enrichment of MHBs in known genomic features. e
Enrichment of MHBs in predicted chromatin core 15-states using chromHMM [25, 63]: 1 TssA: Active Tss; 2 TssAFlnk: Flanking active TSS; 3 TxFlnk:
Transcrption at gene 5′ and 3′; 4 EnhA: Active enhancer; 5 EnhAATAC: Active enhancer & ATAC; 6 EnhWk: Weak active enhancer; 7 EnhPois:
Poised enhancer; 8 EnhPoisATAC: Poised enhancer & ATAC; 9 EnhWkCTCFATAC: Weak enhancer & CTCF & ATAC; 10 ATAC: ATAC islands; 11
reprWkCTCF: Weak represeed CTCF; 12 BivFlnk: Flanking bivalent TSS/Enhancer; 13 ReprRC: Repressed Polycomb; 14 ReprPCWk: Weak repressed
Polycomb; and 15 Quies: Quiescent/Low. f One example of MHB located in the exon 4 of predicted maternal imprinted gene GAREM1.
Methylation levels of the MHB were low in sperm but high in oocyte
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(eeQTLs), from previous analyses [28, 29]. All three types of
QTLs were highly enriched in HVMRs (P < 2.2 × 10−16,
Fisher’s exact test), but depleted in hypo-CMRs and hyper-

CMRs (P < 2.2 × 10−16) (Fig. 3d), which were consistent
among all four tissues (muscle, liver, blood and milk cells).
This result indicates that genomic regions associated with

Fig. 3 Comparison of three categories of regions with extreme methylation variation in sperm. a Standard deviation (SD) vs. mean sperm DNA
methylation of all methylation haplotype blocks (MHBs), and distribution of highly variable methylated regions (HVMRs), hypomethylated
conserved regions (Hypo-CMRs) and hypermethylated conserved regions (Hyper-CMRs). b Average methylation levels of HVMR, Hypo-CMRs and
Hyper-CMRs in 16 somatic tissues. c Average expression levels (FPKM value) of genes associated with HVMR, Hypo-CMRs and Hyper-CMRs in 91
tissues and cell types. d Enrichments of three categories of expression QTL in HVMR, Hypo-CMRs and Hyper-CMRs (eeQTL: exon expression QTLs;
geQTL: gene expression QTLs; sQTL: splicing QTLs; these expression QTLs were detected from dairy cattle blood and milk cells, liver and muscle
[28]). e Enrichments of selection signatures differentiating dairy and beef cattle breeds [30] in HVMR, Hypo-CMRs and Hyper-CMRs
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sperm HVMRs could play key roles in regulation of gene ex-
pression and splicing among individuals. We further found
an enrichment of HVMRs (P < 2.2 × 10−16) in selection sig-
natures with higher frequency in dairy rather than in beef
breeds [30], suggesting that HVMRs might play roles in
positive selection and adaptive evolution (Fig. 3e). Collect-
ively, our data revealed distinct DNA methylation variation
patterns in sperm might influence the transcriptional regula-
tion and evolution.

HVMRs were associated with QTLs of reproduction traits
To explore the relationship between HVMRs in sperm
and complex traits, we first examined the QTL regions
of six categories of traits (n = 232) (Exterior, health,
Meat, milk, production and reproduction traits) from
the Cattle QTL database (https://www.animalgenome.
org/cgi-bin/QTLdb/BT/index). We observed that both
hyper-CMRs and HVMRs had higher enrichments for
QTL signals of complex traits than hypo-CMRs. Of
note, HVMRs tend to be specifically and significantly
enriched for QTL signals of reproduction traits, with
the top associated traits were daughter pregnancy rate

