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Genome analysis and pleiotropy
assessment using causal networks with loss
of function mutation and metabolomics
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Abstract

Background: Many genome-wide association studies have detected genomic regions associated with traits, yet
understanding the functional causes of association often remains elusive. Utilizing systems approaches and focusing
on intermediate molecular phenotypes might facilitate biologic understanding.

Results: The availability of exome sequencing of two populations of African-Americans and European-Americans
from the Atherosclerosis Risk in Communities study allowed us to investigate the effects of annotated loss-of-
function (LoF) mutations on 122 serum metabolites. To assess the findings, we built metabolomic causal networks
for each population separately and utilized structural equation modeling. We then validated our findings with a set
of independent samples. By use of methods based on concepts of Mendelian randomization of genetic variants, we
showed that some of the affected metabolites are risk predictors in the causal pathway of disease. For example, LoF
mutations in the gene KIAA1755 were identified to elevate the levels of eicosapentaenoate (p-value = 5E-14), an
essential fatty acid clinically identified to increase essential hypertension. We showed that this gene is in the
pathway to triglycerides, where both triglycerides and essential hypertension are risk factors of metabolomic
disorder and heart attack. We also identified that the gene CLDN17, harboring loss-of-function mutations, had
pleiotropic actions on metabolites from amino acid and lipid pathways.

Conclusion: Using systems biology approaches for the analysis of metabolomics and genetic data, we integrated
several biological processes, which lead to findings that may functionally connect genetic variants with complex
diseases.

Keywords: Loss of function, Genome analysis, Underlying metabolomic relationship, Causal network in
observational study, Structural equation modeling, Mendelian randomization principles, Instrumental variable, The
G-DAG algorithm

Background
Lack of knowledge of underlying biological processes in
genome wide association studies and disease endpoints
has led to a focus on intermediate phenotypes, such as
metabolites. Metabolomic profiles are integrated read-
outs of many biological processes and can functionally
connect genetic variants to disease risk factors and com-
plex disease endpoints [1–3]. Furthermore, metabolo-
mics can be used to screen for early disease-related

changes [4] and assess effects of external stimuli on liv-
ing cells [5]. Considering metabolites as an intermediate
molecular mediator between genes and clinical end-
points offers potential to illuminate mechanisms under-
lying a specific single nucleotide polymorphism (SNP)/
gene, as well strengthen the association of a gene with
the intermediate trait [6, 7]. Thus, metabolite profiles
are ideal intermediate biochemical phenotypes for gen-
ome wide association studies (GWAS) [6, 8–10] and
whole genome sequencing studies [11, 12].
Examining metabolomic relationships facilitates under-

standing of functional links between genetic variants and
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disease endpoints, which goes beyond traditional associ-
ation analyses that examine one variable at a time. Ana-
lyses that consider the joint effects of multiple traits can
have greater statistical power than single-trait analyses
of genomic association studies [13–15]. In addition,
assigning probabilistic models to expression levels of a
group of genes (usually within one pathway) enables de-
velopment of more accurate classifiers and clusters [16–
19]. For high-dimensional metabolomic data, systems
approaches based on Mendelian randomization princi-
ples can provide an even more comprehensive analysis.
To advance a deeper understanding of how genes and
metabolites might be interconnected, Yazdani et al.
(2016) introduced and applied systems biology ap-
proaches that can reveal the underlying relationships
and provide insights in metabolomics system [20, 21].
We capitalize on this prior work and introduce an ap-
proach to improve genome analysis and assess pleio-
tropic gene actions.
We investigated the effects of genetic variants on the

human metabolome in the populations of white and
non-white from the Atherosclerosis Risk in Communi-
ties (ARIC) study [22]. In particular, we focus on
loss-of-function (LoF) variants that are predicted to re-
sult in a non-viable transcript or a greatly truncated pro-
tein product [23]. To analyze the LoF-metabolite
relationships, we utilized two approaches: 1) a single
variant test, and 2) a convex-concave rare variant selec-
tion (CCRS) approach [11, 24]. This latter approach se-
lects genetic variants through a penalization linear
model, which assumes sparsity in genomic associations
while considering the local linkage disequilibrium. We
then applied a systems approach called Genome Di-
rected Acyclic Graph (G-DAG) [25] to model the meta-
bolomic relationships in causal networks. This G-DAG
method assured that the necessary assumptions were
met in order to then use structural equation modeling to
assess genetic findings. This integrative approach facili-
tates a mechanistic understanding of how genes and me-
tabolites are related by incorporating and modeling
relationships of a large number of metabolites and gen-
etic variants, improves genome-metabolite pathway
identification, and identifies genes with multiple func-
tions (i.e. pleiotropic actions). Some of the metabolomic
causal pathways identified using the G-DAG algorithm
matched the availableknowledge [20, 21] and some of
the novel findings of the G-DAG algorithm are validated
clinically [26].

Results
To investigate the association of LoF genetic variants
with metabolites, we used linear regression to first adjust
all metabolites for the covariates age, gender, body mass
index, phase (two different time points that the

metabolites were measured), and ten principal compo-
nents (to adjust for population stratification). We then
identified mutations in the coding sequence (individually
or in aggregate within a gene) with significant effect on
metabolites. To achieve this, we used two methods to se-
lect strong associations. One approach is a penalized
model based on gene-level analyses (simultaneously
evaluating all LoF variants in a gene), and is called the
CCRS method (Convex-Concave Rare variant Selection).
The CCRS method uses a tuning parameter to select
LoF-metabolite associations. The set of tuning parame-
ters included 1.5, 0.3 and 0.01, and the tuning parameter
that resulted in the minimum BIC was chosen in the
final model. The findings are provided in Tables S4 and
S5 for EA and AA respectively. The second approach
was based on single variant tests, and the level of statis-
tical significance for the test was based on Bonferroni
correction for 122 metabolites, 451 and 372 LoF muta-
tions in EA (European-American/white) and AA (Africa-
n-American/non-white) populations respectively. The
findings are provided in Additional file 1: Tables S6 and
S7 for EA and AA respectively. We then focused on the
variants that were commonly selected by both ap-
proaches to reduce the false discovery rate.
The EA and AA participants differed in several ways.

