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Pathological changes are associated with
shifts in the employment of synonymous
codons at the transcriptome level
Eugenio F. Fornasiero1,2* and Silvio O. Rizzoli1,2*

Abstract

Background: The usage of different synonymous codons reflects the genome organization and has been
connected to parameters such as mRNA abundance and protein folding. It is also been established that mutations
targeting specific synonymous codons can trigger disease.

Results: We performed a systematic meta-analysis of transcriptome results from 75 datasets representing 40 pathologies.
We found that a subset of codons was preferentially employed in abundant transcripts, while other codons were
preferentially found in low-abundance transcripts. By comparing control and pathological transcriptomes, we observed a
shift in the employment of synonymous codons for every analyzed disease. For example, cancerous tissue employed
preferentially A- or U-ending codons, shifting from G- or C-ending codons, which were preferred by control tissues. This
analysis was able to discriminate patients and controls with high specificity and sensitivity.

Conclusions: Here we show that the employment of specific synonymous codons, quantified at the whole transcriptome
level, changes profoundly in many diseases. We propose that the changes in codon employment offer a novel perspective
for disease studies, and could be used to design new diagnostic tools.

Keywords: Codon usage, mRNA abundance, Molecular diagnostics, Pathology meta-analysis

Background
The genetic code comprises 64 combinations of codons, 61
of which encode for 20 different amino acids. With the ex-
ception of methionine and tryptophan, all amino acids are
encoded by more than one synonymous codon. The typical
amino acid is encoded by an equal number of codons end-
ing in guanine or cytosine (GC3) and in adenine or uracil
(AU3). Although it is not entirely understood how the pref-
erential use of GC3 or AU3 codons arises [1, 2], it is be-
coming clear that this aspect influences several aspects of
cell biology including genome architecture [3], transcription
[4], mRNA abundance and stability [5, 6], translation effi-
ciency [7, 8], protein structure [9] and eventually protein
expression levels and protein stability [10–12]. Since all
these processes concur to the maintenance of protein
homeostasis [13], with the purpose of optimizing the effi-
ciency of gene architectures [14], codon employment can

be considered as a common regulatory mechanism that or-
chestrates cell and tissue performance [9].
All of these effects have come to be known under the

term “codon usage”, although this has classically been
employed to describe the codon effects on translation.
Codon usage has also been connected to disease, for more
than a decade, typically through changes on gene and/or
protein function that are induced by mutations that
change one specific codon for a synonymous one [15]. In
addition, more recent observations suggest that in certain
pathophysiological states some synonymous codons be-
come preferentially used, while others are preferentially
neglected, as observed during cellular stress or in neoplas-
tic transformations in humans [16, 17]. Such changes in
codon usage could be readily measured by differential ex-
pression analysis workflows that have been previously ap-
plied to yeast and nematodes [18], based on the many
different human transcriptomic databases that are cur-
rently available [19].
Thus, one could test relatively easily whether specific

codons are preferentially employed in certain disease
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states. To our knowledge, this idea is largely unexplored
for human disease and only few examples are present in
the literature [17, 20, 21]. We decided to systematically
apply it to 40 common health disorders. We first found
that human transcripts (mRNAs) show a well-defined bi-
modal distribution on the basis of the third nucleotide,
with peaks defined by AU3-rich transcripts and GC3-
rich transcripts. We found that the AU3-rich genes were
involved in proliferation, while the GC3-rich genes were
closely linked to cell differentiation and specialized func-
tion. This codon separation between proliferation and
differentiation genes was more prominent in mammals
than in other animals, and was strongest for human.
This separation suggested that diseases that trigger pro-
liferation, such as cancer, should increase the employ-
ment of AU3 codons in the transcriptome, while
reducing the GC3 employment. To test this, we ana-
lyzed the codon employment in several pathologies,
including myopathies, muscle dystrophies, cancer,
several infections, and other common health disor-
ders. The codon employment shift we predicted took
indeed place in all diseases, either by favoring the
employment of AU3 codons or by favoring the CG3
codons. The codon employment shift was strong
enough to serve as a diagnostic tool for several
studies.

Results
The distribution of GC3 and AU3 codons in transcripts
from humans and other organisms
To understand if the nature of the third nucleotide can
be subject to regulatory mechanisms, we initially took
into consideration some quantitative aspects of GC3 and
AU3 codons, as their frequency across different tran-
scripts. For this purpose, we analyzed 16,497 reviewed
protein coding regions from the annotated human gen-
ome (GRCh38) and we calculated the average GC3 com-
position of these transcripts. Human transcripts show a
wide range of different average GC3 percentages (from
~ 20% to ~ 98% with a median of 57.5%; Fig. 1a leftmost
panel). Overall, we observed a broad distribution, with
two peaks at around 70% GC3 and 30–40% GC3, indi-
cating that some transcripts are made mostly from AU3
codons, while others consist mostly of GC3 codons.
While these observations seem trivial, it is worth point-
ing out that not all organisms make such a broad use of
GC3 and AU3 codons. For example, the mouse and the
Drosophila codon sequences are strongly biased towards
GC3 codons, while yeast transcripts use mainly AU3 co-
dons (Fig. 1a, remaining panels).
A more extensive observation of the width of the GC3

codon distribution (calculated as full width at half max-
imum), shows a wide range of values among different

A

B

Fig. 1 Frequency distribution of GC3 codons in mRNAs for human, mouse, Drosophila and yeast, and width of the distribution for several
organisms. a. Frequency distributions of GC3 codons. We would like to point out that the distribution in human is wide, from genes composed
of mainly GC3 codons to genes composed mainly of AU3 codons (with proportionally low amounts of GC3 codons). This is not the case for
every organism. b. Width of the GC3 codon distribution, measured as full width at half maximum of histograms such as those in a, plotted for
each organism
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organisms (Fig. 1b). The width is extremely limited in yeast,
but is more extensive in larger vertebrates, and in particular
in placental mammals. This observation is particularly inter-
esting, since a wider spread would provide a larger dynamic
range for regulatory mechanisms that might rely on codon
employment for cellular modulation (see below).

GC3 codons tend to find themselves in the same genes,
and they tend to avoid AU3 codons
One essential aspect to clarify is if the different GC3 and
AU3 codons are distributed randomly across the differ-
ent coding mRNAs, or if their organization follows some
principles. For this reason, we analyzed the proportion
of all different synonymous GC3 and AU3 codons across
all human mRNAs (see two examples in Fig. 2a). This
analysis revealed that all GC3 codons correlate positively
with all other GC3 codons, and that they anti-correlate
with AU3 codons (Fig. 2b). Similarly, all AU3 codons
correlate positively among themselves, and anti-correlate
with all GC3 ending codons (Fig. 2b). This is true even
when these correlations are calculated after halving the
transcripts and comparing the codons from one half
with the codons from the second half (Fig. 2c).
This implies that the human genome has genes with set

fractions of GC3 codons: some transcripts have high amounts
of GC3 codons, for all amino acids, throughout their se-
quence, while on the contrary others have high amounts of
AU3 codons, for all amino acids in the sequences.

