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Abstract

Background: Severe equine asthma, also known as recurrent airway obstruction (RAO), is a debilitating, performance
limiting, obstructive respiratory condition in horses that is phenotypically similar to human asthma. Past genome wide
association studies (GWAS) have not discovered coding variants associated with RAO, leading to the hypothesis that
causative variant(s) underlying the signals are likely non-coding, regulatory variant(s). Regions of the genome
containing variants that influence the number of expressed RNA molecules are expression quantitative trait loci
(eQTLs). Variation associated with RAO that also regulates a gene’s expression in a disease relevant tissue could help
identify candidate genes that influence RAO if that gene’s expression is also associated with RAO disease status.

Results: We searched for eQTLs by analyzing peripheral blood mononuclear cells (PBMCs) from two half-sib families and
one unrelated cohort of 82 European Warmblood horses that were previously treated in vitro with: no stimulation (MCK),
lipopolysaccharides (LPS), recombinant cyathostomin antigen (RCA), and hay-dust extract (HDE). We identified high
confidence eQTLs that did not violate linear modeling assumptions and were not significant due to single outlier
individuals. We identified a mean of 4347 high confidence eQTLs in four treatments of PBMCs, and discovered two trans
regulatory hotspots regulating genes involved in related biological pathways. We corroborated previous RAO associated
single nucleotide polymorphisms (SNPs), and increased the resolution of past GWAS by analyzing 1,056,195 SNPs in 361
individuals. We identified four RAO-associated SNPs that only regulate gene expression of dexamethasone-induced
protein (DEXI), however we found no significant association between DEXI gene expression and presence of RAO.

Conclusions: Thousands of genetic variants regulate gene expression in PBMCs of European Warmblood horses in cis
and trans. Most high confidence eSNPs are significantly enriched near the transcription start sites of their target genes.
Two trans regulatory hotspots on chromosome 11 and 13 regulate many genes involved in transmembrane cell signaling
and neurological development respectively when PBMCs are treated with HDE. None of the top fifteen RAO associated
SNPs strongly influence disease status through gene expression regulation.
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Background
Severe equine asthma (also known as recurrent airway
obstruction i.e. RAO) is a chronic, potentially debilitat-
ing airway disease affecting 10–15% of horses housed in
conventional management systems in temperate climates
[1–3]. It has many important parallels to human asthma,
including genetic effects that predispose affected horses

to exaggerated mixed T helper cell (Th1, Th2, Th17) re-
sponses to common allergens and irritants [2–4]. Envir-
onmental irritants from dry hay or dust from various
bedding materials contain antigens that elicit severe
equine asthma as a delayed hypersensitivity disorder in
the domestic horse Equus ferus caballus [3, 4]. RAO is
maintained until the animal is removed from the offend-
ing environment for an extended period [5–8]. RAO is
reversible, such that when sources of dust are eliminated
from the environment clinical signs abate [4]. To simu-
late a systemic response to these antigens our group pre-
viously treated peripheral blood mononuclear cells
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(PBMCs) with hay dust extract (HDE), a mixture con-
taining mold spores, mites, inorganic dust particles, and
plant fragments [8–10]. Differential expression and gen-
ome wide association (GWAS) studies that included
samples used in this study, have identified differentially
expressed genes and genomic regions suggestively asso-
ciated (p ≤ 1e-5) with RAO [9, 11–13]. However, no
RAO associated coding variants have been found that
explain the GWAS signals, so it was hypothesized that
the causative variant(s) underlying these signals were
likely non-coding regulatory variant(s) [12]. Non-coding
variants often have poorly defined or unknown func-
tions, especially in non-model organisms. However,
regulatory function can be inferred for genetic variants
associated with gene expression levels.
Regions of the genome containing variants that influ-

ence the number of expressed RNA molecules are ex-
pression quantitative trait loci (eQTLs) [14]. eQTLs have
been central to our understanding of global transcrip-
tional regulation by genotype [14]. eQTL studies can be
powerful extensions to GWAS by identifying disease as-
sociated single nucleotide polymorphisms (SNPs) that
overlap, or are in linkage disequilibrium with, eQTL
SNPs (eSNPs) that regulate gene expression of a gene in
disease relevant tissues [15–19]. An eSNP that is also a
disease-associated SNP can influence the disease pheno-
type through gene expression regulation, or the SNP can
have pleiotropic effects that independently influence the
disease phenotype and gene expression regulation [20,
21]. Therefore, additional testing for association between
gene expression and disease status is required to deter-
mine if gene expression regulation could contribute to
the disease phenotype. A mediation analysis can identify
the genetic effect on disease risk specifically mediated
through gene expression [22]. These analyses could be
especially important for identifying candidate genes reg-
ulated by SNPs that lie outside of genic or functionally
annotated genomic regions. However, eQTLs remain un-
discovered for many species with previously identified
disease associated SNPs.
A typical eQTL analysis predicts additive changes in

gene expression by genotype. eQTLs are generally de-
scribed in two contexts, local eQTLs and distant eQTLs.
Local eQTLs are genomic regions containing a variant
that is associated with expression of a gene ‘close’ to the
variant (within a specified distance). Local eQTLs can be
caused through two mechanisms: 1) local cis eQTLs
which affect gene expression on the same strand as the
variant and cause allele specific expression (ASE), or 2)
local trans acting eQTLs that affect gene expression in-
directly by regulating diffusible regulatory elements,
such as microRNA (miRNA) or transcription factors
(TFs), which subsequently influence gene expression of
alleles on both homologous chromosomes equally [14].