The size of covariate effects differed between the EA and
AA subjects, the EA and AA individuals were from dif-
ferent geographical regions, and different diets and en-
vironment could impact biochemical pathways.
Furthermore, ancestry can affect metabolites. In an at-
tempt to reduce confounders, including environmental
and regional dietary variations that may impact metabo-
lites, we focused on AA participants from Jackson, Mis-
sissippi. We identified the underlying metabolomic
relationships separately for the EA and AA groups and
we did not expect that the two causal networks EA and
AA be identical. However, the two causal networks were
very similar with respect to the metabolites with essen-
tial roles in the metabolomic system. For example, the
relationship between leucine, valine, and isoleucine and
the high impact of these three metabolites in the meta-
bolomic system were the same in both causal networks.
Among fatty acids, however, the relationships between
AA and EA were not very similar. Because differences
between EA and AA participants might make it impos-
sible to compare the results between these two popula-
tions, we avoided any comparison below.
We integrated the results of LoF-metabolite investiga-

tion with the identified metabolomic causal network in
each population. To identify underlying relationships
among metabolites, we utilized the G-DAG algorithm
and identified a metabolomic causal network over 122
metabolites distributed across multiple functional classes
in each population. Because the principles of the
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G-DAG algorithm are based on Mendelian
randomization, where genetic variants act as instrumen-
tal variables, hence anchoring the direction of causation,
the results from this algorithm provide directions of ef-
fects in a network. This provided a valid way to subse-
quently use structural equation modeling, see the
method section and [27]. Figure 1 illustrates the steps of
the analysis. The findings are presented in Tables 1 and
2 for EA and AA, respectively and some of them are val-
idated using an independent sample.

Genome analysis of AA population
Some of the results from our genome analysis of the AA
population are illustrated and described below.

GPR97
In the genome analysis, GPR97 showed significant ef-
fects on the metabolites glycocholenate-sulfate, oleate,
and eicoseneate from the lipid pathway; therefore, this
gene was hypothesized to have pleiotropic action. Look-
ing at the relationships among the metabolites (Fig. 2),
we observed the metabolites oleate and eicoseneate to
have direct relationshisps. Using structural equation
models to estimate the effect of GPR97 on eicoseneat,
we found this effect to not be statistically significant.
Therefore, we concluded that GPR97 does not have a
pleiotropic action on both metabolites oleate and eico-
seneate, but rather GPR97 directly influences only the
oleate metabolite.

BNIPL
From the genome analysis, we found that BNIPL has sig-
nificant effects on the two metabolites octanoylcarnitine
and decanoylcarnitine from the lipid pathway (sub-path-
way carnitine metabolism). Therefore, we hypothesized
that BNIPL has a pleiotropic effect. From the metabolo-
mic causal network, we found that the two metabolites
are directly associated (Fig. 3). To assess the hypothe-
sized pleiotropic effect of BNIPL, we modeled the rela-
tionship between the two metabolites using structural
equation models. The results from this analysis showed
that effect of BNIPL on octanoylcarnitine did not remain
statistically significant. Therefore, the pleiotropic hy-
pothesis was rejected.
Note that Figs. 2 and 3 both are showing the same

causal network. In Fig. 2, we focused on the metabolites
affected by GPR97 and in Fig. 3, we focused on the me-
tabolites affected by BNIPL. In each Figure, we
highlighted the relationship between the metabolites of
interest and brought those metabolites to the border of
the causal network to show the relationships.

The impact of LoF mutations on AA and EA metabolomics
Further analyses of the metabolomic causal network
identified five modules (densely connected metabolites).
We noticed that the identified modules each referred to
a set of metabolites with similar function (e.g. metabo-
lites in a pathway) that work together to achieve a

Fig. 1 The steps to conduct gene-metabolite investigation. Abbreviation: SEM: structural equation modeling; CCRS: convex-concave rare variant
selection; G-DAG: genome directed acyclic graph. Details of the CCRS method (for the genome analysis) and the steps of the G-DAG algorithm
(for constructing metabolomics causal networks) are described in the methods section
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coordinated biologic outcome. Below we summarize the
effect of LoF mutations on the identified modules.
One of the modules includes hippurate, p-cresol sul-

fate, methylcatecholsulfate, catecholsulfate, and phenyla-
cetylglutamine, with urea and glutarylcarnitine as
neighbors. Investigation of these metabolites indicates
that they mostly result from gut metabolism of a diet
rich in protein and polyphenols. Many of these metabo-
lites represent major gut contributions to uremic solutes
(e.g. methylcatechol sulfate) and uremic toxicity (e.g.
p-cresol sulfate) [21, 28]. In the AA causal network, the
LoF-metabolite findings revealed that these metabolites
were highly influenced by genes harboring LoF muta-
tions: phenylacetylglutamine is influenced by DCLK3 (p
= 4e-09), ZSWIM1 (p = 4e-15), and TMPRSS3 (p =
2e-16); urea is influenced by LTK (p = 6e-09), AVEN (p

= 2e-08) and CLSPN (p = 1e-13), and glutarylcarnitine is
influenced by GUCA1C (p = 4e-11) (see Fig. 4). In con-
trast, these metabolites were not influenced by any LoF
loci in the EA causal network.
In the AA causal network, hormone-related metabo-

lites were significantly influenced by LoF mutations
(Fig. 5). These hormone-related metabolites did not in-
fluence other metabolites in the metabolomic causal net-
work. Therefore, the LoF loci associated with
hormone-related metabolites did not influence other
metabolites in the metabolomic causal network.
In the EA causal network, the hormone-related metab-

olites glycocholenate sulfate, pregn steroid monosulfate,
and androsten-3-beta-17-beta-diol-disulfate 1 were influ-
enced by LTK (p = 6e-09), DSE (p = 1e-07), and PLAC4
(p = 4e-09,) respectively.

Table 1 EA (European-American) population, LoF-metabolite relationships at p-value 4e-07 or smaller. Effect sizes measured in
standard deviation units to facilitate comparison. The last column “Human phenotypes related to metabolites” was obtained
through Human Metabolome database, http://www.hmdb.ca/

Gene SNP MAF Metabolite Path-way Effect Size (Std.
Error)

p-
value

Human phenotypes related to
metabolites

TPTE X21:10907041:C:A 8 O-sulfo-L-tyrosine – 1.75 (0.34) 2e-07

myoinositol Lipid 2.23 (0.35) 2e-10 Schizophrenia

MYO1A X12:57441459:G:A 9 heptanoate Lipid 1.95 (0.33) 4e-09 Cardiac disease

glycerol Lipid 1.70 (0.33) 3e-07 Schizophrenia,
Diabetes mellitus type 2

GZMM X19:549171:C:T 4 octanoylcarnitine Lipid 1.46 (0.26) 4e-08 Medium-chain acyl-CoA
dehydrogenase deficiency

PLAC4 X21:42551432:T:A 9 androsten-3-beta-17
beta-diol-disulfate1

Lipid 1.95 (0.33) 4e-09 NA

LRTOMT X11:71807767:A:C 10 betaine 0.67 (0.23) 7e-09 Chronic renal failure and
hemodialysis, Schizophrenia

PDE4DIP X1:145074975:G:A 17 dodecanedioate Lipid 1.84 (0.24) 1e-14 Diabetes mellitus type 2 (34)