(DPR; FDR = 0.03) and stillbirth (SB; FDR = 0.1). While
hyper-CMRs were highly associated with a range of
complex traits such as milk production traits, non-
return rate and calving ease (CE) (Fig. 4a).
To further investigate the relationship between HVMRs

and reproduction traits, we grouped the co-methylated
HVMRs into 12 distinct modules using WGCNA analysis
[31], and associated each module with 11 reproduction
traits in our 19 bulls of similar age (1~2-year-old), after cor-
recting for the genetic relatedness (Fig. 4b). We observed
Module 1 was significantly (P < 0.05) negatively correlated
with several reproduction traits, including heifer conception
rate (HCR), cow conception rate (CCR), standard length of
productive life (ST_PL), length of productive life (PL), and
DPR, but positively correlated with gestation length (GL)
and sire still birth. This was consistent with their negative
genetic correlations as previously reported [4]. Interestingly,
the 15 co-methylated MHBs in Module 1 were enriched for
glycosyltransferase genes (FDR = 0.0046) (Fig. 4c). Although
the exact mechanisms remain elusive, published results re-
ported that glycosyltransferases were the main enzymes in
glycosylation and responsible for the synthesis of glycans
which play pivotal roles in spermatogenesis [32, 33].

Fig. 4 Relationship between methylation variations in sperm and complex traits. a Enrichments of six QTL categories (including 232 traits) from
Cattle QTL database in HVMRs, Hypo-CMRs and Hyper-CMRs. CE: calving ease; DPR: daughter pregnancy rate; SB: still birth. b Module-trait
relationships using a weighted correlation network analysis (WGCNA) (Only reproduction traits were tested). Elements in red dash box were two
traits most significantly associated with module 1. HCR: heifer conception rate; CCR: cow conception rate; ST_PL: standard length of productive
life; GL: gestation length; SCR: sire conception rate; PL: length of productive life; DPR: daughter pregnancy rate. c Co-methylated regions with 15
MHBs in module 1 enriched for glycosyltransferase genes. M1, M2 and M3 represents three MHBs located with the GALNT2 gene
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Previous studies have shown that glycosyltransferases are
crucial for spermatozoa maturation in epididymis and
sperm survival in the female reproductive tract [34, 35].
Sperm glycans continue to be modified by glycosyltransfer-
ases and carry out functions in female reproductive tracts
like acrosome reaction, protection from innate and adaptive
female immunity and passage through the cervical mucus
[34]. Additionally, glycosyltransferase activities are poten-
tially involved in modification of the glycan on the zona
pellucida that boost the its ability to bind spermatozoa [36].

Association analyses between VMRs and reproduction
traits
To further explore the association of sperm methyla-
tion with complex traits, we tested the association of
VMRs with 41 complex traits individually using 19
samples from bulls with similar ages (1 to 2-year-old).
Unlike HVMRs, VMRs were defined using a less strict
criteria (the p value of chi-square test less than 1 ×
10− 4) to avoid missing important signals (See

Methods). This resulted in 17,323 VMRs for subse-
quent analysis, accounting for 55.4% of all identified
MHBs. Methylation levels of VMRs were transferred
from β values to M values for association tests [37].
We found that VMRs were more likely to be associ-
ated with reproduction traits than other traits (Fig. 5a).
After Bonferroni correction, we detected 5 significant
(P < 2.89 × 10− 6, 0.05/17323) VMRs and 41 suggest-
ively significant VMRs for five traits (P < 5.77 × 10− 5,
1/17323), of which four were reproduction traits, in-
cluding DPR, CCR, GL, and ST_PL, and the remaining
one was related to stature. (Fig. 5b, Additional file 2:
Table S3). The results were consistent with the above
mentioned WGCNA results. About half (n = 25) of
these detected VMRs were within 10 kb of annotated
genes, and some of them had known functions in male
or female fertility. The most significant VMR associ-
ated with DPR was within exon 2 of the ZFP36L1
gene. We observed a highly negative correlation (Pear-
son r = − 0.83) between methylation levels of this VMR

