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Abstract

Background: The relationship between aging and epigenetic profiles has been highlighted in many recent studies.
Models using somatic cell methylomes to predict age have been successfully constructed. However, gamete aging
is quite distinct and as such age prediction using sperm methylomes is ineffective with current techniques.

Results: We have produced a model that utilizes human sperm DNA methylation signatures to predict chronological
age by utilizing methylation array data from a total of 329 samples. The dataset used for model construction includes
infertile patients, sperm donors, and individuals from the general population. Our model is capable predicting age with
an R2 of 0.89, a mean absolute error (MAE) of 2.04 years, and a mean absolute percent error (MAPE) of 6.28% in our
data set. We additionally investigated the reproducibility of prediction with our model in an independent cohort where
6 technical replicates of 10 individual samples were tested on different arrays. We found very similar age prediction
accuracy (MAE = 2.37 years; MAPE = 7.05%) with a high degree of precision between replicates (standard deviation of
only 0.877 years). Additionally, we found that smokers trended toward increased age profiles when compared to ‘never
smokers’ though this pattern was only striking in a portion of the samples screened.

Conclusions: The predictive model described herein was built to offer researchers the ability to assess “germ line age”
by accessing sperm DNA methylation signatures at genomic regions affected by age. Our data suggest that this model
can predict an individual's chronological age with a high degree of accuracy regardless of fertility status and with
a high degree of repeatability. Additionally, our data suggest that the aging process in sperm may be impacted

this relationship.

by environmental factors, though this effect appears to be quite subtle and future work is needed to establish
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Background

Recently, a great deal of work has been performed in an
effort to understand the nature of aging, the mecha-
nisms that drive the process, and the biomarkers that
may be predictive of, or affected by, age. In this effort, a
seminal manuscript was published in 2013 which de-
scribed the ability to use DNA methylation signatures in
somatic tissues to predict an individual’s chronological
age [1]. In this work, Dr. Horvath demonstrated that the
epigenetic mechanisms that reflect the aging process are
tightly conserved between individual tissues and across
multiple species. Remarkably, these patterns are suffi-
ciently consistent to enable accurate age prediction with
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Horvath’s age calculator despite the significant contrast
in epigenetic profiles between various somatic tissues.
Despite the general applicability of this model across
diverse tissues, one tissue in particular did not display
similar predictive power as was seen with most. In fact,
DNA methylation signatures from testicular tissue and
sperm specifically did not appear to be predictive of age
at all with the previously described calculator [1]. In
agreement with this observation is data from our lab
which suggests that the nature of age associated alter-
ations to sperm DNA methylation signatures are oppos-
ite of what is typically seen in somatic cells [1-4].
Specifically, although aging results in a global decrease
in methylation and increased regional methylation in
most cell types, we demonstrated that sperm exhibits
the opposite trend. In many ways such a finding is not
surprising as this is not the first case where the male
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germ line defied conventional age-associated cellular al-
terations. The most well described example of this is
that of age impacts on telomere length. A hallmark of
aging in somatic cells is a marked shortening of telo-
meres, but in sperm telomere lengthening is commonly
seen with aging [5]. Clearly, sperm cells are extraordin-
arily unique and thus it seems likely that a unique ap-
proach is required to understand both the nature of the
aging process and the potential predictive power of age
associated alterations to the sperm epigenome.

In our previous publications we have described the
general impact of aging on the sperm methylome. In
these studies, we have shown that sperm have a very dis-
tinct pattern of age-associated alteration [2, 3]. We iden-
tified 148 genomic regions (~ 1 kb in size) that displayed
differential methylation with age. Of these, only 8 dis-
played an increase in methylation, and the remaining
140 regions experienced a marked loss of methylation
with age. Intriguingly, these regions of differential
methylation are enriched at genes known to be associ-
ated with bipolar disorder and schizophrenia, both dis-
eases known to have increased incidence in the offspring
of older fathers. Indeed the epigenetic patterns of aging
in sperm, while distinct from the epigenetic patterns of
aging in somatic tissues, are striking and extremely con-
sistent and thus provide an excellent opportunity for
predictive model construction.