The genes rich in AU3 codons (Group 1, GP1) are involved
in cell growth and proliferation, while the genes rich in
GC3 codons (Group 2, GP2) are involved in differentiation
and specialized cell function
The fact that GC3 codons tend to be found in the same
genes, while avoiding AU3 codons, is far from the chance
distribution. In fact, the probability that this comes from a
random (chance) event is 1 in approximately 5.1 × 1019,
raising the possibility that this is under a positive selection
and has evolved to satisfy a specific purpose. To test this
hypothesis, we investigated how the percentages of GC3
or AU3 codons in human mRNAs relate to the nature of
the genes. In other words, we analyzed the cellular pro-
cesses that rely on genes with high proportions of GC3 or
AU3 codons. Using the WebGestalt 2017 gene set enrich-
ment analysis toolkit [22], we performed a gene set enrich-
ment analysis of transcripts ordered by their GC3 content
(see Methods for details). This allowed us to analyze the
transcripts ranked for their GC3 content, and to identify
the gene ontology (GO) “biological process” categories
that are significantly enriched. In simple terms, this re-
veals the biological processes that correlate with either
high or low GC3 content at the mRNA level. A summary
of the results is presented in Fig. 3, and is detailed in
Additional file 1.

Briefly, more than 60 GOs are identified with a significant
false discovery rate (FDR, calculated with the BH approach,
as detailed in the Methods) below 0.01, based on the ranked
percentage of GC3 (Fig. 3a and Additional file 1). These in-
clude several well-known GOs such as “chromosome
organization” (GO:0033044), “DNA replication” (GO:
0006260) and “cell fate commitment” (GO:0045165).
In principle, if the genes with different codon compo-

sitions would be randomly distributed, no GO classes
would be ever detected in this analysis. To exclude that
our findings are dictated by chance, we repeated the
same analysis after randomly changing the percentage of
the GC3 codons for an increasingly higher number of
coding sequences (Fig. 3b). Changing this value by as lit-
tle as 5% reduces by about half the number of GO classes
that are detected. A 15% change completely abolished the
detection of significantly different GO classes. An add-
itional analysis on the nature of the genes that were linked
to these GO classes also excluded the possibility that spe-
cific protein families with very high percentages of GC3 or
AU3 codons would bias our results. In fact, we found that
each of the GOs detected was composed of genes from a
large variety of families, and thus the influence of individ-
ual protein families is entirely negligible.
The enriched GOs that we have identified could be

subdivided in two groups: those that are composed by
genes significantly de-enriched in GC3 codons (note the
negative enrichment values in Fig. 3c, left panel) and
those that are composed by genes significantly enriched
in GC3 codons (positive enrichment values, right panel).
The first group, which we will refer to as Group 1 (GP1), con-
tains genes that are associated to significantly enriched GOs
and that have sequences rich in AU3 codons (approximately
600 such genes are shown in Additional file 2; typically ~ 40%
more AU3 codons than expected by chance). Vice versa, the
second group, which we will refer to as Group 2 (GP2), con-
tains genes associated to significantly enriched GOs that have
sequences that are substantially enriched in GC3 codons (ap-
proximately 650 genes in Additional file 2; see also Fig. 3d).
As expected, the relative synonymous codon usage (RSCU), a
common measure of codon bias [23], confirmed that GP1
transcripts prefer AU3 codons, while GP2 have a preference
for GC3 codons (see for details Additional file 3).
By a closer inspection of the GOs within the two

groups, it became clear that the GP1 and GP2 groups
were non-overlapping, and were to some extent func-
tionally opposed to each other (Fig. 3c). Briefly, GP1
genes are connected with processes that are important
for cell division and cell cycling, while GP2 genes medi-
ate cell differentiation and specialized functions that
arise in different organs (such as renal or nervous system
development). These findings are similar to what has
been reported by Gingold and collaborators [16], who
analyzed the tRNA pools and mRNA levels of cells that
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were undergoing either differentiation or proliferation
programs. Their analysis revealed that 82 genes induced
during differentiation and 92 genes induced during cell
division have a different and opposite codon usage, and
that the tRNA pools in these transitions have anticodons
that often match these two usages [16]. Although the lo-
gical approaches that we and Gingold et al. followed are
completely different, some of the GO categories identified

correspond, indicating that GC3 content is an important
indicator of a switch in cellular programs.
To investigate this impression further, we visualized all

the different GO categories in a node-graph, using the
REVIGO algorithm [24], as shown in Fig. 4. Most of the
connections were concentrated within each group, and
very few connections linked GP1 to GP2. There were on
average 0.25 connections for each GP1 term to a GP2

A

B C

Fig. 2 GC3 and AU3 codons are not distributed randomly across coding sequences. a. The proportion of the GC3 codons of alanine, calculated
as proportion of all codons for alanine in each coding sequence from the human genome plotted against the proportions of either the GC3 or
the AU3 codons of proline (blue) or glutamate (purple). Each point represents a different coding sequence (different gene). This implies that if a
sequence contains high percentages of GC3 codons for alanine, it will also tend to have high percentages of GC3 codons for either proline or
glutamate. b. Correlation coefficients resuming all the possible combinations of codons (all amino acids against each other). All GC3 codons
within a transcript positively correlate with all other GC3 codons. The same is true for AU3 codons. On the contrary, all GC3 codons anti-correlate
with all AU3 codons. c. The same analysis as in b, performed after splitting the coding sequences in halves, and calculating the correlations
between codons from one half, and codons from the other half. The observation from B remains valid even in these conditions
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term. To estimate whether the separation of the GP1
and GP2 genes is a stochastic process, we randomized
the assignation of the identified GOs to either of the two
groups, and we counted the number of interconnections
between the newly defined nodes. After randomization

there is a ~ 26-fold increase in the interconnection be-
tween the two groups (from 0.25 to 6.48 connections be-
tween each GP1 node and GP2 nodes). This implies that
the separation of the two groups of genes is not stochastic,
further reinforcing the idea that AU3 vs. GC3 content is