Fig. 5 Associations between variably methylated regions (VMRs) and reproduction traits. a The -log(P) values of associations of VMRs with four
types of complex traits. Red dot line indicates the significant P value after Bonferroni correction (P < 2.89 × 10-6; 0.05/17323). b Manhattan plots of
five traits with significant/suggestively significant VMRs. Red dots indicated the significant VMRs (P < 2.89 × 10−6; 0.05/17323). Green dots
indicated the suggestive significant VMRs (P < 5.77 × 10−5; 1/17323). CCR: cow conception rate; DPR: daughter pregnancy rate; GL: gestation
length; ST_PL: standard length of productive life. c Correlation between predicted transmitting ability (PTA) values of DPR and methylation levels
of VMR within the ZFP36L1 gene. d Correlation between PTA values of DPR and methylation levels of VMR located downstream of CRISP2 gene. e
Expression levels (FPKM values) of four genes associated with significant VMRs across 91 bovine tissues
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and DPR (Fig. 5c). The ZNF36L1 gene is crucial for fe-
male fertility, and the disruption of this gene will re-
sult in embryo lethality [38]. Another example was the
suggestively significant VMR associated with GL,
which is located ~ 5.9 kb downstream of the CRISP2
gene. We observed a positive correlation (Pearson r =
0.8) between methylation levels of this VMR and GL
(Fig. 5d). Although the mechanisms are not currently
understood, existing literature demonstrated that
CRISP2 is a testicular sperm protein involved in
spermatogenesis and it participates in acrosome reac-
tion and gamete fusion [39–41]. We examined the
transcriptome of 91 bovine tissues, and observed four
genes associated with significant VMRs (CRISP2, HGF,
EFHB and ARFGEF3) showing high expression pat-
terns almost exclusively in sperm and testis (Fig. 5e).

Examples of the trait-associated VMRs which were
influenced by genetic variations
To dissect the impact of genetic variations on trait-
associated VMRs, we obtained 80 K SNPs genotypes for
the 19 individuals of similar age being studied. Using an R

package MatrixEQTL [42], we tested SNPs within 1Mb
(59 SNPs on average tested for each VMR) surrounding
the detected significant or suggestively significant VMRs.
Out of the 46 VMRs, nine were associated with at least
one cis-SNP (FDR < 0.2). By overlapping these significant
methylation QTLs (meQTLs) with the Cattle QTL data-
base, we observed that meQTLs of three trait-associated
VMRs were located within QTLs of reproduction traits
(conception rate, still birth, calving ease, DPR, PL etc.). An
interesting example is a trait-associated VMR (chr18:
57097832–57,097,893) located in the exon 5 of ASPDH
and upstream (1.5 Kb) of JOSD2 (Fig. 6a). rs109326022 is
the most significant SNP associated with the VMR methy-
lation level. Among the three genotypes, individuals with
GG have the highest DNA methylation level but lowest
PTA values for DPR and CCR, and those with TT have
the lowest DNA methylation level but highest PTA values
(Fig. 6c). This cis-meQTL was located within QTLs of PL,
calving ease, still birth and calf size from Cattle QTL data-
base. It was also detected as an eeQTL for JOSD2 in blood,
liver and milk cells [30]. On the other hand, a previous
DNA methylation study identified ASPDH as a gene

Fig. 6 A trait-related variably methylated region (VMR) was associated with a SNP within 1 Mb distance. a UCSC browser of the VMR associated
with CCR and DPR as well as the methylation QTL (meQTL) associated with the trait-related VMR (chr18: 57097832–57,097,893). Y axis indicates
the –log10(P) from association test. b Association studies between the meQTL (rs109326022) and 35 bovine complex traits in 27, 214 Holstein
bulls [44]. PL and SCE were the most significant traits associated with the meQTL. c Methylation levels of the trait-related VMR in three genotypes
of rs109326022
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enriched in low-fertility sires [43]. To further validate the
SNP effects on a range of complex traits, we examined the
associations of rs109326022 with 35 complex traits in 27,
214 Holstein bulls [44]. This cis-meQTL was most signifi-
cantly associated with PL and SCE among all tested traits
(Fig. 6b), which might indicate the co-regulatory, intrinsic
relationships among the cis-meQTL, sperm DNA methy-
lation, and fertility traits. However, this cis-meQTL did
not reach genome-wide significance for PL and SCE in the
single-marker GWAS due to the very strict threshold and
its small effect.

Discussion
To our knowledge, this is the first report to characterize
the inter-individual variation of sperm DNA methylation
and to explore their associations with complex traits in
cattle. We demonstrated that HVMRs were distinct from
CMRs in terms of methylation levels, expression pat-
terns and their association with complex traits. HVMRs
may associate with tissue-specific gene expression and
play roles in transcriptional regulation. Our results
showed that the sperm epigenetic variations were associ-
ated with reproduction traits in cattle.
In our association studies, about half of the signifi-