The pursuit of generating a model to predict an individ-
ual’s age using the sperm methylome is not only an inter-
esting question from the perspective of basic cell biology
but the patterns of sperm aging, and the unique nature of
the sperm make the utilization of this cell type ideal for
such a predictive model. Using pure cell populations is
ideal for any epigenetic analysis, and while the previously
constructed models are effective at predicting age even
with tissues that are difficult to purify (which is a testament
to quality of model and to the strength of the aging signal),
the ideal scenario would be to use a pure cell population.
Human sperm offer just such an opportunity. Many proto-
cols are applied to somatic cell removal in sperm epigenetic
studies and they have proven quite effective at isolating
only germ cells, thanks in large part to the highly unique
and compact nature of the sperm head. Further, the magni-
tude of the aging signal is quite strong in the sperm
(thought to be in part due to the highly proliferative nature
of the sperm cells themselves) and as a result, the patterns
of aging offer an excellent opportunity for powerful predic-
tion. In this study, we set out to capitalize on these advan-
tages to build a model that can predict an individual’s age
using methylation signatures in the paternal germ line. The
experiments outlined herein describe the utility of the germ
line age calculation and also provide evidence to suggest
that the rate of aging can be affected by environmental ex-
posures or lifestyles (smoking, obesity, etc.).
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Results

Model construction and training

In the current study we assessed sperm DNA methylation
array data (Illumina 450 K array) from 3 distinct previ-
ously performed studies [2, 6, 7]. From these data sets, we
were able to utilize a total of 329 samples that were used
to generate the predictive model outlined herein. Individ-
uals with many different fertility phenotypes provided the
samples used in this study. Specifically, our training data
set includes samples from sperm donors [2], known fertile
individuals, infertility patients (including those seeking
intrauterine insemination or even in vitro fertilization
treatment at our facility), and individuals from the general
population [6, 7]. Further, our data set includes those that
have very different lifestyles and environmental exposures
(as an example, both heavy smokers and never smokers
are represented in our data set).

We utilized the glmnet package in R to facilitate training
and development of our linear regression age prediction
model [8]. Beta-values were used in all experiments. These
values represent fraction methylation as the standard out-
put from the Illumina methylation array, which are scored
between 0 and 1 with 0O representing complete demethlya-
tion and 1 representing complete methylation. For train-
ing of our model, we first tested multiple designs to
generate the most robust and easily interpretable model.
We first constructed a model trained on all CpGs on the
entire array (“entire array” training). We additionally lim-
ited the training dataset to only 148 regions that we have
previously identified to be strongly associated with the
aging process to ensure the broad interpretability to the
results of the model [2]. We trained two models within
those 148 genomic regions to identify the best possible
outcomes. First, we trained on all of the beta-values for
each CpG located in our regions of interest (“CpG level”
training). Second, we generated a mean of beta-values for
each region that included the CpGs within each region re-
spectively yvielding mean beta-values for each region (“re-
gional level” training), and the model was trained only on
these averages.

In each of the above-described scenarios, we employed
a 10-fold cross validation strategy. This was performed
10 times on unique subgroups of the entire data set
(Fig. 1a-f). The results from these ten validations were
compared between the CpG level training and the re-
gional level training. To compare the accuracy and pre-
dictive power of these models we performed linear
regression for each (actual age vs. predicted age) and
generated R? values. These R? values were compared via
simple two-tailed t-test to determine if any significant
differences exist between the various approaches to
model construction (entire array, CpG level construc-
tion, regional level construction). These tests revealed
that when only considering the prediction results on
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Fig. 1 a-f Scatterplots depicting the relationship between predicted and chronological age in 6 represented models from our cross validation
testing. g Box and whisker plots of the R2 values (predicted vs. actual) for the training data set from each cross validation for all four potential
model designs including the CpG level training across the entire array and only those within the age-affected regions, as well as the full regional
data set (148 regions) and the optimized regional data set (51 regions). h Box and whisker plots of the R2 values (predicted vs. actual) for the test
data set from each cross validation for all four potential model designs including the CpG level training across the entire array and only those
within the age-affected regions, as well as the full regional data set (148 regions) and the optimized regional data set (51 regions)
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samples within the training set (those samples upon
which the model was trained) there was a significant in-
crease in predicative power when training on the entire
array compared to any other approach (Fig. 1g) and that
there was a modestly significant decrease in predictive
power in the regional model (when compared to the
CpG level model; p =0.0428). However, when applying
the predictive model to the test dataset these differences
were no longer seen. In fact, there were no significant
differences seen between the predictive capacities of the
different models in these test sets (Fig. 1h). In an effort
to make the model as simple as possible and in light of
these findings, we committed to use the regional level
model moving forward. Further, the alterations that
occur at single CpGs are less likely to be biologically
meaningful than those that occur over a region of the
genome, thus using the regional level feature set im-
proves the biological interpretability.