OBSCN X1.228469903.A.T 8 serine Amino
acid

1.89 (0.34) 7e-08 Schizophrenia and epilepsy,
Leukemia, Heart failure

THSD7B X2:138030234:C:T 19 glycylvaline Peptide 1.61 (0.23) 1e-12 NA

C5orf45 X5:179280392:G:A 8 cis-4-decenoylcarnitine Lipid 3.10 (0.34) 2e-16 Celiac disease, Very long chain
acyl-Coa dehydrogenase deficiency

DSE X6.116600895.G.A 10 pregn steroid
monosulfate

Lipid 1.65 (0.31) 1e-07 Schizophrenia

EGFL8 X6:32134395:C:G 8 myristoleate Lipid 2.51 (0.35) 8e-13 NA

GPNMB X7:23313823:G:T 12 lactate Amino
acid

1.80 (0.28) 3e-10 Hepatobiliary, Psychiatric,
Mitochondrial dysfunction,
Metabolism and nutrition disorders

C10orf53 X10:50901917:C:A 8 hydroxybutyrate Amino
acid

1.78 (0.35) 4e-07 Schizophrenia, Pyruvate
dehydrogenase deficiency

SERPINA10 X14:94754643:C:T 14 prohydroxyproline 1.45 (0.26) 4e-08 NA

LTK X15:41796352:C:A 8 glycocholenatesulfate Lipid 2.04 (0.35) 6e-09 NA

CCDC154 X16:1484536:C:T 14 glycerol-
phosphorylcholine

Lipid 1.41 (0.26) 1e-07 Multi-infarct dementia

RHBDL1 X16:726189:C:T 14 phosphate Lipid 1.75 (0.26) 4e-11 NA

ZNF211 X19:58153465:T:A 12 myristoleate Lipid 1.73 (0.28) 1e-09 NA

Yazdani et al. BMC Genomics          (2019) 20:395 Page 4 of 16

http://www.hmdb.ca/


Ta
b
le

2
A
A
(A
fri
ca
n-
A
m
er
ic
an
/n
on

-w
hi
te
)
po

pu
la
tio

n
Lo
F-
m
et
ab
ol
ite

re
la
tio

ns
hi
ps

at
p-
va
lu
e
1e
-6

or
sm

al
le
r.
Ef
fe
ct

si
ze
s
m
ea
su
re
d
in

st
an
da
rd

de
vi
at
io
n
un

its
to

fa
ci
lit
at
e

co
m
pa
ris
on

.T
he

co
lu
m
n,
“H
um

an
ph

en
ot
yp
es

re
la
te
d
to

m
et
ab
ol
ite
s”
w
as

ob
ta
in
ed

th
ro
ug

h
H
um

an
M
et
ab
ol
om

e
da
ta
ba
se
,h

tt
p:
//
w
w
w
.h
m
db

.c
a/
.L
C
A
C
:l
on

g-
ch
ai
n

ac
yl
ca
rn
iti
ne

G
en

e
SN

P
M
A
F

M
et
ab
ol
ite

Pa
th
-w

ay
Ef
fe
ct

Si
ze

(S
td
.E
rr
or
)

p-
va
lu
e

M
et
ab
ol
ite

re
la
te
d
hu

m
an

ph
en

ot
yp
es

Re
p-
lic
at
io
n
p-
va
lu
e

G
PR
97

X1
6:
57
70
72
32
:G
:C

4
gl
yc
oc
ho

le
na
te
-s
ul
fa
te

Li
pi
d

1.
09

(2
.3
4)

3e
-1
1

_
N
A

ol
ea
te

Li
pi
d

1.
79

(0
.3
5)

4e
-0
7

LC
A
C
ac
cu
m
ul
at
io
n,

In
fla
m
m
at
io
n,

Sc
hi
zo
ph

re
ni
a,

G
es
ta
tio

na
ld

ia
be

te
s

G
G
N

X1
9:
38
87
50
72
:G
:A

8
an
dr
os
te
n-
3-
be

ta
-

17
-b
et
a-
di
ol
-d
is
ul
fa
te

1
Li
pi
d

1.
68

(0
.2
7)

1e
-0
9

–
N
A

xa
nt
hi
ne

N
uc
le
ot
id
e

1.
63

(0
.2
8)

4e
-0
9

N
er
vo
us

sy
st
em

di
so
rd
er
s,
Re
na
lf
ai
lu
re

CY
P2
A1
3

X1
9:
41
59
49
54
:C
:T

6
py
ro
gl
ut
am

in
e

A
m
in
o
ac
id

1.
67

(0
.3
3)

5e
-0
7

N
er
vo
us

sy
st
em

,
an
d
M
et
ab
ol
is
m

&
nu

tr
iti
on

di
so
rd
er
s

N
A

hy
dr
ox
yp
he

ny
lla
ct
at
e

A
m
in
o
ac
id

1.
87

(0
.3
3)

2e
-0
8

Su
pr
ad
ia
ph

ra
gm

at
ic

m
al
ig
na
nc
y.

Li
ve
r
dy
sf
un

ct
io
n

CL
D
N
17

X2
1:
31
53
84
61
:G
:A

8
is
ol
eu
ci
ne

A
m
in
o
ac
id

1.
96

(0
.2
9)

8e
-1
2

H
ea
rt
fa
ilu
re
,

Le
uk
em

ia
,M

ap
le
sy
ru
p

ur
in
e
di
se
as
e

N
A

gl
yc
er
ol

Li
pi
d

1.
72

(0
.2
9)

2e
-0
9

Sc
hi
zo
ph

re
ni
a,

D
ia
be

te
s
m
el
lit
us

ty
pe

2

CY
P2
A6

X1
9:
41
35
13
63
:T
:A

6
ga
m
m
a-
gl
ut
am

yl
le
uc
in
e

Pe
pt
id
e

1.
92

(0
.2
8)

1e
-1
1

N
A

N
A

G
am

m
a-
gl
ut
am

yl
th
re
on

in
e

Pe
pt
id
e

1.
27

(0
.3
0)

1e
-1
0

–

ZS
W
IM
1

X2
0:
44
51
12
57
:G
:A

7
Ph

en
yl
ac
et
yl
-g
lu
ta
m
in
e

A
m
in
o
ac
id

2.
75

(0
.3
5)

4e
-1
5

N
A

N
A

CR
YB
B3

X2
2:
25
59
98
63
:G
:T

3
tr
an
s-
4-
hy
dr
ox
yp
ro
lin
e

A
m
in
o
ac
id

2.
19

(0
.3
7)