A

C

D

B

Fig. 3 The gene ontology analysis of transcripts ranked by their codon composition (proportion of GC3 or AU3 codons) identifies several
categories that can be divided in two subgroups of genes. a. Several significant GO categories can be identified on the basis of the percentages
of the GC3 codons of human mRNAs. For this analysis we used the WebGestalt 2017 gene set enrichment analysis toolkit [22]. See Methods for
details. b. Although the gene set enrichment analysis of WebGestalt discards results obtained by chance based on the FDR, we wanted to make
sure that the categories identified here truly depend on their GC3 codon percentages. For this purpose, we repeated the analysis after randomly
changing the percentage of the GC3 codons for each coding sequence, and we counted the number of gene ontology categories that were
identified with a false discovery rate (FDR) below 0.01, in at least 5 different replicates. Changing the average GC3 percentage by as little as 5%
already reduced the number of GO classes that were detected. A 15% change completely abolished the detection of GO categories. c. Some
exemplary GO categories are shown for Group 1 (GP1) and Group 2 (GP2) genes. The two groups of genes are connected with completely
different biological processes. GP1 genes are important for cell division and cell cycling, while GP2 genes mediate cell differentiation and
functions that arise in specialized organs. The Y-axis indicates the normalized gene enrichment in GC3 codons; high negative values refer to
genes containing high levels of AU3 codons. d. Difference in codon composition between the Group 1 genes (GP1), and the Group 2 (GP2)
genes. The GP1 genes are rich in AU3 codons while GP2 genes are rich in GC3 codons. The segmented line indicates the average percentage of
GC3 codons in all coding mRNAs of humans
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an important discriminator for cellular and tissue
function.
We thus conclude that the first set of genes, rich in AU3

codons, the “GP1 genes”, promote cell division, growth and
proliferation, while the second set, the “GP2 genes”, and
which are rich in GC3 codons, promote completely different
processes such as terminal cell differentiation and specialized
cell function. Moreover, the division of GP1 and GP2 classes
of genes and the underlying GO processes is not stochastic,
and the interconnections between the biological processes
suggests a rational organization.
As observed in Fig. 1b, some organisms do not show a

particularly wide range in the distribution of GC3 co-
dons (as for example yeast). From this perspective, it
was interesting to ask whether the GP1 and the GP2

genes from various organisms also have different codon
compositions (Additional file 4). The GP1 and GP2 genes
are most different in vertebrates, in particular in human
and other placental mammals, while other organisms
show a more limited difference, as for zebrafish and Dros-
ophila, or no difference at all, as for C. elegans, implying
that this phenomenon is particularly relevant in larger
mammals, and may be rooted in vertebrate evolution.

The genes rich in AU3 codons (GP1) are activated in
cancer, paralleled by a change in the employment of AU3
and CG3 codons
The opposing nature of the AU3-rich and GC3-rich
genes makes it probable that the usage of AU3 and GC3
codons changes in different physiological conditions.

Fig. 4 Node-graph visualization of the GO terms describing GP1 and GP2 genes, as determined by the REVIGO algorithm [24]. Larger dots
represent more relevant GO terms, characterized by relative enrichment. Note that GP1 and GP2 gene ontology categories are linked within each
of the two groups by a higher number of interconnections than across the two groups. This suggests that within GP1 and GP2 there are
similarities. Also note that, as detailed in the main test, upon randomization of the genes assigned to the two groups, there is a strong (~ 26 fold)
increase of number of interconnections between the two groups, implying that the separation of the two groups of genes is not stochastic. For a
list of these categories, see Additional file 1
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Differentiated cells should normally favor GC3 codons,
and produce larger mRNA amounts from genes contain-
ing such codons [16]. In contrast, proliferating cells in
diseases, such as cancer, should employ the GP1 genes,
and should therefore preferentially use AU3 codons. To
test whether this change takes place during pathophysio-
logical alterations, we performed the following analysis.
For each codon we verified whether it is employed in
the most abundant transcripts, or in the lower abun-
dance ones. To obtain a precise measure for the codon
employment, we calculated for each codon the Pearson
correlation coefficient between two vectors: 1) the % of
the particular codon in the composition of each tran-
script (for example, the AAA codon, which encodes ly-
sine, makes up between 0 and 18% of human transcripts,
averaging at ~ 2.5%), and 2) the abundance of each tran-
script. We termed this codon employment coefficient
(CEC; see Material and Methods for details). In simple
terms, this measure reflects how much a codon correlates
to the mRNA abundances in a specific dataset. As an ex-
ample, if a codon makes up a high percentage of the com-
position of the most abundant mRNAs, its CEC will be
high, while if it is used more often in the least abundant
mRNA its CEC will be low (negative). Inherently these
data demonstrate that a subset of codons was preferen-
tially employed in abundant transcripts (those with the
most positive CEC values), while other codons were pref-
erentially found in low-abundance transcripts (those with
the most negative CEC values). An analogous concept,
termed “codonome”, has been also introduced by Piovesan
and collaborators, for which the authors have developed a
free software to perform similar calculations [25].
We first calculated the CECs for 49 control subjects

from a large cancer study [26]. We than plotted the results
after dividing the patients in two groups. As expected, the
data from the two groups are very similar, and overlap on
the identity line (Fig. 5a). When a similar analysis is per-
formed between cancer patients and control subjects
(from several studies, as detailed in the figure legend), a
clear shift in the CEC values for most codons is visible.
The CEC values for all of the AU3 codons move above the
identity line (Fig. 5b), indicating that AU3 codons are in-
deed preferred in tumor cells, while the opposite takes
place for most of the GC3 codons.

The shift in codon employment appears to drive the
transcript abundance changes, rather than being a
consequence of these changes
One important aspect when considering this codon em-
ployment shift is to determine how it might arise. At least
two different scenarios can be envisaged. First, a direct sce-
nario: the codon employment shift is causal in nature, and,
for example, in cancer it drives the production of mRNAs
that contain more AU3 codons. It therefore favors the

increase of mRNAs from the GP1 genes (as represented on
the lower left side of Fig. 6a), and also the increase of
mRNAs from other genes that may be rich in AU3 codons.
The more a transcript is rich in AU3 codons, the more it
will be increased. On average, GP1 genes will be more fa-
vored than GP2 genes, since they have far more AU3 co-
dons. At the same time, these effects should also have a
“graded magnitude” within the two individual groups. Thus,
the “highly AU3-rich” transcripts in GP1 will be increased
more than the “less AU3-rich” transcripts in GP1. More-
over, all transcripts from GP2 that contain sizeable levels of
AU3 codons will also be favored – they will increase more
than the GP2 transcripts that contain virtually no AU3 co-
dons. It is important to notice that if one is to selectively
analyze AU3-rich transcripts, there is no a priori expect-
ation that their abundances correlate to the AU3 levels.
This means that if they are just expressed independent of
each other, there is no particular reason for which very
AU3-rich transcripts should be more abundant than mod-
erately AU3-rich transcripts. Conversely, if we analyze
only AU3-poor transcripts (GC3-rich ones), there is no
reason for very AU3-poor transcripts to have lower abun-
dances than moderately AU3-poor ones. If, however, the
codon employment shift is causal in nature, and the or-
ganism has somehow preferentially stabilized the mRNAs
in the “AU3 direction”, then all transcripts are affected.
Very AU3-rich transcripts will become more abundant
than moderately AU3-rich constructs, and very AU3-poor
transcripts will become less abundant than moderately
AU3-poor transcripts.
Second, an alternative scenario: the apparent change