We additionally assessed the weighting of the features
(regions) used in the models constructed during cross
validation. We found a great deal of variation in the fea-
tures selected across the regions screened, though a sub-
set of the regions were heavily weighted and used in 80%
or more of the models built during cross validation (a
total of 51 features/regions met this criterion). In an ef-
fort to identify the simplest model we compared cross

validation (10-fold strategy) in only these 51 regions
(“optimized regions”) to all of the regions previously
screened. We found that both the training and test
groups were not statistically different between the opti-
mized regional list and the full regional list (Fig. 1h).
Further, the best performing model (and ultimately the
selected model from our work) of any we tested was
trained only on the optimized list of 51 regions of the
genome (Table 1). In the training data set this model
performed quite well with an r*=0.93, and similar pre-
dictive power was seen when screening all 329 samples
in our data set (r* = 0.89). To further highlight the power
of prediction of this model it is helpful to note that our
model predicted age with a mean absolute error (MAE)
of 2.04 years, and a mean absolute percent error
(MAPE) of 6.28% in our data set, thus the average accur-
acy in prediction is approximately 93.7%.

Technical validation / replicate performance

Because variability can be a concern in array experiments,
we tested our model in a completely independent cohort
of samples that were not used in any of our cross valid-
ation / model training experiments. We utilized 10 sperm
samples, each with 6 replicates (a total of 60 samples) that
were each run on the 450 K array platform from a previ-
ously published study [9]. Further, the samples from this



Jenkins et al. BMC Genomics

Table 1 Genomic regions used for age prediction

(2018) 19:763

Page 4 of 10

Table 1 Genomic regions used for age prediction (Continued)

Name CHR Start Stop Name CHR Start Stop
ADAMTS8 chrn 130,299,298 130,299,948 SEMAGB chr19 4,555,999 4,556,983
ARC chr8 143,694,010 143,694,548 SEZ6 chr17 27,330,794 27,332,647
ARGHGEF10 chr8 1,877,888 1,878,324 SLC22A18AS chri 2,909,690 2,909,716
BCL11A chr2 60,680,616 60,680,762 SOHLH1 chr9 138,590,204 138,590,996
C10RF122 chrl 38,272,200 38,273,057 THBS3 chri 155,176,868 155,177,784
C70RF50 chr7 1,083,209 1,084,163 TNXB chr6 32,064,146 32,065,891
CCDC144NL chr7 20,798,895 20,799,770
cLc chi6 31698492 31699,299 study were exposed to varying extremes in temperature to

test the stability of the sperm DNA methylation signa-
DMPK chr19 46,282,571 46,283,081 . .

tures. Thus these samples do not represent strict technical
FAMB6C1 chri 71498202 71499118 replicates (because of slight variations in treatment) but
FAM86JP chr3 125,634,060 125634453 do provide an even more robust test of the algorithms
FOXK1 chr7 4,722,778 4,723,928 predictive power on sperm DNA methylation signatures
FSCN chr7 5,635,134 5,635,954 in multiple samples from the same individual. The model
GAPDH chr12 6641602 6642355 was applied to these samples and performed well in both

precision and accuracy. Specifically, not only was the
GET4 chr7 914,964 915,832 . o . L

consistency of predictions in this independent cohort
GNB2 chr7 100,274,361 100275305 quite robust (SD = 0.877 years), but the accuracy of pre-
GPANK1 chré 31630819 31632542 diction was very similar to what was seen in the training
GPR45 chr2 105,857,809 105859084  data set with an MAE of 2.37 years (compared to
KCNQ1 chr11 2,554,562 2,555,577 2.04 years in the training data set) and a MAPE of 7.05%
LDLRADA chr1s 13611370 13611825 (compared to 6.28% in our training data set). We addition-
VO3 it 16760040 16761003 ally performed linear regression analysis on the predicted