cant/suggestively significant VMRs were within 10 kb of
annotated genes (Fig. 5b). Some of these genes were
functionally important in reproduction. Besides ZFP36L1
and CRISP2 mentioned before, we detected the HGF
gene, whose VMR was significantly associated with DPR.
The VMR was located about 4400 bp downstream of
HGF. Within 91 collected tissues, we found that HGF
was specifically highly expressed in sperm. A previous
study has shown that HGF is expressed by Sertoli cells
and active during all phases of prenatal and postnatal
testis development [45]. HGF and its only acceptor c-
Met are involved in testis and ovary differentiation. HGF
also has a role in mediating the spermatogenesis and
sperm quality in different aspects [46, 47]. The level of
HGF was reported to be changed in a comparison be-
tween healthy and infertility individuals [48]. In addition,
we found one of our significant VMRs (chr18:
57097832–57,097,893) was also located within a differ-
entially methylated region (DMR) (chr18: 57097376–57,
098,221) in previous analysis by comparing bulls with
high and low male fertility [43]. This significant VMR
was identified to associate with CCR and DPR simultan-
eously. We also identified another nearby VMR (chr18:
56560453–56,560,476) associated with DPR in BTA18
(Additional file 1: Figure S4). These VMRs were located
within a very prominent QTL for various fertility traits
on chromosome 18 (BTA18, roughly located between
50Mb and 60Mb) [49]. This was also supported by our
previous study, which reported sperm DNA methylation
alterations in this region were associated GL, sire

conception rate (SCR), body depth (BDE), and CCR [4].
Therefore, the influence of the prominent QTL on fertil-
ity traits could be a combination of both genetic and epi-
genetic mechanisms.
Our results indicated the sperm DNA methylation

variation associates with reproduction traits in bulls,
which were estimated based on the reproduction per-
formance of their daughters, such as DPR, CCR, GL
and PL. There are two potential mechanisms could
lead to these associations. One is the transgenera-
tional inheritance of sperm epigenome. While DNA
methylation erasure occurred after fertilization, in-
duced transgenerational epimutations appear to be
protected from it. For example, researchers have
shown that male mice fed with unbalanced diets
could lead to the metabolic disease in the offspring,
coupled with sperm epigenetics alteration [10, 50, 51].
Sperm DNA methylation and sperm RNA could both
persist into embryo and even adult tissues, impacting
the phenotypes of offspring. Another potential mech-
anism is that the genetic factors, such as the genetic
variants like SNPs associated with DNA methylation
(meQTLs), are transmitted to offspring via sperm
DNA. We have shown that the genetic effects on
DNA methylation could not be dismissed, as about
20% of trait-associated VMRs were influenced by gen-
etic variations. A monozygous and heterozygous twin
study reported that contribution of additive genetic
factors on methylation variable sites were 23.0% on
average [52]. Another study demonstrated that 44% of
the methylation variation was best explained by gen-
etic factors [20]. Additionally, meQTLs were previ-
ously suggested to be conserved among tissue types
and developmental stages [53, 54]. Therefore, al-
though our study performed an initial exploration be-
tween sperm DNA methylation and sire fertility traits,
it will be interesting for future work to study the
mechanisms how sire sperm epigenetic signatures
may impact reproduction traits in female progenies.
For example, comparing epigenetic information be-
tween sire sperm and embryo could provide insights
on retained DNA methylation marks.
In our study, we identified VMRs based on MHBs,

which were robust and sensitive [23]. Focusing on MHBs
helped us to narrow the scope and improve the statis-
tical power for subsequent methylation association ana-
lyses. Especially, we found that MHBs were enriched in
functionally important elements, like CpG islands, gene
promoters, and imprinted genes, which were in concord-
ance with previous characterization of MHBs in human
and mice [23, 55]. We revealed extreme enrichment of
MHBs in flanking bivalent TSS/enhancer (BivFlnk) and
active TSS (TssA) using annotated chromatin states in
rumen epithelial cells. BivFlnk colocalizes both active
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(H3K4me3) and repressive (H3K27me3) histone modifi-
cations, and associates with genes of developmental im-
portance [56]. TssA are active promoters and are
associated with developmentally important genes [56].
Functional regions like active promoters and bivalent
TSS were stable among cell types or tissues [57, 58]. Be-
cause of their conservation among tissues, it is possible
to roughly annotate the MHBs in sperm using chroma-
tin states in rumen epithelial cells.
Reproduction traits are complex and influenced by