in codon employment is just an effect of the specific in-
crease in the GP1 gene expression. We have shown that
several GP1 genes are connected to cell proliferation, cell div-
ision and cell cycling, all processes that are substantially over-
represented during cancer transformation. In this scenario, the
GP1 mRNA expression is increased by other causes, such as
specific regulatory mechanisms that recruit transcription fac-
tors that promote cancer progression. This would push the
overall codon employment in cancer cells toward the AU3
codon direction, simply because large amounts of A−/U-con-
taining mRNAs (from the GP1 genes) would be now abun-
dant in these cells. Note that in this scenario the levels of a
particular transcript are not directly linked to its AU3 content.
The “highly AU3-rich” transcripts in GP1 are not necessarily
increased more than the “less AU3-rich” ones. Similarly, the
AU3-richer transcripts in GP2 are not more abundant than
those that contain virtually no AU3 codons.
To differentiate between these two scenarios (depicted

in Fig. 6a) we can rely directly on the available human
pathology datasets. In the first, causal scenario, the shift
in codon employment should be measurable on any se-
lected set of genes: all genes, GP1 genes alone, GP2
genes alone, or any other set, and be only dependent on
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the relative AU3 percentages. In the second scenario, the
shift in codon employment can only be measured when
considering all genes, but is not visible when analyzing
for example GP1 genes in isolation. We used the mea-
sured results from Fig. 5 for this analysis resumed in Fig.
6b-d. In detail, we measured (left) or modeled (right) the
codon employment shift for all mRNAs or only in GP1
or in non-GP1 genes, taken in isolation. While the
model works for all the mRNAs, it no longer reproduces
the data when considering GP1 genes in isolation. In
simple terms this indicates that even within the GP1
genes, those that have higher AU3 levels are more in-
creased than those with lower AU3 levels (Fig. 6c). The
codon employment shift is even noticeable for genes
that are not part of the GP1 (Fig. 6d). Overall, these re-
sults indicate that the first scenario is the valid one.
We therefore conclude that cancer induces a global

shift in the codon employment that can be highlighted
by calculating the CEC. While in normal tissue the GC3
codons are preferred, in cancer the opposite takes place,
and the AU3 codons are preferred. As a result, the co-
hort of genes that we termed GP1 (involved in cell pro-
liferation ang growth) is favored by the global codon
employment shift that is occurring in this pathology.

The CEC analysis is robust and can be applied to any
mRNA abundance dataset
The previous section suggests that the expression of in-
dividual genes is modulated by the shift in the CECs. A
simple assumption would be that if the composition of a
transcript fits more closely to the new CECs, its expres-
sion would be favored upon the shift from the old (nor-
mal) to the new (pathological) CECs. For example, the
coding sequence of the gene encoding the neuronal exo-
cytosis protein synaptobrevin-2 (VAMP2), has 72.65%
GC3 codons, and just 26.5% AU3 codons. This sequence
“fits” better to the codon employment in normal tissue
(which favors GC3 codons) than to the codon employ-
ment in cancer tissue (which favors AU3 codons). In
principle, this gene should therefore be more strongly
expressed in normal tissue than in cancer tissue. This was
indeed the case in the cancer studies we analyzed.
To investigate this over all transcripts, rather than just for

synaptobrevin-2, we calculated the correlation of the tran-
script composition (expressed in the form of 61 codon per-
centages) to the CECs before and after disease onset. We
termed this “correlation of transcript composition to codon
employment”, or CorrCEC. For this measure, the codon
composition of each transcript, in %, was again determined

A B

Fig. 5 Confirming the existence of the codon employment shift from the available mRNA abundances, and by modeling. a. Schematic
representation of the two scenarios. On the left, 1st scenario: the shift in codon employment is causal in nature, and drives changes in the gene
expression. mRNAs richer in AU3 codons (lighter red color) get more expressed, irrespective of which gene group they belong to. In other words,
the shift drives the expression of all transcripts in proportion to their AU3 codon %. On the right, 2nd scenario the shift in codon employment is
an effect of the differential expression of GP1 genes. In this scenario GP1 genes are favored, independent of their respective AU3 codon %. b.
Measured and modeled codon employment shift, analyzed over all genes. When measured across all mRNAs, the codon employment shifts
towards the AU3 codons. A model following the second scenario also reproduces the codon employment shift measured in cancer. c. We
measured (left) or modeled (right) the codon employment shift only in GP1 genes, taken in isolation. The “effect” model no longer reproduces
the data. d. As in c but for all the other genes (not part of GP1). The 2nd scenario is again unable to reproduce the results, which implies that
the codon employment shift is probably causal in nature. The codon employment shift is expressed as average CEC change, in % of the initial
CEC values
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A

B C D

Fig. 6 Codon usage shift as a hallmark of human pathology. a-b. The Pearson correlation coefficients between the codon percentages in the
transcript composition and the respective transcript amounts (CECs) in healthy subjects and in cancer patients a. The graph indicates the means
± SEM for the codon coefficients for the mRNA amounts in control subjects. The SEMs are here often smaller than the symbol sizes. Data points
show the averages of 24 (X-axis) or 25 (Y-axis) controls subjects analyzed. The black line is the identity line, not a fit to the data, to illustrate the
fact that most codons are aligned on the identity line. The inset represents the codon employment shift, expressed as the average percentage
change of the CEC. For a detailed description of the CEC, please refer to Materials and Methods. The data analyzed for this panel has been
previously published [26]. b. Similar graph comparing healthy subjects with cancer patients. In cancer there is a clear shift in codon employment
in the A−/U-direction. All AU3 codons are above the identity line, while the GC3 codons are, correspondingly, below the identity line. The inset
summarizes this effect as the average codon employment shift (expressed in % of the control CECs, over the different AU3 or GC3 synonymous
codons). The data used for this panel is derived from several published cancer studies [27–34]. The error bars indicate the variation between
independent studies
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(consisting of 61 codon percentages). The codon compos-
ition was correlated to the codon CECs in controls and in
disease samples, for every single transcript. In simple terms,
this verifies whether the composition of the respective tran-
script more closely correlates to the preferred codon employ-
ment in disease or in the control situation (where negative
values indicate a correlation to the preferred codon employ-
ment in the control situation, while positive values show a
correlation to the disease situation). We applied this analysis
to the cancer study mentioned above, and we found, unsur-
prisingly, that the GO categories of GP1 were favored, while
GP2 genes were disfavored. Importantly, this analysis deter-
mined that the codon employment shift was not a binary
process. The shift could be stronger, or less strong, according
to the type of cancer and the stage, as indicated in Fig. 7a.
The actual genes and GOs that were determined as fa-

vored overlapped broadly with the genes for which the
mRNA expression was increased, as determined by direct
mRNA abundancemeasurements (Fig. 7b-c, Additional files 5
and 6). However, the CorrCEC analysis detected more gene
groups than the conventional differential expression, with
higher sensitivity (see also the Additional files 8, 9, 10, 11, 12,
13, 14, 15, 16, 17 and 18).
The difference in sensitivity can be due to two possibilities:

1) the effects of the codon employment shift are counter-
acted by other cellular mechanisms, and thus are not de-
tected by expression analyses; 2) the experimental mRNA
readings are too noisy (variable) to reveal some of the
changes in expression, which are nonetheless predicted by
CorrCEC. This analysis relies on the measurement of codon
correlations to mRNA abundance, across thousands of
genes, and therefore has an extremely limited noise from pa-
tient to patient (Fig. 5a). As discussed later, this analysis is lit-
tle affected by randomly changing the mRNA readings for
the individual genes by a factor of up to 10-fold (see for de-
tails Fig. 9b, below). The direct mRNA measurements are far
less noise-resistant, since each gene is read and treated inde-
pendently. Therefore, it is not surprising that CorrCEC can
detect more effects that would be missing, due to noise, in
the measured data set.

The codon employment shift is a common signature for a
multitude of other human diseases, and can be used to
generate diagnostic procedures
We followed upon the previous cancer observations by
applying the same analysis for many diseases. We present
multiple cases in Fig. 8, based on published data from sev-
eral studies (see Additional file 7; the studies used in this
figure belong to the first 70 lines of the table). Each dis-
ease induced a slightly different codon employment shift,
which we measured across all genes, using CorrCEC.
Then, using the same GO analysis presented for Fig. 7b,
we determined the GO protein categories that would be
favored by the codon employment shift, and those that

would be disfavored. This provided a gene ontology signa-
ture that resembles a barcode for each disease (Fig. 8a).
To summarize these observations, we also calculated

the codon employment shift between the different dis-
eases and the controls, in the same fashion we did for
the insets of Fig. 5. The diseases taken into consideration
shift the codon employment in different directions, by
different magnitudes (Fig. 8b). As an example, multiple
sclerosis (MS) has a small but significant shift for the
codon employment in the AU3 codon direction (inset in
Fig. 8b), while Parkinson’s disease and amyotrophic lat-
eral sclerosis (ALS) in the gray matter correlate to a
codon employment shift towards the GC3 codon direc-
tion, probably in the effort of promoting GP2 genes, and
thereby inducing the differentiation of neuronal precur-
sors (for a more detailed discussion about the codon
employment shift in different diseases see Add-
itional files 8, 9, 10, 11, 12, 13, 14, 15, 16 and 17). The
shift in codon employment observed in pathology might
reflect in some cases the use of the codon employment
as a pathological mechanism (as observed in cancer),
and in other cases the physiological response put in
place by the organism to fight the pathological changes.
A prominent example is the shift in the proliferation
(AU3) direction for young (< 10 years) Duchenne dys-
trophy patients, in which the myocytes have to con-
stantly multiply to replace damaged muscle fibers. This
is a mechanism that compensates for muscle degener-
ation at these ages (see Additional file 12).
To test whether diagnostics could be based on these obser-

vations, we returned to a comprehensive cancer study, which
was already used in Figs. 5 and 7 [27]. We separated the can-
cer patients and the controls in training groups (80% of the
data) and testing groups (20% of the data), and then per-
formed the CorrCEC analysis for all patients in the training
groups. We used the training groups to generate a CorrCEC
cutoff that separated the cancer patients from the controls,
and we measured the accuracy of this cutoff in the testing
groups. The procedure was repeated 1000 times, randomiz-
ing the training and testing groups. The results are shown in
Fig. 9a. We measured the sensitivity of the diagnostic (de-
fined as the percentage of cancer patients that were correctly
identified) and also its specificity (defined as the percentage
of controls that were correctly identified). Applying CorrCEC
across all genes, both of these values were around 75–80%.
However, a selective analysis of the GP1 genes resulted in a
far higher sensitivity and specificity – over 99.5%.
We then repeated this second analysis, based on Corr-

CEC applied on GP1 genes, for the disease that provided
the smallest codon employment shift in Fig. 8, multiple
sclerosis, which is also a disease that has been notori-
ously difficult to diagnose. We obtained sensitivity and
specificity values of ~ 85%, which is the typical accept-
able medical cutoff for diagnostics.
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Fig. 7 Codon employment shift as a commonality of pathological changes. a. The behavior of GP1 genes in different stages of cancer. The
graphs indicate that GP1 genes are associated to early cancer stages, and that they become even more strongly favored as the cancer
progresses, although this tails off in the last metastasis stages, when the cancer tissue attains its maximal development. The symbols show the
average differences in CEC in cancer versus controls for the GP1 genes, in several stages of non-small cell lung cancer [27] or colorectal cancer
[28], normalized to the maximal change observed in the respective study. b-c. Gene ontology semantic signatures of differential expression b
and CorrCEC analysis c. Red spots indicate significantly enriched “biological process” GO categories, while blue spots indicate de-enriched
categories. The symbol size is proportional to the magnitude of the change. The significant enrichment here refers to GO categories containing
significant amounts of genes whose sequence codon compositions correlate better to the codon employment observed in disease; de-
enrichment refers to GO categories containing genes whose codon compositions anti-correlate to the codon employment observed in disease.
We plotted the significantly enriched GO categories using their X- and Y- semantic coordinates to represent their semantic signature (Additional
file 6; [24]). For more detailed information about these graphs see Additional file 5 and the examples detailed in Additional files 8, 9, 10, 11, 12,
13, 14, 15, 16 and 17. The inset on the right represents a scatter plot of the enrichment scores for the two analyses, and confirms the broad
overlap between the codon employment-predicted expression and the actual mRNA expression in cancer tissue
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Fig. 8 (See legend on next page.)
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We also confirmed the reliability of our CorrCEC ana-
lysis across multiple studies. Expression analysis is
known to fail when applied across multiple studies. To
this purpose, we applied CorrCEC analysis to 5 types of
cancer (lung cancer, colorectal adenoma, carcinoma and
metastases, and brain tumors), from four independent
studies. In detail, we trained a CorrCEC cutoff (again on
GP1 genes) on the basis of the difference between nor-
mal human tissues [36] and cancer cells [37], and then
applied this cutoff to different studies [27–30]. The
resulting sensitivity and specificity values averaged ~ 84–
87% (Fig. 9a, rightmost panel).
Finally, we set out to test whether these diagnostics re-

quire extremely accurate mRNA data, obtained through
expensive high-quality analyses, or whether substantially
cheaper, but more inaccurate readings, such as those ob-
tained with Oxford Nanopore devices or “Human ampli-
come” next generation sequencing type of
measurements with very low coverage (< 0.3M reads),
would suffice. Our analysis only requires an understand-
ing of the overall shift in codon employment, and there-
fore should be little affected by the noise of inaccurate
recordings. This was indeed the case. Changing all
mRNA abundance measurements randomly by up to 10-
fold still allowed the diagnostic to remain within the
85% sensitivity and specificity limit required for clinical
studies (Fig. 9b).