o o age vs. actual age in each of the 10 individuals in the data-

LOCT00133461 chr4 3680721 3681760 set and found a significant association between these two
MIR22HG chr17 1617363 1,618,296 (R of 0.766; p = 0.0016; Fig. 2).
MTMR8 chrX 63,614,857 63,615,496
N10 chr1 28,423,399 28,424,202 The impact of smoking on age prediction
N12 chrS 3503413 3504276 To test the potential diagnostic/clinical utility of our

model we have more closely assessed the data in our ori-
N22 chr19 4,579,481 4,580,471 . . . e

ginal cross validation dataset. Specifically we have ana-
N23 chri4 106004434 106004608 yzed our smoking dataset [7], which includes sperm
N24 chré 170449417 170450804 methylation data from 78 smokers and 78 individuals
N27 chré 30,432,200 30433944  who responded as “never smokers.” Similar aged men
N30 chr1s 27.959473 27,960,032 are represented in each group. We additionally isolated
NS i 69,260,136 60261045 @ portion of the smoking group who were had smoked

cigarettes for >10 years. We found an approximately
N9 chr7 35,300,077 35,301,070 . . .

1.5% increased in predicted age compared to chrono-
NCOR?2 chr12 124,990897 124991140 Jogical age in all smokers and 2.5% increase in long term
NONE chr10 17,347,047 17347392 smokers. However this difference failed to reach statis-
NSG1 chr4 4,386,726 4,387,698 tical significance. Interestingly, this same pattern was ob-
PAX2 chr10 102,509,693 102,510,569 served (though significantly higher in magnitude) when
PITX1 chrS 134365728 134366535  Screening only individuals who were less than 35 years

old at the time of collection (Fig. 3). In these samples we
PRSS22 chr1é 2,908,157 2,908,935 . . .

saw a 3% increase in predicted age compared to chrono-
PTPRN23 chr7 157,523,356 157224159 Jogical age in the smoker group and a nearly 6% increase
PTPRN2.4 chr7 158,109,339 158110153 in predicted age in the long-term smokers (p = 0.0196).
PURA chr5 139,492,535 139,493,491
PYY2 chrl7 26,553,567 26554008  Discussion
SECTMI chrl7 8027859 80280331 We have developed a sperm age calculator that has the

capacity to identify an individual’s chronological age
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Fig. 2 Scatterplot depicting the age prediction in a completely independent cohort of 10 samples each of which has 6 technical replicates. The
points within each discrete orange box represent predictions for all six replicates from each individual. The line is representative of a “perfect” prediction
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Fig. 3 Density plot shows the accuracy of age prediction in never smokers, smokers, and heavy smokers among individuals below 35 years of
age. Similar patterns exist in the entire cohort but are the most profound in this age group
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based only on their sperm DNA methylation signatures.
Previous studies have defined aging patterns in somatic
cells and one in particular [1] very successfully generated
an aging calculator using methylation signatures of somatic
cells. However, these findings do not hold true in sperm
and further, the DNA methylation age calculator that de-
scribed in 2013 fails to work effectively with paternal germ
line epigenetic signatures. Herein, we have described the
development of a linear model that has the ability to accur-
ately predict ages with these signatures. Specifically our
model is based on average methylation signatures at 51
genomic loci known to be altered as men age [2].

In the process of model construction, we evaluated mul-
tiple potential methods by which we could train our
model. One important consideration was the nature of the
population with which the model was trained. While there
is a balance in selecting a population (broad applicability
vs. targeted population) we decided to utilize a population
with diverse fertility phenotypes and exposures to ensure
that it could perform well with many different phenotypes.
As such we included smokers and non-smokers, individ-
uals of known fertility, those currently being treated for
infertility, and men from our general population.