6e
-0
9

Re
na
ld

is
or
de

r
N
A

ST
PG

1
X1

:2
47
27
81
5:
G
:T

3
ga
m
m
a-
gl
ut
am

yl
-g
lu
ta
m
at
e

Pe
pt
id
e

2.
49

(0
.3
5)

1e
-1
2

N
A

N
A

CL
SP
N

X1
:3
62
08
74
1:
C
:T

7
ur
ea

A
m
in
o
ac
id

2.
13

(0
.2
8)

1e
-1
3

In
fe
ct
io
n

N
A

CL
EC
4C

X1
2:
78
99
91
3:
C
:A

4
no

na
de

ca
no

at
e

Li
pi
d

2.
36

(0
.3
7)

4e
-1
0

N
A

N
A

BN
IP
L

X1
:1
51
01
61
71
:G
:A

3
de

ca
no

yl
ca
rn
iti
ne

2.
17

(0
.3
5)

7e
-1
0

M
ed

iu
m
-c
ha
in

ac
yl
-C
oA

de
hy
dr
og

en
as
e

de
fic
ie
nc
y

N
A

M
AP
10

X1
:2
32
94
24
69
:G
:A

6
ol
ea
te

Li
pi
d

2.
07

(0
.3
5)

4e
-0
9

LC
A
C
ac
cu
m
ul
at
io
n,

In
fla
m
m
at
io
n,

Sc
hi
zo
ph

re
ni
a,

G
es
ta
tio

na
ld

ia
be

te
s

N
A

O
R1
1G

2
X1

4:
20
66
61
75
:C
:A

22
ga
m
m
a-
gl
ut
am

yl
le
uc
in
e

Pe
pt
id
e

1.
11

(0
.1
8)

9e
-1
0

N
A

0.
03

FA
M
15
1A

X1
:5
50
75
00
6:
G
:A

6
pr
eg

ne
nd

io
l-d

is
ul
fa
te

Li
pi
d

2.
59

(0
.3
5)

2e
-1
3

Sc
hi
zo
ph

re
ni
a

N
A

AP
O
A1
BP

X1
:1
56
56
32
65
:C
:T

4
le
uc
in
e

A
m
in
o
ac
id

2.
51

(0
.3
5)

9e
-1
3

H
ea
rt
fa
ilu
re
,

Le
uk
em

ia
,M

ap
le

sy
ru
p
ur
in
e
di
se
as
e

N
A

KI
AA

17
55

X2
0:
36
86
90
05
:G
:A

8
ei
co
sa
pe

nt
ae
no

at
e

Li
pi
d

2.
08

(0
.2
7)

5e
-1
4

Es
se
nt
ia
lh

yp
er
te
ns
io
n

N
A

Yazdani et al. BMC Genomics          (2019) 20:395 Page 5 of 16



Ta
b
le

2
A
A
(A
fri
ca
n-
A
m
er
ic
an
/n
on

-w
hi
te
)
po

pu
la
tio

n
Lo
F-
m
et
ab
ol
ite

re
la
tio

ns
hi
ps

at
p-
va
lu
e
1e
-6

or
sm

al
le
r.
Ef
fe
ct

si
ze
s
m
ea
su
re
d
in

st
an
da
rd

de
vi
at
io
n
un

its
to

fa
ci
lit
at
e

co
m
pa
ris
on

.T
he

co
lu
m
n,
“H
um

an
ph

en
ot
yp
es

re
la
te
d
to

m
et
ab
ol
ite
s”
w
as

ob
ta
in
ed

th
ro
ug

h
H
um

an
M
et
ab
ol
om

e
da
ta
ba
se
,h

tt
p:
//
w
w
w
.h
m
db

.c
a/
.L
C
A
C
:l
on

g-
ch
ai
n

ac
yl
ca
rn
iti
ne

(C
on

tin
ue
d)

G
en

e
SN

P
M
A
F

M
et
ab
ol
ite

Pa
th
-w

ay
Ef
fe
ct

Si
ze

(S
td
.E
rr
or
)

p-
va
lu
e

M
et
ab
ol
ite

re
la
te
d
hu

m
an

ph
en

ot
yp
es

Re
p-
lic
at
io
n
p-
va
lu
e

EL
SP
BP
1

X1
9:
48
52
31
14
:G
:A

4
er
yt
hr
ito

l
Xe

no
bi
ot
ic
s

2.
52

(0
.3
8)

2e
-1
1

Pe
nt
os
e
ph

os
ph

at
e

pa
th
w
ay

ab
no

rm
al
iti
es

N
A

CO
AS
Y

X1
7:
40
71
74
87
:A
:G

8
ga
m
m
a-
gl
ut
am

yl
gl
ut
am

at
e

Pe
pt
id
e

1.
76

(0
.2
9)

4e
-0
9

N
A

N
A

CD
30
0C

X1
7:
72
54
09
58
:G
:A

4
do

co
sa
he

xa
en

oy
lg
ly
ce
ro
-

ph
os
ph

oe
th
an
ol
am

in
e1

Ly
so
lip
id

2.
11

(0
.3
0)

2e
-1
2

N
A

C1
6o
rf
55

X1
6:
89
72
46
61
:G
:T

11
an
dr
os
te
n-
3-
be

ta
-1
7-

be
ta
-d
io
l-d

is
ul
fa
te

2
Li
pi
d

1.
98

(0
.2
4)

2e
-1
6

N
A

N
A

C1
5o
rf
32

X1
5:
93
01
54
66
:A
:T

17
gl
yc
er
ol
-3
-p
ho

sp
ha
te

Li
pi
d

1.
11

(0
.1
9)

4e
-0
9

N
A

0.
9

LT
K

X1
5:
41
79
93
25
:G
:A

18
ur
ea

A
m
in
o
ac
id

1.
14

(0
.1
9)

6e
-0
9

In
fe
ct
io
n

0.
6

AV
EN

X1
5:
34
15
99
87
:G
:A

4
ur
ea

A
m
in
o
ac
id

1.
71

(0
.3
0)

2e
-0
8

In
fe
ct
io
n

N
A

U
PK
2

X1
1:
11
88
27
91
7:
G
:A

7
gl
yc
er
ol

Li
pi
d

1.
89

(0
.3
0)

3e
-1
0

Sc
hi
zo
ph

re
ni
a,

D
ia
be

te
s

m
el
lit
us

ty
pe

2

N
A

SL
C2
5A
27

X6
:4
66
23
76
8:
G
:A

21
O
-s
ul
fo

L-
ty
ro
si
ne

–
1.
24

(0
.2
0)

1e
-0
9

N
A

N
A

D
CL
K3

X3
:3
67
56
82
1:
A
:C

10
ph

en
yl
ac
et
yl
gl
ut
am

in
e

A
m
in
o
ac
id

1.
62

(0
.2
8)