Discussion
Here, we used a systems medicine approach to study in
detail mRNA transcript composition in terms of the
third (wobble) nucleotide. We combined the analysis of
wobble codon usage in humans and other organisms to
the study of 40 human pathologies, for which extensive
transcriptional datasets have been published.
A first result is that a group of genes significantly

enriched in AU3 (that we named GP1) are connected to
proliferative processes such as cell division and DNA
metabolism. On the contrary, genes enriched in GC3
(named group GP2) correlate with a cellular differenti-
ation program, which corresponds to terminal specifica-
tion into organs and tissues. These finding are only in
part new, since it was previously shown by Gingold and
collaborators that the GC3 usage in a selected group of

differentiation or cell division genes is polarized [16].
Our analysis, which revealed many more genes, started
from a completely different set of data (the entire tran-
scriptome), and was thus unbiased, since we were not
specifically looking into a specific subset of genes. For
this reason, the GO categories that we identify, although
in part overlapping with the genes previously reported,
extend widely the number of processes that are linked to
wobble nucleotides.
This unexpected genome architecture is unlikely to

have been reached through random processes, as noted
in Results. It has been proposed that it arises as a side
effect of a non-adaptive GC-biased gene conversion,
which happens during meiotic recombination, and which
would maintain the AU3-rich bias of proliferation genes,
but without any functional benefit for either prolifera-
tion or differentiation genes and processes [2]. In con-
trast, our results suggest that the GC3/AU3 bias has a
role in promoting the expression of specific genes in
particular pathophysiological conditions (Fig. 6). For this
reason, while we agree that non-adaptive GC-biased
gene conversion might concur for the generation of
these differences, we cannot exclude that additional se-
lective pressures have acted to optimize the translation
of particular sets of genes in distinct cellular states. For
example, in cancer it has been observed that specific
tRNA genes are causally linked with pathology, and that
their modulation interferes with tumorigenesis [17],
which is fully in line with the preferential employment
of particular codons in cancer. Finally, multiple observa-
tions from the literature suggest that the codon usage
bias is profoundly linked with numerous other regula-
tory steps, including maintenance of protein homeostasis
and stability. Thus, it is very unlikely that a profound
codon usage difference (such as that between GP1 and
GP2) has no functional consequences. At the same time,
this implies that a variety of multidisciplinary approaches
may be necessary in order to understand this issue
thoroughly.
One obvious fallacy of our work is that it does not

provide a molecular mechanism for the shift in the
codon employment in health and disease. As indi-
cated in Fig. 6, it is apparent that the shift is not
simply due to the stronger expression of particular

(See figure on previous page.)
Fig. 8 Applying the analysis of the codon employment shift to several diseases. a. Graphic depiction of the favored or disfavored GO categories
in multiple diseases (see Additional file 7 for detailed references of the datasets taken into consideration). The Y- axis indicates different diseases,
while the X-axis indicates different GO categories that were significantly correlated to the employment shift (red) or anti-correlated (blue) in at
least 10 different diseases. The different colors indicate the normalized enrichment score, calculated as in Fig. 7. The first 35 GO groups belong to
the GP1 genes. Several more detailed examples are included in Additional files 8, 9, 10, 11, 12, 13, 14, 15, 16 and 17. b. Codon employment shift
in the different diseases, calculated as for the insets of Fig. 6A-B. The inset highlights the smallest change measured, in multiple sclerosis (MS).
ALS = amyotrophic lateral sclerosis. Cardiomyopathy PVB19 = cardiac inflammation and damage following parvovirus infection. We only employed
in this figure studies that also provided sufficient numbers of control (non-disease) patients
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sets of genes. In contrast, the more the composition
of a transcript aligned with the codon employment,
the more that transcript was expressed, in line with
the hypothesis that the codon employment shift is a
cause of the change in gene expression profiles (al-
beit probably not the only cause). We cannot offer
here a mechanism for how this shift would cause
differential gene expression. A multitude of mecha-
nisms could be involved, ranging from changes in
the stability of transcripts rich in particular codons
[38, 39] to changes at the chromatin level [40].
Testing the various mechanisms would imply a sub-
stantial effort, which is beyond the purpose of this
work.

Conclusions
Our approach provides a useful workflow for the mo-
lecular characterization of several human pathological
states, and enables a simple and reliable analysis of
mRNA datasets for diagnostic purposes. The CorrCEC
analysis, which is based on measuring the codon coeffi-
cients to the mRNA abundance, can be used to discrim-
inate disease patients from controls, and, since it is
based on a global change over thousands of genes, it is
far more noise-resistant than other approaches, and may
perhaps be extended to low-quality patient data. For this
reason, this analysis would enable approaches based on
inexpensive mRNA readings, which would be within the
budget of most clinics.

A

B

Fig. 9 The sensitivity and specificity of diagnostics based on the codon employment shift. a. We used transcriptomics data from the following
studies: a lung cancer study for the first two graphs [27]; a multiple sclerosis study for the third graph [35]; data for the multiple cancer studies for
the fourth graph [27–30]. Please refer to the main text for more information on how the diagnostic approach was designed. The bars show the
sensitivity and specificity (as defined in medical diagnosis where the sensitivity is the ability of a test to properly recognize patients with the
disease and the specificity is the ability of the test to properly recognize those free from the disease). b. The sensitivity (black) and the specificity
(red) of the lung cancer diagnosis under conditions of randomized mRNA abundances. The mRNA abundance values in patients and controls
were randomly changed, up or down, by a fold factor indicated on the X-axis. The same diagnostic analysis as in Fig. 9a then followed. Changing
randomly all measurements by up to 10-fold leaves the precision of the diagnostics within the clinically accepted limits (85%)
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However, this analysis should not be applied separated
from other clinical investigations. The codon employment
shift alone may not be sufficient to indicate the nature of
the disease. Several disease profiles appear similar (Fig. 8),
and it is possible that the diseases cannot be differentiated
by such profiles alone (something that should be tested in
multi-disease studies with even larger patient numbers).
To correct for this, it will be necessary to follow the ap-
propriate clinical practice, and to compare the appropriate
samples between healthy (control) and disease-suspected
patients. This procedure is, for example, routinely
employed during biopsy investigations, and should be suf-
ficient to differentiate between most of the diseases. To
exemplify this further, although the codon employment
shifts may be similar for lung cancer cells and Duchenne
dystrophy cells, the two diseases are immediately sepa-
rated in clinical practice, by investigating either lung nod-
ules, as customary when lung cancer is suspected, or
muscle fibers, as for suspected Duchenne dystrophy.
An additional advantage of CorrCEC is that it reveals

the genes that may be especially promoted during dis-
ease, independent from the transcriptome measurements
for the particular genes. Genes that are transcribed at
low levels, and whose expression changes are indistin-
guishable from noise, but which may still be important
in disease, might be identified in this manner.
Finally, our work offers new arguments in the current

dispute over the suitability of animal models for human
disease research. Since the differences in GC3 codon em-
ployment are very limited in mouse, and virtually absent
in zebrafish and invertebrates, we suggest that human
samples, including iPS cells and iPS-derived tissues, could
be essential for the correct understanding of some path-
ologies, including cancer and neurodegenerative diseases.