We also attempted to obtain a simple model with the
fewest number of features needed to achieve optimal
predicative power. Our initial approach was to focus
only on the regions previously identified to be altered by
age (based on previous data) and refined the model by
only assessing these regions. The rational behind this ap-
proach stems from the understanding the changes to
methylation signatures occurring in small regions of the
genome (at promoters and CpG islands) have the poten-
tial to affect transcription and thus phenotype [10].
Thus, using fraction methylation across an entire region
that has already been demonstrated to be associated
with aging in sperm offers an approach that is likely the
most directly tied to biological function. In fact, our own
previous studies assessing these specific aging marks
suggest that they may have biologic significance in the
offspring of older males [2]. We compared models
trained with this restricted feature set to models built
using all available data (the entire array) as features.
While the models built with the entire array did have in-
creased predictive power when testing them in the same
samples that were used for model training, there was no
difference seen when predicting ages in a test group (to
which the model was blinded during construction) be-
tween models built using the restricted and regionalized
feature set and the whole array feature set. Importantly,
the most efficient single model (considering only data
from tests using samples that had not been used in
training) was constructed using the restricted and re-
gionalized feature set. The fact that models built using
the entire array had improved performance in the
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training set without any improvement in the test set
supported our approach to use a simplified and more re-
stricted set of features for training. This is because when
using the entire array, model construction was able to
identify some features that appeared to be predictive of
age but these were, in reality, only effective predictors in
the samples used in training and thus added no benefit
when training in samples that had not been used in
model construction. We found that even in our model
using regional level features there was some amount of
simplification that could be performed. Indeed, we were
able to scale our list of features from 148 regions down
to 51 regions with the same predictive power. This effort
resulted in a quite robust model with strong predictive
power (an average of ~93% accuracy in predicting each
individual’s age and an r* of ~ 0.89).

Our data indicate that the model constructed herein is
also technically robust. We were able to assess previous
data from our lab in which 10 individuals had six technical
replicates on 450 k methylation arrays [9]. This replicate
data enabled to assess the power of the model in two dis-
tinct ways. First, we were able to assess the predictive
power of the model on a completely independent cohort
(each of these samples were assessed at a different time
and in different batches of arrays than those upon which
the model was trained). Second, we were able to show that
the model is able to generate consistent predictions for in-
dividuals between technical replicates. Of additional inter-
est is the fact that the samples used in these technical
replicates originated from a study that tested the impact
of extreme and prolonged temperature exposures on
sperm DNA methylation patterns. Thus a portion of the
replicates screened were exposed to various magnitudes of
less than ideal conditions. However, it is important to note
that we did observe a drop in r* in our independent co-
hort. This is not an entirely unexpected finding due to the
variation that can occur between different batches of ar-
rays. In brief, we found that the array batch effects are suf-
ficiently strong to slightly decrease the predictive power of
the age calculator for batches performed outside of our
original training set. In contrast, the model is sufficiently
strong to overcome such variation with strong predictive
power, though that power is slightly reduced compared to
what is seen in our training/test data set. The ability to
maintain predictive power, even when assessing other
batches of data is important in a model that will have
broad applicability. In the future as more data become
available, the model can be updated with increased sample
size and with additional batches of experiments, which
will lead to even more robust predictive power.

It is important to note that due to the difficulty in
obtaining samples for very young individuals and older
individuals (those outside of the typical age of paternity)
our model is constructed mainly using samples in men
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between 20 and 45 years of age. As a result, we expect
that moving forward when samples from older men be-
come available that the model should be updated to in-
clude more samples from men of different ages to
improve the predictive power at other ages.