4e
-0
9

N
A

N
A

TM
PR
SS
3

X2
1:
43
79
28
73
:A
:G

11
ph

en
yl
ac
et
yl
gl
ut
am

in
e

A
m
in
o
ac
id

2.
04

(0
.2
5)

2e
-1
6

N
A

N
A

G
U
CA

1C
X3

:1
08
67
25
58
:C
:A

6
gl
ut
ar
yl
ca
rn
iti
ne

A
m
in
o
ac
id

2.
32

(0
.3
5)

4e
-1
1

N
A

N
A

N
W
D
1*

X1
9:
16
90
86
98
:G
:A

22
ca
rb
ox
y4
m
et
hy
l5
pr
op

y
l2
fu
ra
np

ro
pa
no

at
e

Li
pi
d

0.
97

(0
.1
0)

1e
-0
6

Ps
yc
hi
at
ric
,k
id
ne

y,
ca
rd
io
va
sc
ul
ar

an
d
ga
st
ro
in
te
st
in
al

di
se
as
e,
se
iz
ur
e

1e
-8

PO
LR
1E

*
X9

:3
74
95
94
5:
C
:A

21
gl
yc
er
ol
3p

ho
sp
ha
te

Li
pi
d

1.
50

(0
.2
3)

2e
-1
0

M
ul
ti-
in
fa
rc
t
de

m
en

tia
3e
-2
0

P2
RX
7*

X1
2:
12
15
70
89
9:
G
:T

8
ty
ro
si
ne

A
m
in
o
ac
id

1.
59

(0
.3
2)

7e
-0
7

Le
uk
em

ia
,

H
yp
ot
hy
ro
id
is
m
,

M
yo
ca
rd
ia
li
nf
ec
tio

n,
Sc
hi
zo
ph

re
ni
a,
Ep
ile
ps
y

1e
-7

CA
PN

11
*

X6
:4
41
47
35
5:
G
:A

14
am

in
ob

ut
yr
at
e

A
m
in
o
ac
id

1.
18

(0
.2
3)

7e
-0
7

M
et
ab
ol
is
m
,h

ep
at
ic

di
so
rd
er
,E
pi
le
ps
y,

A
ci
du

ria
,F
eb

ril
e

se
iz
ur
es
,

1e
-7

O
R1
1H

4*
X1

4:
20
71
11
21
:T
:A

22
ca
te
ch
ol
su
lfa
te

Xe
no

bi
ot
ic
s

1.
24

(0
.1
9)

2e
-1
0

N
A

1e
-7

C6
or
f2
5*

X6
:3
16
92
55
8:
C
:T

10
le
uc
in
e

A
m
in
o
ac
id

1.
85

(0
.3
1)

7e
-0
9

H
ea
rt
fa
ilu
re
,

Le
uk
em

ia
,M

ap
le

sy
ru
p
ur
in
e
di
se
as
e,
Sc
hi
zo
ph

re
ni
a,

Ep
ile
ps
y

8e
-1
3

is
ol
eu
ci
ne

1.
79

(0
.2
7)

1e
-1
0

5e
-1
4

va
lin
e

1.
72

(0
.2
0)

3e
-0
9

2e
-1
7

Th
e
la
st

co
lu
m
n
re
pr
es
en

ts
th
e
p-
va
lu
e
in

th
e
re
pl
ic
at
io
n
an

al
ys
is
.G

en
es

w
ith

as
te
ris
k
ar
e
re
pl
ic
at
ed

Yazdani et al. BMC Genomics          (2019) 20:395 Page 6 of 16

https://www.google.com/search?rlz=1C1CHBF_enUS779US779&q=pathway+metabolite+O%27sulfo+L%27tyrosine&spell=1&sa=X&ved=0ahUKEwjVvvDyx9jZAhXP0J8KHZ2WCSkQBQgmKAA


Fig. 2 GPR97-metabolite pathway. The red cross represents the pathway that is not significant after modeling the correlated metabolites using
structural equation modeling. In the figure, glycocholenate stands for glycocholenate-sulfate

Fig. 3 BNIPL-metabolite pathway. The red cross represents that the pathway was not significant after modeling the relationship between the
metabolites octanoylcarnitine and decanoylcarnitine
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For the diet-related metabolites heptanoate, adipate,
azelate, sebacate, dodecanedioate, and glutarate, the gene
CAPN9 (p = 1e-7) influenced heptanoate in the AA
population. In the EA causal network, the gene, MYO1A,
influenced (p = 4e-09) heptanoate and the gene

PDE4DIP influenced dodecanedioate (p = 1e-14). Among
16 long chain fatty acids in the analysis, oleate and non-
adecanoate, were affected by LoF loci in the AA causal
network. Oleate was affected by two genes, GPR97 (p =
4e-07) and MAP10 (p = 4e-9), and the nonadecanoate

Fig. 4 The module including metabolites related to gut metabolism. Urea and glutarylcarnitine are neighbors of the module. Metabolites
influenced by LoF mutations in AA population are depicted in larger scale

Fig. 5 Hormone related metabolites as a module and pyroglutamine as a neighbor of the module. The metabolites influenced by LoF mutations
in AA population are depicted in larger scale. Abbreviation: aS1/2 stands for andersten-3-beta-17-betadiol-disulfate1/2. The capital S at the end of
glycocholenateS, pregnendioldiS, hydroxypregnenolonediS, and pregnsteroidmonoS stands for sulfate
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was affected by CLEC4C (p = 4e-10). In the EA causal
network, long chain fatty acid myristoleate was affected
by two genes, ZNF211 (p = 1e-9) and EGFL8 (p = 8e-13).
In the module including amino acid related metabo-

lites in the AA causal network, two peptides from the
gamma-glutamyl sub-pathway were influenced by LoF
loci: leucine by OR11G2 (p = 5e-10) and CYP2A6 (p =
1e-11), and glutamate by COASY (p = 4e-09) and STPG1
(p = 1e-12). In the EA population, no LoF mutation had
any impact on metabolites from the amino acid module.

Findings in EA and AA populations based on metabolite
pathways
In AA, 34 metabolites were significantly affected by LoF
loci; in EA, 19 metabolites. A summary of the
pathway-based metabolites is provided in Table 3.
Figure 6 shows the minor allele frequency (MAF%) for

LoF loci and the selected LoF loci in each of the popula-
tions. This figure does not show any differences in
MAF% between AA and EA populations.
To validate the findings, we used a validation set from

the same AA population including 672 samples with 154
LoF carriers with MAF > 7. In the replication analysis, 8
of the gene-metabolite findings were replicated (p <
2.6E-06), depicted with an asterisk in Table 2.