Methods
The aim of this study was 1) To provide a descriptive
characterization of AU3 and GC3 usage in vertebrate
(mammalian) genomes and 2) Study the possibility that
shifts in the employment of synonymous codons can be
used for predicting and possibly understand pathological
alterations in humans. This study stems from previous
observations where we found that codon usage is linked
to protein stability [11, 12].

External datasets
All the human external datasets used in this work
are summarized in Additional file 7. All mRNA se-
quences used for calculating the with and distribu-
tion of GC3 were downloaded from Ensembl [41],
and the latest updated assembly for each organisms
was used.

Data analysis
All analyses were performed with custom-build
MATLAB scripts (MathWorks). All scripts are available
from the authors upon reasonable request.

Calculation of AU3 and GC3, RSCU and correlation
calculations
The average content of each transcript, in codon per-
centages was calculated for all codons, after converting
the sequences obtained from Ensembl BioMart into co-
dons (Fig. 1). The correlation between different codons
(Fig. 2) was calculated from this dataset, by simply
cross-correlating the values for the different codons,
across all transcripts. For Fig. 2c, the sequences were
split in halves, and this analysis was repeated.
The relative synonymous codon usage (RSCU), a com-

mon measure of codon bias, was calculated on the GP1
and GP2 genes summarized in Additional file 2 as previ-
ously described [23].
The CEC was calculated as follows. For each codon we

determined the % it represents of the composition of
each transcript. We then correlated this set of values
(consisting of 61 codon percentages) with the abundance
of the transcripts. The resulting Pearson’s correlation co-
efficient represents the CEC. In simple terms, this meas-
ure reflects how much a codon correlates to the mRNA
abundances in a specific dataset. As an example, if a
codon makes up a high percentage of the composition
of the most abundant mRNAs, its CEC will be high,
while if it is used more often in the least abundant
mRNA its CEC will be low (negative).
The “correlation of transcript composition to codon

employment”, or CorrCEC (Figs. 7 and 8), was deter-
mined as follows. The codon composition of each tran-
script, in %, was determined (consisting of 61 codon
percentages). The codon composition was correlated
(for every single transcript) to the codon CECs in con-
trol and in disease samples. In simple terms, this verifies
whether the composition of the respective transcript
more closely correlates to the preferred codon employ-
ment in the disease or in the control situation. Negative
CorrCEC values indicate a correlation to the preferred
codon employment in the control situation, while posi-
tive values show a correlation to the disease situation.
Overall, the CorrCEC can be used to pinpoint genes
whose composition (in terms of codons) mirrors the
codon usage in disease or in the control situation.
For the diagnostics approach (Fig. 9), we separated the

patients from the studies mentioned in the main text
into training groups (80% of the data) and testing groups
(20% of the data). We then performed the CEC analysis
for all patients in the training groups. We used the train-
ing groups to measure the average CEC shift between
the cancer patients and the controls, and we obtained a
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CEC shift cutoff that would separate well between the
groups of patients. We then measured the accuracy of
this cutoff in the testing groups. The procedure was re-
peated 1000 times, randomizing the training and testing
groups. The values in Fig. 9 report the accuracy deter-
mined in the testing groups. We trained the CEC shift
cutoff on the basis of the difference between normal hu-
man tissues [36] and cancer cells [37], and then applied
this cutoff to different cancer studies.

Gene ontology (GO) categorization analysis and
visualization
For the GO enrichment analysis introduced in Fig. 3 we used
the WebGestalt 2017 gene set enrichment analysis toolkit
[22]. In detail we first identified the transcripts corresponding
to all reviewed human proteins form the Uniprot database
[42]. This allowed us to avoid the influence from badly GO-
annotated transcripts (whose proteins are also not reviewed).
This selection included 19′007 transcripts (mRNAs) for
which we calculated the GC3 content. We than normalized
the GC3 content by the average GC3 content of all these
transcripts (58.30) and we calculated the log2 ratio for all
these transcripts with respect to this average. We then used
the id of each transcript and the log2 ratio as an input for the
Gene Set Enrichment Analysis (GSEA) on WebGestalt look-
ing into the functional database: “geneontology>Biological_
Process_noRedundant”.
This analysis revealed more than 60 GO identities

whose false discovery rate (FDR) was significant (< 0.01),
as detailed in Additional file 1. The FDR was obtained in
the GSEA analysis through the default mode (BH) and
thus calculated by the software with the Benjamini
and Hochberg approach [43]". For the node-graph
visualization of GO categories we relied on the REVIGO
algorithm [24] and used the standard visualization of all
the GO categories identified as significant in our Web-
Gestalt analysis to map them on the x and y semantic
space. The GOs distributed on the coordinates used in
the representation of the semantic space from Add-
itional file 5 and the final values of the x and y coordi-
nates for each of the mapped GOs are available in
Additional file 6.

Additional files

Additional file 1: Table S1. Gene ontology categories significantly
enriched in GP1 and GP2 transcript groups. (XLSX 16 kb)

Additional file 2: Table S2. List of human transcripts significantly
enriched in either AU3 (GP1) or GC3 (GP2) codons in the GO analysis (see
Methods for details). (XLSX 111 kb)

Additional file 3: Figure S1. Relative synonymous codon usage (RSCU)
calculated in GP1 transcripts (A) and in GP2 transcripts (B) as previously
described [23]. The analysis confirms that GP1 transcripts are enriched for
AU3 codons, while GP2 preferentially use GC3 codons. (EPS 1306 kb)

Additional file 4: Figure S2. Contents of GC3 codons in GP1 or GP2
genes for several organisms. GP1 genes are rich in AU3 codons while
GP2 are rich in GC3 codons with few small exceptions. Differences are
more pronounced in the larger placental mammals. (EPS 851 kb)

Additional file 5: Figure S3. Semantic signatures for gene ontology
(GO) molecular processes, representing the codon employment shift for
GP1 and GP2 genes. The most prominent semantic areas have been
grouped. A. Representation of a situation where GP1 genes are favored
and GP2 are disfavored by the codon employment, as in cancer. B.
Representation of the opposite situation where GP1 genes are disfavored
and GP2 are favored by the codon employment, as in Parkinson’s
disease. (EPS 2302 kb)