Our data also suggest that there may be some utility for
such a model in a clinical setting. Specifically, we were
able to identify an age-affect of smoking in our cohort of
patients. We found that individuals who smoke appeared
to have acceleration in the pattern of aging and thus the
individual’s germ line age was in some cases significantly
higher than their chronological age. However, this finding
specifically should be taken in the proper context, where
we only identified significant age acceleration in a portion
of the data set and that (though all age ranges followed
the same trend) the magnitude of the effect varied greatly.
Still, this represents one example of many different ana-
lyses that could be performed in a clinical setting should
further exploration identify consistent and impactful age
acceleration. With future studies we may find that differ-
ent levels/types of infertility, obesity, or other environ-
mental exposures may cause acceleration in the aging
pattern seen in sperm. One of the biggest questions that
remains if such associations exist is the potential impact
of this age acceleration. Such a pattern could potentially
result in increased risk to offspring health, as epidemio-
logical data clearly shows increased incidence of neuro-
psychiatric disease in the offspring of older fathers [11-
16]. This increase in risk may not mean that the altered
methylation pattern itself causes these offspring abnormal-
ities, but instead the methylation signatures of age are
simply a good indicator of the overall state or age of the
sperm. Likely of more immediate interest to clinicians is
the fact that advanced paternal age is associated with a
loss of fecundity and fertility. Specifically, it has been
shown that men older than 45 years take ~ 5 times longer
to achieve a pregnancy as men less than 25 years (when
controlling for female age) [17]. A similar decrease in fe-
cundity was identified in a large population study in 2000
which showed that (after adjusting for maternal age) men
> 35 years of age had a 50% lower chance of achieving a
pregnancy within 12 months of attempting conception
than younger men [18]. Other studies have also shown de-
creased fertilizing potential in both IUI and IVF [19, 20].
While the magnitude of this effect remains controversial
[21, 22], it is clear that advanced paternal age does play an
important role in a couple’s fertility status and can clearly
result in, at a minimum, a significantly increased time to
pregnancy. For many couples, such potential barriers to
achieving a pregnancy are essential to understand and dis-
cuss with their care providers. While none of these associ-
ations have been proven in this specific work, the
potential clinical utility of the calculator is clear and war-
rants further investigation both in predicting an
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individual’s health/fertility as well as in the prediction of
abnormalities in the offspring.

It is important to note that while the findings of alter-
ations associated with age in the sperm epigenome are
intriguing, the direct impact of these alterations is still in
question. In fact, the actual impact of any sperm epigen-
etic alteration on the embryo or the offspring is difficult
to predict due to massive reprograming events that take
place in the early embryo and in the primordial germ
cells. However, data do suggest that methylation marks
in many sub-telomeric regions escape reprograming
events and can be potentially be passed on to the off-
spring [23-27]. Intriguingly, our original sperm aging
study showed that the majority of age-affected regions
were located in these sub-telomeic regions as well [2].
Such a transmission of age-affects would be remarkable,
but may offer a real potential explanation for at least a
portion of the downstream impact of paternal age on
offspring disease incidence and phenotype.

The data described herein are quite promising, though
some limitations are clear. Foremost among them is our
knowledge of downstream impacts as described above.
This will require a great degree of effort to determine the
nature of these effects and if risks to fertility or the off-
spring can be modified in any way by various treatments.
Further, while the current model is very effective at pre-
dicting an individuals age and is quite robust technically,
the alterations we are observing to predict age are subtle
and thus small inefficiencies can result in an inability to
detect meaningful changes. Despite this, because of the
approach we have taken in designing a model based only
on limited numbers of regions there is a potential to mod-
ify this model for use with different platforms that may
offer increased resolution and consistency, for example
targeted sequencing [28]. With such an approach, we may
be able to improve an already robust predictive model by
multiplex sequencing with extreme depth at only the 51
sites of interest. This could provide an even more eco-
nomical and reliable predictive model. Taken together, the
data that we have shown here are intriguing and warrant a
great deal of further investigation and also have the poten-
tial to be improved with future iterations.

Conclusions

Similar to what is seen in somatic cells, our data clearly in-
dicate that sperm methylation signatures are altered over
time and that these modifications can be used to predict
an individual’s age. This enabled the development of a
germ line age calculator that is presented in this work.
This calculator offers tremendous potential in the basic
sciences to address fundamental questions about aging,
fertility, and potential impacts on embryogenesis and even
offspring health. In addition, while much work is yet re-
quired, it appears that such calculations may have
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potential benefit in clinical fertility care as well as in foren-
sics. While the future potential is evident, the promise of
the technology and its biological underpinnings will not
be fully realized without significant future efforts in both
animal models and in direct human studies.

Methods

Samples, study design, data availability

In the current study we assessed sperm DNA methyla-
tion array data from 3 distinct previously performed
studies [2, 6, 7]. All of the studies were performed in our
laboratory. We included only the samples for which ages
were available. From these data sets, we were able to ac-
quire a total of 329 samples that were used to generate
the predictive model outlined herein. Each sample was
run on the [lumina 450 K methylation array. In each
case, we used SWAN normalization to generate
beta-values (values between 0 and 1 that represent the
fraction of a given CpG that is methylated) that were
used in our study. During early processing of the sperm
samples, great care was taken to ensure that no somatic
cell contamination was present that could potentially in-
fluence the results of our studies. To confirm the ab-
sence of somatic cell contamination we assessed the
methylation signatures at a number of sites throughout
the genome, each of which are highly differentially
methylated between sperm and somatic tissues. In Fig. 4,
we show the differential methylation at one representa-
tive genomic locus, DLKI, to illustrate the absence of
contaminating signals in the samples used in our study.