Discussion
To make fully informed inference about the likely func-
tion of genomic variants, systems biology approaches
that help to understand the pathway of the genetic ef-
fects on disease through intermediate molecular levels
offer improvements over standard single-variable ana-
lyses commonly used in GWAS. We investigated the ef-
fects of LoF genomic variants on the human
metabolome in the two ethnic groups of EA and AA
participants from the ARIC study. To investigate
LoF-metabolite relationships, we selected genetic vari-
ants that were found to be statistically associated with
metabolites by both a penalized model (CCRS) and sin-
gle variant tests. We identified metabolomic causal net-
works using the G-DAG algorithm that is based on a
systems biology method. This allowed us to integrate
genomic and metabolomic relationships, built on di-
rected acyclic graphs that portray directions, thus meet-
ing the assumptions of the structural equation modeling

that we used to assess the LoF-metabolite findings. Be-
cause differences between EA and AA participants, such
as the size of covariate effects, different geographical re-
gions and as a result different diet, could impact bio-
chemical pathways, we avoided any comparisons of EA
and AA metabolomic causal networks in this study.
Although many of our findings were for rare genetic

variants, which made it difficult to corroborate our re-
sults from published reports, we were able to find pub-
lished reports that supported some of our results. We
identified some LoF mutations with high impact on fatty
acid metabolism that may play a role in the pathogenesis
of metabolic syndrome and cardiovascular disease. For
instance, KIAA1755 has been found to be associated
with heart rate from exome chip meta analyses [29]. We
found a strong relationship between KIAA1755 and
eicosapentaenoate (p < 5e-14). The metabolite eicosapen-
taenoate is related to essential hypertension, which is the
most common type of hypertension with no known
cause [30, 31]. From the identified metabolomic causal
network based on Mendelian randomization principles,
we found the metabolite eicosapentaenoate was among 4
metabolites with high impact on arachidonic acid [3]. It
has also been validated clinically that arachidonic acid
has the greatest positive impact on triglyceride levels, a
risk factor of cardiovascular disease [26]. To assess the
effect of triglycerides on essential hypertensive patients,
in a separate previous clinical study, 900 patients were
examined and a link was found between increased
plasma triglyceride levels with more fatal events in es-
sential hypertensive patients [32]. These relationships
are depicted in Fig. 7 and may provide some insights
into the disease process. The gene KIAA1755 is a gene/
protein of unknown function and findings here may re-
veal new avenues into the gene function and the under-
standing of the disease etiology.
We found a significant influence of PDE4DIP on the

metabolite dodecanedioate from a lipid pathway. Dode-
canedioate supplementation in non-insulin-dependent
diabetic patients (but not healthy controls) reduced glu-
cose levels without altering insulin levels [33]. Another
interesting finding was that the gene MYO1A was found
to have a strong impact on the metabolite heptanoate
from a lipid pathway. This metabolite has been used as a
treatment for Long-chain L-3 hydroxyacyl-CoA de-
hydrogenase deficiency, a condition in which the body is
unable to break down certain fats [34].
In Table 2, we showed significant associations between

CLDN17 with increased levels of isoleucine (pvalue =
2e-12), and APOA1BP (pvalue = 9e-13) with increased
levels of leucine, in the AA population. The relationships
were through heterozygous LoF variants, suggesting that
haploinsufficiency of these genes results in an increase
of the corresponding metabolites. Figure 8 illustrates

Table 3 Number of pathway-based metabolites influenced by
LoF loci

Pathway AA EA

Lipid 11 13

Amino Acid 15 3

Peptide 5 1

others 3 3
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that these two metabolites were highly connected in the
causal network, meaning that their effects can spread
across the metabolomic system by influencing multiple
metabolites directly and indirectly. Note that all partici-
pants in AA population were from Jackson, Mississippi,
in an attempt to control for environmental confounders,
such as regional dietary variations that can influence the
metabolome.

Leucine and isoleucine are branched-chain essential
amino acids. Studies have shown that higher levels of
leucine or isoleucine are strongly related to insulin re-
sistance, obesity, and higher risk of type 2 diabetes [35,
36]. We found a strong association between the gene
CLDN17 (Claudin-17) and isoleucine. This gene is a
tight junction protein that facilitates anion-selective
paracellular transportation and is predominantly

Fig. 6 Left panel: MAF < 20% for LoF mutations. Right Panel: MAF% for LoF mutations identified with significant impact on metabolites. The x-
axes indicate the alternative allele, and the y-axes indicate the MAF%

Fig. 7 A pathway from the genome to metabolic disorder and cardiovascular disease through metabolomics and the risk factors. Yellow
represents metabolites. Red indicates risk factors of cardiovascular disease and components of metabolic disorder. Abbreviations: TG: Triglycerides,
EPA: Eicosapentaenoate, EH: Essential Hypertension, Docosapentaenoyl-G: Docosapentaenoyl-Glycerophosphocholine
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expressed in proximal nephrons [37]. There is evidence
suggesting the electrogenic transport of amino acids in-
cluding leucine and isoleucine by proximal tubules [38].
APOA1BP is an apolipoprotein A-I (ApoA-I) binding
protein, which is essential in maintaining cholesterol
homeostasis and plays a role in cardiovascular disease
[39]. Low levels of ApoA-I and HDL cholesterol are
linked to risk of cardiovascular events [40], whereas in-
creases in several amino acids, including leucine, are
linked to low levels of HDL cholesterol and insulin re-
sistance in patients with renal dysfunction [41].
In the AA population, we found the metabolite gam-

maglutamylleucine from the peptide pathway was influ-
enced by a LoF mutation in CYP2A6 (p-value = 1e-11).
The other related findings were relationships between
CYP2A13 and the metabolites pyroglutamine (p-value =
5.13e-07) and hydroxyphenyllactate (pvalue = 1.81e-08).
The LoF mutation in CYP2A13 revealed a pleiotropic ac-
tion on two metabolites, pyroglutamine and hydroxyphe-
nyllactate. CYP2A6 and CYP2A13 are both members of
cytochrome P450 superfamily of enzymes, which are in-
volved in many catalytic reactions and drug metabolism
including nicotine metabolism. Genetic variants in these
genes present a lower risk of developing tobacco-related
lung cancer in multiethnic populations including
African-American smokers [42–44]. An increased level
of gammaglutamylleucine has been identified as an indi-
cator of anti-obesogenic metabolism and the strongest

risk-decreasing predictor of death [41]. Additionally, the
inhibition of CYP2A6- and CYP2A13-mediated metabol-
ism of nicotine can increase the activity of gammagluta-
mylcysteine syntheses that results in the overproduction
of pyroglutamate [40]. It has been proposed that pyro-
glutamate has a xenobiotic detoxifying property [45].
The second metabolite associated with CYP2A13 was
hydroxyphenyllactate, which is a tyrosine metabolite,
and the L-form of it has been reported to be highly ele-
vated in the urine of patients with pheylketonuria and
tyrosinemia. Taken together, using our approach, we
identified two separate metabolites gammaglutamylleu-
cine and pyroglutamine that had significant associations
with LoF variants of two genes, CYP2A6 and CYP2A13,
respectively from the same family of genes. Thus, these
metabolites could be functionally related given their pro-
tective functions. Furthermore, our analysis method was
able to uncover the potentially pleiotropic effects of the
gene CYP2A13 on two different metabolites, pyrogluta-
mine and hydroxyphenyllactate, that may act independ-
ently of each other. Nonetheless, further study is
required to understand the biological functions of these
genes on related metabolites and diseases. Identifying
pleiotropic genes reveals important biological relation-
ships among molecular components or clinical pheno-
types and leads to understanding of complex biological
mechanisms, disease pathogenesis and underlying
co-morbidities [46, 47]. This understanding may