Additional file 6: Table S3. Semantic coordinates of the GOs
represented in the graphic depiction of the favored or disfavored GO
categories in multiple diseases (Detailed list of coordinates). (XLSX 41 kb)

Additional file 7: Table S4. Published data from multiple studies
analyzed in this work (References for the studies used in this work). (XLSX
16 kb)

Additional file 8: Figure S4. Lung cancer and Helicobacter−positive
Gastric epithelium. The lung cancer A. is accompanied by a strong
increase in the Group 1 genes, which is visible in both the measured
differential expression of all genes (left) and in the codon employment
shift measurement (right). The opposite phenotype is takes place for the
gastric epithelium B. upon Helicobacter infection, suggesting that the
epithelium is driven to differentiation, rather than proliferation (at least at
this initial stage of the disease, before induction of malignant
development). For an explanation of the figure and of the analysis see
Additional file 5. (EPS 3438 kb)

Additional file 9: Figure S5. Alzheimer’s disease and Parkinson’s
disease. The brain in Alzheimer’s disease A. appears to be dominated by
the increased expression of GP1 genes, which is in line with the
inflammation and microglia proliferation known to take place in this
condition. Interestingly, the cases of Parkinson’s disease that we studied
B. point to the opposite development, which is more in line with an
attempt of generating differentiated cells from non-specialized precur-
sors. This latter phenotype is virtually identical to that observed in the
aged brain (70–104 years old). (EPS 3280 kb)

Additional file 10: Figure S6. Spinal cord gray matter and muscle of
ALS patients. In the case of ALS, the gray matter A. shows a cell
differentiation phenotype, akin to the one observed in the aged brain or
in Parkinson’s disease. In contrast, in the muscle B. this phenotype is
reversed, with the GP1 genes favored, resulting in cell proliferation. This is
in line with the muscle cell division and muscle fiber regeneration that is
observed in ALS. Panel A. also showcases the power of the CorrCEC
analysis, which detects many significantly favored or disfavored gene
groups, although the analysis based on differential gene expression alone
is not sensitive enough for this. This is most likely due to the fact that a
difficult tissue is analyzed in A., cells laser-dissected from human tissue,
which provides more error-prone measurements than, for example, the
muscle tissue from panel B. (EPS 2383 kb)

Additional file 11: Figure S7. Multiple sclerosis and Pancreas of
diabetic patients. Multiple sclerosis A. induces the growth and
proliferation (GP1 genes probably favored) of blood immune cells. This
phenotype is difficult to detect using differential gene expression, in line
with the fact that multiple sclerosis has been very difficult to diagnose in
the past. Similarly, diabetes B. effects are difficult to detect by differential
gene expression, but the codon employment shift reveals that some GP2
genes are strongly favored, suggesting that more cells tend to
differentiate in the diabetes pancreas than in the normal pancreas. (EPS
2675 kb)

Additional file 12: Figure S8. Duchenne muscular dystrophy and Limb
−girdle muscular dystrophy. These two neuromuscular diseases are
caused by mutations in different muscle proteins. The Duchenne
dystrophy, caused by mutations in the dystrophin gene, does not present
a phenotype before the age of 10, since the muscle cells strongly
proliferate, and dying muscle fibers are quickly replaced. This is evident in
panel A, when using CorrCEC. However, almost nothing is picked up by
the direct analysis of differential mRNA expression, in line with the fact
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that the muscles of a Duchenne dystrophy patient under the age of 10
show virtually no phenotype. It is only when we investigate how the
cells adjust their codon employment to counteract the disease, and to
prevent the phenotype from developing, that significant changes are
seen (right panel). The opposite phenotype (increased differentiation of
cellular precursors) takes place in limb-girdle muscular dystrophy B,
shown here from adults in which the cell proliferation is no longer as po-
tent as in A. Once more, the differential expression analysis is unable to
reveal substantial changes. (EPS 2343 kb)

Additional file 13: Figure S9. Brain frontal cortex and liver of alcohol
abuse patients. Another example of codon employment shift favoring
differentiation or proliferation in different tissues can be found by
investigating the effects of alcoholism in the cortex A or in the liver B.
GP1 (proliferation) is favored in the liver, while GP2 (differentiation) is
favored in the cortex. A simple interpretation is that the damaging
effects of alcohol abuse lead to proliferation and growth of the liver, to
improve the detoxification of the organism. This mechanism is not
available for the brain, which therefore needs to resort to the same
mechanism as in the aged brain, or in Parkinson’s disease: the
differentiation of (presumably) precursor cells. (EPS 2666 kb)

Additional file 14: Figure S10. Polycystic kidney disease and blood of
Tuberculosis patients. Kidney failure in polycystic kidney disease A. is
associated with cellular growth, resulting in cysts. Remarkably, medium-
size cysts seem to be dominated by a stable form of the cells, which are
driven to differentiation, and not to further growth. The opposite is seen
in the blood of tuberculosis patients B, due to the increased activation,
and presumably proliferation, of immune cells. (EPS 2730 kb)

Additional file 15: Figure S11. Blood from sepsis survivor and non-
survivor patients. An interesting difference has been observed when
comparing sepsis patients. Survivors A. appear to have their immune cells
dominated by an activation and/or differentiation phenotype (possibly in
response to the sepsis), while those from non-survivors B. seem to have
already shut off most genes. (EPS 2036 kb)

Additional file 16: Figure S12. HIV-infected CD4+ and CD8+ cells. Both
CD4+ A. and CD8+ B. cells are induced to proliferate in HIV-infected pa-
tients (GP1 is favored). Interestingly, in both cases the simple differential
analysis of genes expression only reveals one subset of genes – the ones
that are favored (the ones whose expression increases). The sensitivity of
gene expression analyses is not sufficient to reveal that large numbers of
GP2 genes are disfavored. (EPS 2778 kb)

Additional file 17: Figure S13. Cardiomyopathy inflammation and
effect of smoking on placentas. Cell proliferation is also triggered by
parvovirus infections of the heart, which lead to cardiomyopathy
inflammation A. This presumably serves as a compensatory mechanism,
to replace the damaged cardiomyocytes. A similar effect (GP1 genes
enhanced, GP2 genes depressed) is found in the placenta of pregnant
heavy smokers B. Importantly, the genes responsible for cell
differentiation to neuronal phenotypes, and for the specialized organ
functions, seem to be disfavored. The potential effects could be severe
for brain development, should this effect also take place in the embryo.
(EPS 2518 kb)

Additional file 18: Supplementary Text. File detailing the comments of
the reviewers and the answers of the authors. (PDF 90 kb)
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