-

10 ulyum sodd

Il

4 Somatic Samples

329 Sperm Samples

Fig. 4 Heatmap of the DLK1 locus, which is highly differentially
methylated between sperm and somatic cells is used to confirm the
absence of contaminating signals in our data set. 4 blood samples
are listed at the far left of the heatmap and the remainder of the
samples used in our study follow
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While variability exists between the methylation in these
samples there exists very little, if any somatic DNA
methylation signals.

Samples used

Individuals with many different fertility phenotypes pro-
vided the samples used in this study. Our training data
set includes samples from sperm donors, known fertile
individuals, infertility patients (including those seeking
intrauterine insemination or even in vitro fertilization
treatment at our facility), and individuals from the gen-
eral population. Further, our data set includes those that
have very different lifestyles and environmental expo-
sures (heavy smokers and never smokers, Obese individ-
uals and those with normal BMIs, etc.).

The average ages in each study were statistically simi-
lar (with averages of approximately 33 years of age) aside
from the smallest study used [2], which previously
assessed aging patterns (average age of approximately
44 years of age). Known fertile sperm donors collected
~27% of all samples used in the study. Individuals from
the general population in the Salt Lake City area col-
lected 31% of the samples and infertility patients col-
lected another 42% of the samples used in the study. Of
all the individuals included in our study approximately
26% are smokers. In terms of BMI, 46% of the men in
our study were considered normal, 35% were considered
overweight, and 9% were classified as obese.

Model training
We utilized the glmnet package in R to facilitate training
and development of our linear regression age prediction
model [8]. For training of our model, we first tested mul-
tiple designs to generate the most robust and easily inter-
pretable model. We first constructed a model trained on
all CpGs on the entire array (“entire array” training). We
additionally limited the training dataset to only 148 re-
gions that we have previously identified to be strongly as-
sociated with the aging process to ensure the broad
interpretability to the results of the model [2]. We trained
two models within those 148 genomic regions to identify
the best possible outcomes. First, we trained on all of the
beta-values for each CpG located in our regions of interest
(“CpG level” training). Second, we generated a mean of
beta-values for each region that included the CpGs within
each region respectively yielding mean beta-values for
each region (“regional level” training), and the model was
trained only on these averages.

In both of the above-described scenarios, we employed
a 10-fold cross validation strategy to repeatedly test
trainings on 90% of our samples and hold out 10% for a
test set. This was performed 10 times on unique sub-
groups of the entire data set. The results from these ten
validations were compared between the entire array
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training, the CpG level training, and the regional level
training. To compare the accuracy and predictive power
of these models we performed linear regression for each
(actual age vs. predicted age) and generated r” values.
These r* values were compared via simple two-tailed
t-test to determine if any significant difference exists be-
tween the two approaches to model construction (CpG
level construction vs. regional level construction).

Technical validation / replicate performance

We tested our model in a completely independent co-
hort of samples [9]. We used 10 sperm samples each
with six technical replicates that were each run on the
450 K array (not those used in our cross validation /
model training) to determine the precision and
consistency of prediction. These samples were all taken
from men who were attending the Andrology lab for a
fertility workup. In each case the men who provided the
sample had normal semen analysis measures. Linear re-
gression analysis of predicted vs. actual age was per-
formed using R.

The impact of smoking on age prediction

We tested 78 never smokers and 78 smokers using our
age prediction model. Similar aged men are represented in
each group. We additionally isolated a portion of the
smoking group who have smoked cigarettes for > 10 years.
In this analysis we compared accuracy of the age predic-
tion of each group to determine if there is a significant in-
crease in the age prediction compared to chronological
age in individuals who smoke. We identified the percent
difference between chronological age and predicted age
and compared this value between smokers and
non-smokers via two-tailed t-test to identify the presence
of age acceleration.
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