both genetic and epigenetic factors. Distinct from hu-
man and mouse, because of artificial insemination, we
can measure the paternal contribution of sires to their
offspring highly reliably. One advantage of our study was
the high reliability of phenotype. The mean reliability for
PTA estimation of GL, DPR, CCR, ST_PL and Stature
was higher than 88%. Also we used sperm as our target
to analyze the correlation between DNA methylation
and phenotypes. Sperm is the only vector to deliver pa-
ternal genetic and epigenetic information to offspring,
contributing to the variation of phenotypes in offspring
(like female reproduction traits and milk traits). In our
study, we also selected individuals with lowest related-
ness and controlled their ages to around 1~2-year-old to
limit confounding factors.
One limitation of our study is the small sample size

(n = 19) to explore the preliminary associations between
VMRs and complex traits. Even though WGBS costs less
than before and has become more prevalent, it is still
unaffordable to have a large number of samples tested.
Therefore, in the near future it is urgent to design either
PCR- or array-based high-throughput DNA methylation
assays, for example, a low-density bovine methylation
array covering important functional regions similar to
the Infinium human methylation arrays. This would
allow for the confirmation of our findings in a larger
sample size.

Conclusions
The significant enrichment of QTLs, eQTLs and se-
lection signatures in HVMRs indicated the potential
roles of methylation variation in sperm on transcrip-
tional regulation, as well as complex trait and
adaptive evolution. Our preliminary co-methylation
analysis and methylation association study also sug-
gested the potential impacts of sperm methylation
variation on reproduction traits, despite their elusive
natures. Additionally, we found that the effect of a
prominent QTL region on BTA18 on female fertility
traits could be related to both genetic and epigenetic
mechanisms. In summary, our study of sperm DNA
methylation variation provides novel insights into the
biological basis underlying complex traits in cattle,

and supplies valuable epigenetic hypotheses for fu-
ture explorations.

Methods
Data processing and methylation haplotype blocks
detection
A total of 28 sperm samples were used, and their age and
coverage are listed in Additional file 2: Table S4. Twenty-
six sperm samples were collected from 23 (1 to 5-year-
old) fertile, health and representative U.S. Holstein AI
bulls, and the other two sperm samples were collected
from two 7-year-old Chinese Holstein AI bulls. All of
semen samples passed QC tests (including microscopic
examination of sperm count, motility, and abnormality,
other laboratory tests) to qualify for commercial distribu-
tions. Semen samples were collected from bulls using a
standardized procedure with artificial vaginas. Genomic
DNA was isolated according to the QIAamp DNA Mini-
Kit protocol (QIAGEN, Valencia, CA, USA). DNA quality
was assessed using the 2100 Bioanalyzer (Agilent Tech-
nologies, Santa Clara, CA, USA) and spectrophotometer
(NanoDrop Technologies, Rockland, DE) for DNA con-
centration, degradation, purify (OD260/280) and potential
contamination. The qualified genomic DNA from sperm
samples were used to construct libraries as described in
Zhou et al. [57]. Programs FastQC v 0.11.2 and Trim Gal-
ore v 0.4.0 were used to obtain the read quality and filter
the sequences, respectively. Clean reads were subsequently
mapped to the reference genome (UMD3.1) using bowtie2
under the Bismark software (0.14.5) with default parame-
ters. The methylcytosine information was extracted using
bismark_methylation_extractor after deduplicating the du-
plicated reads.
We identified the MHBs using MONOD2 as described

[23]. Briefly, we split the bovine UMD3.1 genome into
non-overlapping “sequenceable and mappable” segments
(mean size: 2.9Mb and total size: 2.63Gb) using the
combined WGBS data from 28 sperm samples. The
mapped reads were converted into methylation haplo-
types within each mappable segment. We then calcu-
lated MHBs based on the correlation patterns of
methylation levels of neighboring CpG sites. Candidate
MHBs were defined as the genome regions in which the
r2 value of two adjacent CpG sites was no less than 0.5.
MHBs with more than 2 CpG sites were kept for subse-
quent analysis.