Fig. 8 The impact of leucine and isoleucine on metabolomics. Leucine and isoleucine influence multiple neighboring metabolites, broadly
influencing the system
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improve and speed drug development and furthermore,
predict possible side effects [48, 49].
Although systems approaches to molecular pathway

identification will not replace mechanistic experiments,
they are complementary and hypothesis-generating, es-
pecially in the era of large scale data to narrow the
search space, identify targets for intervention, and define
pathways that spread the effect of any intervention in
the system. The integrated approach introduced here fa-
cilitates a mechanistic understanding through incorpor-
ating and modeling relationships of a large number of
metabolites in genome analysis, improves genome path-
way identification, and identifies genes with pleiotropic
actions. The focus of the current study was on LoF vari-
ants. For future studies, we aim to extend the work to
additional previously-identified associated genetic vari-
ants [7] and utilizing new clustering approaches [50, 51].

Conclusions
Metabolomic data function as an intermediate at the
molecular level to illuminate mechanisms underlying a
specific genetic variant, to identify biological pathways
linking the genome to disease, and to discover valuable
clinical biomarkers. By integrating results of the genome
analysis with metabolomic relationships, and as a result,
improving the focus on biological systems, including the
identification of pleiotropic gene actions, we improved
genome analysis and studied how naturally occurring
genetic variants can affect metabolites.

Methods
Metabolomic and genomic data
The data was from the ARIC Study, which enrolled
15,792 middle-aged individuals (45 to 64 years) at base-
line. For more details of the cohort characteristics see
https://www2.cscc.unc.edu/aric/system/files/ CohortCh-
aracteristics.pdf and Additional file 1: Table S1. Serum
metabolomic and genomic data were available on 1376
individuals from the AA and EA populations in the
study. The dbGAP accession number for ARIC study
data is phs000668.v3.p1. A total of 602 metabolites were
detected and semi-quantified by Metabolon Inc. (Dur-
ham, North Carolina). After excluding metabolites with
at least 50% missing values across all samples, metabo-
lites with unknown chemical structures, and metabolites
(or any transformation of them) that did not follow a
normal distribution, we focused on 122 named metabo-
lites, Additional file 1: Table S8. Details of metabolite as-
sessments are provided in the next section and
Supplementary, section Metabolite measurement. Repli-
cation samples were available; and we utilized them to
identify and impute the missing values with an optimal
approach [52]. Since covariates could have a profound
effect on metabolites, we adjusted metabolites for age,

gender, and body mass index, phase (two different time
points that the metabolites were measured), and ten
principal components (to adjust for population stratifica-
tion) using a linear regression. In addition, we carried
out the analysis for AA ad EA populations separately.
LoF variants were defined as sequence changes caused
by single nucleotide variants or small insertions and de-
letions. The exomes were sequenced on the individuals
and 372 and 451 LoF variants were identified for AA
and EA populations respectively [23]. Variants were an-
notated using ANNOVAR [53] and dbNSFP v2.0 [23] ac-
cording to the reference genome GRCh37 and National
Center for Biotechnology Information Reference
Sequence.
After exome capture with VCRome 2.1 (NimbleGen,

Inc., Madison, WI), sequencing was carried out using
Illumina HiSeq instruments. Using Burrows-Wheeler
aligner [54], sequences were aligned to Genome Refer-
ence Consortium Human Build 37. Allele calling and
variant-call file construction were carried out with the
Atlas2 suite (Atlas-SNP and Atlas-Indel).
Single-nucleotide variants (SNVs) were removed using
the following criteria: SNVs with a SNP posterior prob-
ability less than 0.95, a total depth of coverage less than
6×, an allelic fraction of < 0.1, fewer than three variant
reads, 99% reads in a single direction and homozygous
reference alleles with < 6× coverage. More stringent fil-
tering was applied on low-quality single-nucleotide sub-
stitutions with total depth less than 10; low-quality
indels with the following differences: allelic fraction < 0.2
for heterozygous variants and < 0.8 for homozygous vari-
ants, minimum total depth less than 60, and variant
reads smaller than 30.
All LoF varients in this study were confirmed to have

a premature stop codon in a coding exon, disruption of
an essential splice site, or an indel predicted to disrupt
the downstream reading frame [23].
Serum metabolomic and genomic data were available

on an additional subset of individuals from the same
population, 672 African-Americans, which were used to
validate the findings in AA population.

Metabolomic measurement
Metabolic profiling was carried out on fasting serum samples
from the baseline examination stored at − 80 °C. Metabolites
were measured using untargeted gas chromatography-mass
spectrometry and liquid chromatography-mass spectrometry
(GC-MS and LC-MS-based quantification protocols by
Metabolon, Inc., Durham, NC). Because the laboratory work
for this study is expansive and spanned many days, a data
normalization step was performed to correct for variation
resulting from differences in instrument tuning from day to
day. Metabolites were identified by comparison to library en-
tries of purified standards or recurrent unknown entities.

Yazdani et al. BMC Genomics          (2019) 20:395 Page 12 of 16

https://www2.cscc.unc.edu/aric/system/files/%20CohortCharacteristics.pdf
https://www2.cscc.unc.edu/aric/system/files/%20CohortCharacteristics.pdf


Several types of internal controls were analyzed in concert
with the experimental samples. Additional file 1: Tables S2
and S3 describe these quality assurance and quality control
samples and standards. Further QC consisted of four major
components: the LIMS, the data extraction and
peak-identification software, data processing tools for QC
and compound identification. The proposed methods, al-
though robust, assume normality of the metabolomics and
risk factor data. Log transformation may not be the best
transformation for all metabolites. Different transformations
were assessed, such as square, root square, log etc., and dif-
ferent metabolites were transformed to a normal distribution
using different transformations.