Enrichment analysis of methylation haplotype blocks for
functional genomic regions
Genomic elements such as exons, introns, 5’UTRs, 3’UTRs
and gene bodies were downloaded from Ensembl. Repeats
and CpG islands were collected using the UCSC Table
browser. Promoters were defined as the regions from up-
stream − 2 kb of TSS to TSS. Fifteen chromatin states were
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estimated using 4 histone marks (H3K4me3, H3K4me1,
H3K27ac, H3K27me3), ATAC-seq and CTCF-seq from
rumen epithelial primary cells in our previous study [25].
Fifteen chromatin states are active TSS, flanking active TSS,
strong transcription, weak transcription, enhancers, bivalent
enhancer etc., as shown in Roadmap project (https://egg2.
wustl.edu/roadmap/web_portal/chr_state_learning.
html#core_15state). Enrichment analysis was performed
using R package regioneR [24] (Permutation test: 1000) and
the mappable segments were used as the background. Ex-
pression QTL data including sQTL, geQTL and eeQTL in
blood and milk cells, liver and muscle were retrieved from
the previous study [28]. The summary data of selection sig-
natures differentiating dairy and beef cattle were obtained
from [30] using the 1000 Bull Genomes Project data
(Run6) [59]. All the genome coordinates were based on
UMD3.1/btau6.

Identification of highly variable methylated regions and
conserved methylated regions
Average methylation level of MHBs were calculated
using a weighted methylation level method as described
[60]. Methylation levels of regions which didn’t meet
5 × coverage for CpG sites were assigned to “NA”. We
filtered out the MHBs where more than 13 individuals
had methylation levels of “NA”. After filtering, 29,542
MHBs were kept for subsequent analysis. We then iden-
tified the HVMRs by overlapping the results of standard
deviation (SD)-based method and chi-square test
method. For the SD-based method, we firstly calculated
the median SD for the MHBs. We then compared the
SD of the methylation levels of each MHB to the median
SD using the chi-square test for variance. We used a sig-
nificant threshold of 0.01. To control for the family-wise
error rate, MHBs with a P ≤ 3.39 × 10−7 (Bonferroni cor-
rected) and SD larger than median level were identified
as candidate HVMRs. For the chi-square test method,
we treated each CpG result (methylated or unmethy-
lated) in an MHB as an individual observation as previ-
ously described [16]. Candidate HVMRs were identified
using the threshold of P ≤ 3.39 × 10−7. Regions identified
by both above methods were termed HVMRs. Hypo-
CMRs were regions identified using SD method, of
which P ≤ 3.39 × 10−7, SD was smaller than median level
and average methylation levels among individuals ≤0.2.
Hyper-CMRs were regions identified using SD method,
of which P ≤ 3.39 × 10−7, SD was smaller than median
level and average methylation levels among individuals
≥0.8.

Methylation association studies
We collected the individuals (n = 19) with similar
ages (1~2-year-old) to process the methylation asso-
ciation studies (Additional file 2: Table S4). We

found the methylation levels of MHBs tend to be dy-
namic among individuals. To increase the power of
the association studies, we conducted two steps of
quality control. We first filtered out the MHBs (n =
9,331) relatively conserved among individuals (P >
3.39 × 10-9, Bonferroni corrected) using the chi-
square test method. Then we excluded the MHBs
(n = 2,888) of which methylation levels in 19 individ-
uals had NA values. After filtering, we called these
inter-individual variable MHBs as VMRs. Finally, we
obtained 17,323 VMRs for association studies. Since
average methylation levels can be skewed, to avoid
undue influence from outliers, we transferred them
to the M-value using the β-value to M-value method
[37]. We also collected the phenotypes of 41 bovine
complex traits (PTA values of daughter’s traits and
EBV values of sire conception rate) for the individ-
uals. The statistics summary for these traits are
shown in Additional file 2: Table S5. Detailed trait
description and trait measurements can be found at
https://www.uscdcb.com/. To adjust the relationship
among the individuals, we conducted the principle
component analysis (PCA) using genotype data of
80 K SNP array. We included the first two compo-
nents (PC1 and PC2) into our association analyses.
We used linear regression models: y = PC1 + PC2 +
Meth; where y is the PTA values/estimated breeding
value of 41 traits, Meth is the M-value of VMRs.
After Bonferroni correction, we reported significant
VMRs (P < 2.89 × 10−6; 0.05/17323) and suggestive
significant VMRs (P < 5.77 × 10−5; 1/17323). All ana-
lyses were performed using R (3.5.3).