Genome analysis
To select the genetic variants associated with metabo-
lites, we applied.
1- Convex-Concave Rare variant Selection (CCRS).

The CCRS approach [24] is a penalized model with
some constraints on the design matrix and coefficient
vector to provide parsimony of selected covariates, simi-
lar to lasso penalization. Using this approach, we had a
multivariable regression model which included all LOF
variants in the model at a time. Therefore, in contrast to
single variant tests, the CCRS approach is a multiple re-
gression method that simultaneously selects the most
promising genome variants and estimates their effects
on metabolites of interest. Applying the CCRS not only
increases the power of identification due to avoiding
multiple comparison adjustments, it also takes into ac-
count local linkage disequilibrium and prevents
overestimation.
2- In addition to the CCRS, to identify mutations in

the coding sequence with significant effect on metabo-
lites, we sought association with the metabolites using a
linear regression model for each variant at a time. For
rare variants, we aggregated their effects by summing
the number of LoF variants in each gene and then tested
the association of this sum with metabolites by linear
regression.
3- We then focused on the variants that were com-

monly selected by the two steps above to reduce the
false discovery rate.

Metabolomic causal networks
Metabolomic causal networks represent metabolites as
nodes connected by directed edges indicating the rela-
tionships among metabolites. A missing link between
two metabolites in the causal network means no rela-
tionship, and a link between two metabolites represents
the relationship after conditioning on the effect of other
metabolites in the analysis (conditional analysis). In a
causal network, directions represent cause and effect re-
lationships in observational studies identified based on

Mendelian principles/instrumental variables, using vari-
ation in the system that is free of confounding [55–57].
The G-DAG (genome directed acyclic graph) algorithm
[21, 25] with clinically validated novel findings [26] is
based on the principle that the genome inherited variation
is a causal factor of metabolomic changes and not the
other way around. Some of applications of the G-DAG al-
gorithm are [3, 20, 21, 25, 58]. The G-DAG algorithm was
employed to identify metabolomic causal networks, see
below for the steps of the G-DAG algorithm. To enforce
the assumptions of instrumental variable application and
identify robust directions among metabolites, the G-DAG
algorithm has the following features [58]:

1. Extracting information from multiple genetic
variants using principal component analysis to
create strong instrumental variables;

2. Independent instrumental variables due to
application of principal component analysis;

3. Multiple independent instrumental variables used
for each metabolite, to make overall instrumental
variables even stronger.

For identification of the AA and EA metabolomic
causal networks, in total 353 and 412 instrumental vari-
ables were utilized, respectively. These instrumental vari-
ables that were generated from whole exome sequencing
data represent the global genomic effects on metabolites
despite an individual genetic variant effect. Additional
file 1: Figure S1 represents the outcomes of the G-DAG
algorithm for EA and AA populations.
To obtain the best fit for the networks, we employed

structural Hamming distance [59], a well-established as-
sessment for the quality of fit in networks, e.g. see [60,
61]. The distance is a function of sample size, variables,
and neighbors; a smaller distance indicates a better fit.
We considered a set of tuning parameters including
0.0005, 0,001, 0.005, 0.01, 0.05. For the setting with
alpha 0.001 and 0.005 the average of the distance on 45
replications was minimum. Therefore, we carried out
the analysis at statistical significance level 0.001.

The G-DAG algorithm
The G-DAG algorithm [25] uses principal components
(generated from genome variation) as strong instrumen-
tal variables to identify a stable network over the metab-
olites. Note that the primary aim was identification of a
causal network over the set of variables of interest (here
metabolites) and the genome information is used as a
tool to aid in identifying directionality among the
metabolites.
First, we start by reducing the number of SNPs by

considering the fact that some SNPs are nearly perfectly
correlated (> 0.80) with others, so that one SNP can
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thereby serve as a proxy for many others in the analysis.
To determine a proxy, we use hierarchical clustering and
a measure of linkage disequilibrium [62].
Second, the genomic information was summarized

using principal component analysis.
Third, the set of principal components responsible for

more than 90% of the variation was selected.
Fourth, the tuning parameter in the G-DAG algorithm

was set using the structural Hamming distance, which is
a function of variables, sample size and neighboring.
Fifth, in a constraint-based algorithm, the G-DAG

identified a causal network over the principal compo-
nents as instrumental variables and metabolites.

Pleiotropy identification
The pleiotropic effect of an inherited gene can refer to a
single nucleotide polymorphism (SNP), an entire gene, a
large segment of the genome containing multiple genes
[63], or regulatory motifs across the genome [64]. We
point out the definition of pleiotropy considered in this
study as genes with more than one functionality, the
ability of a gene to cause distinct phenotypic traits [65].
The word “distinct” should not be interpreted as inde-
pendent since some dependency can arise from shared
environmental influences and direct physiologic and bio-
chemical relationships [66]. Alternatively, in association
studies, where one trait at a time is analyzed, a gene as-
sociated with more than one trait cannot be identified
with pleiotropic action since this relationship might be
due to association between the two traits and not differ-
ent functionality of the gene. We assessed the pleiotropic
action through identification of the genes with direct ef-
fect on more than one metabolite.
When a study has a large number of traits, such as me-

tabolites, illumination of underlying relationships provides
an opportunity to improve the power of genome analysis,
and consequently identification of pleiotropic gene ac-
tions. Using causal networks established in principles of
Mendelian randomization and application of structural
equation modeling, we identified pleiotropic actions by re-
moving findings that are due to metabolomic relationships
and not the gene’s direct effect on metabolites.

Structural equation modeling
Here, structural equations were used to model genetic
variants with pleiotropic effects based on the relation-
ships of genetic variants and metabolites. In the general
form, with M representing metabolites and G represent-
ing genetic variants, the structural equations are

Mi j AM KRð Þ ¼
Xl

j¼hþ1
λijM j þ Ui

Ui j AM KRð Þ ¼
Xh

m¼1
γ imGm þ e

where m = 1,…, h; j = h + 1,…, l; i = l + 1; and λij ≠ 0 is
equivalent with (j i) and γim ≠ 0 is equivalent with (m

i). The notation AM(KR) is called casual parameter
[55]. It stands for Assignment Mechanism given the
Knowledge about Response [67]. To assure that the as-
sumptions of structural equation modeling were met, we
first identified the metabolomic causal networks. The
causal networks are illustration of Assignment Mecha-
nisms behind observations [67, 68] which can be illumi-
nated by gathering any Knowledge about Response
variables. The reason for conditioning the equations
above on the causal parameter is to show that the equa-
tions are written based on an identified causal network
that meet the required assumption. Note that in a meta-
bolomic causal network, each metabolite is a response
variable and the causal network represents metabolites
that were involved in assigning value to each response
variable (a metabolite). For applications of structural
equation modeling see [27, 69].
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