Gene expression across 91 bovine tissues
We obtained 723 transcriptomes of 91 bovine tissues, of
which 567 were collected from NCBI SRA/GEO data-
bases and 156 samples were generated locally. Acces-
sions for all datasets were SRP042639, GSE41637, SR
P102212, SRP122763, SRP067373, SRP111067, GSE108840,
GSE74076, ERP109534, GSE63509, SRP136662, GSE131849,
GSE128075 and GSE129416.

Identification of cis-meQTL
We tested the SNPs within 1Mb distance from VMRs in
association with methylation. A total of 79,294 probes
from 19 individuals were processed. After filtering out the
probes with only two genotypes and one of them con-
tained less than 3 individuals, we kept 68,921 probes for
subsequent analysis. Methylation levels of VMRs were
transferred from β values to M values. We performed as-
sociation analyses between cis-SNPs and M values of
VMRs using MatrixEQTL package [42]. SNPs with FDR <
= 0.2 were significant cis-meQTL for target VMRs.
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Other downstream bioinformatics analysis
We conducted gene functional annotation enrichments
using online software, DAVID v6.8 [61]. We used
HOMER [62] for motif discovery and prediction of TF
binding sites considering the MHB as background. We
conducted QTL enrichment analyses, with a hypergeo-
metric test, for hypo- and hyper-CMRs and HVMRs by
using cattle QTLdb (Release 37, Dec. 23, 2018). We arbi-
trarily considered genes overlapping or closest to the
lead SNP in each QTL as the candidate genes for a trait.
We only chose complex traits with more than five candi-
date genes to perform the enrichment analysis. P-value
were adjusted using the FDR method.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12864-019-6228-6.

Additional file 1: Figure S1. Correlation among individuals. (a) Pearson
correlation among individuals of known genome features. (b) Heatmap
of Pearson correlation in methylation haplotype blocks (MHBs) among
individuals. Figure S2. Comparison of MHBs detected in cattle and
human. (a) Functional enrichment of genes associated with cattle specific
MHB (CMHB) and human & cattle shared MHB (HCMHB). BP: Biological
Process; CC: Cellular Component. (b) Gene density (gene number per kb)
in CMHBs and HCMHBs. (c) Distribution of Phastcon scores of CMHBs and
HCMHBs. Figure S3. Characterization of highly variable methylated
regions (HVMRs), hypomethylated conserved regions (Hypo CMRs) and
hypermethylated conserved regions (Hyper CMRs). (a) Functional
enrichment of genes associated with Hypo CMRs. KEGG: Kyoto
Encyclopedia of Genes and Genomes; BP: Biological Process; CC: Cellular
Component. (b) Motif enrichments of HVMRs, Hypo CMRs and Hyper
CMRs. (c) Enrichment of human orthologous genes associated with
HVMRs, Hypo CMRs and Hyper CMRs in tissue-specific genes. Figure S4.
A trait-related VMR was associated with an SNP within 1 Mb distance. (a)
The UCSC browser of the epigenetic markers associated with CCR and
DPR as well as the methylation QTLs (meQTLs) associated with the trait-
related VMR (chr18: 56560453–56,560,476). (b) Association studies be-
tween the meQTL (rs41893756) and 35 bovine complex traits in 27, 214
Holstein bulls. PL and SCE were the most significant traits associated with
the meQTL. (c) Methylation levels of the trait-related VMR in two geno-
types of rs41893756.

Additional file 2: Table S1. Identified methylation haplotype blocks
(MHBs) in sperm DNA methylation. Table S2. Identified highly variable
methylated regions (HVMRs), hypomethylated conserved regions (Hypo
CMRs) and hypermethylated conserved regions (Hyper CMRs). Table S3.
Significant VMRs associated with bovine complex traits and the most
significant meQTL within 1 Mb of these VMRs. Some meQTL were within
the reproduction-related QTLs (https://www.animalgenome.org/cgi-bin/
QTLdb/BT/index). Table S4. Sperm sample description. Table S5. Statis-
tics summary of predicted transmitting ability (PTA) values and the accur-
acy for Bovine complex traits in association studies with VMRs.
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