The regulatory variants responsible for local cis eQTLs
are most often near the transcriptional start site (TSS)
[15, 16]. Distant eQTLs are genomic regions containing
a variant that are associated with expression of a gene
outside of the specified local window far away on the
same chromosome or on a different chromosome. Dis-
tant variants that regulate gene expression often act in
trans by structurally altering the diffusible regulatory
molecules, or by altering the diffusible element’s gene
expression in cis that then affect the target gene’s ex-
pression in trans [15]. Here, we do not search for ASE
and therefore can only describe eQTLs as local or dis-
tant. However, we assume that the majority of local and
distant eQTLs are cis acting and trans acting eQTLs re-
spectively, and therefore describe all eQTLs as cis or
trans. Single variants have been identified that regulate
many different genes in trans. These trans-regulatory
hotspots can regulate many genes significantly enriched
for similar biological pathways such as maintaining cell
homeostasis [23]. This indicates that trans regulatory
hotspots might co-regulate many genes by a common
mechanism [23, 24].
eQTLs can be cell type or treatment specific [17]. To

represent gene expression regulation under multiple
treatments, we analyzed peripheral blood mononuclear
cells (PBMCs) from European Warmblood horses in
vitro under four different conditions: no treatment
(MCK) to represent baseline RNA expression, lipopoly-
saccharides (LPS) to mimic an inflammatory response,
recombinant cyathostomin antigen (RCA) to mimic re-
sponse to parasitic antigens, and hay-dust extract (HDE)
to mimic RAO exacerbation in susceptible horses [8, 9].
We performed cis and trans eQTL analyses on PBMCs,
and GWAS on imputed genotypes in healthy and RAO
affected European Warmblood horses to investigate: 1)
how cis and trans eQTLs are associated with gene ex-
pression, 2) if trans regulatory hotspots regulate genes in
related biological pathways, 3) if suggestively significant
RAO associated SNPs regulate expression of biologically
relevant candidate genes, and 4) if RNA expression pre-
dicts disease status for genes regulated by disease associ-
ated eSNPs. To the best of our knowledge, this is the
first genome wide eQTL study in horses. Our results im-
prove understanding of transcriptional regulation in
horses, and utilize GWAS and eQTL analyses to attempt
to identify candidate genes that contribute to RAO
through gene expression regulation.

Results
We performed eQTL analyses on PBMCs under four con-
ditions: MCK, LPS, RCA, and HDE with Matrix eQTL
utilizing tag SNPs and aligned RNAseq data for 42
RAO-affected and 40 control European Warmblood
horses [8, 9, 25]. Tag SNPs are a selected subset of SNPs
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chosen to represent the variation in haplotypes and in-
crease power of eQTL detection by reducing the burden
of multiple testing (Methods). However, we also used a fil-
tered subset of imputed SNPs (1,056,195) to increase reso-
lution in GWAS and eQTL analyses when we searched
for eSNPs that are also RAO associated SNPs. We filtered
data to remove eQTLs driven by outliers, and searched for
differentially expressed genes regulated by eSNPs that
were also RAO associated SNPs (Methods).

Gene and individual filtration
Prior to eQTL analysis, we removed genes with mean
read counts below a read count threshold determined
using the Kolmogorov-Smirnov (KS) test (Table 1) (Fig. 1,
Additional file 1: Figure S1) [26, 27]. This reduced the
number of NCBI annotated genes analyzed to a mean
value of 12,736 genes across the four treatments of
PBMCs, and RNAseq counts were normalized and vari-
ance stabilized for each treatment (Additional file 1: Fig-
ure S2). One sample was removed prior to all analyses
based upon a principle component analysis (PCA) of ge-
notypes where it did not cluster with our defined family
groups (Additional file 1: Figure S3). No additional indi-
viduals were removed based on PCAs of genotypes,
PCAs of RNA expression, or additional filtering criterion
(Additional file 1: Figures S2 and S3) (Methods).

Identification of tag SNPs
SNPs were genotyped on the MNEc670 array (n = 636,897)
then imputed to a higher density (n = 1,926,709) using a
reference population of 485 horses [28–30]. We calculated
98.6% concordance between imputed variants and genome
wide sequencing variants for the two sires of the family
groups (Fam1 & Fam2) (Methods). From the imputed and
phased SNP dataset we calculated 347,455 tag SNPs for the
82 individuals used in eQTL analyses [31].

Matrix eQTL: Single treatment analyses
Additive linear cis- and trans- eQTLs for tag SNPs with
the lowest false discovery rate (FDR) value for each gene,
and for each treatment (MCK, LPS, RCA, and HDE) are
summarized in Table 2 and listed in Additional file 1:

Tables S1-S16 (Fig. 2a, Additional file 1: Figure S4)
(Methods). We detected a mean of 5535 statistically sig-
nificant (FDR < 0.05) linear cis eQTLs (one eSNP per
gene) across all four treatments with Matrix eQTL
(Table 2). We determined, a mean of 1219 cis eQTLs
(one eSNP per gene) across all four treatments to be un-
reliable and therefore low confidence eQTLs, while the
remaining 4316 cis eQTLs were classified as high confi-
dence (Table 2, Additional file 1: Figure S5) (Methods).
On average across all four treatments, we detected high
confidence cis linear eQTLs in 33.8% of the 12,736 genes
analyzed with the linear model in Matrix eQTL (Table 1,
Table 2). Cis eSNPs were significantly enriched near
gene transcription start sites (p < 2.2e-16) (Fig. 2b). We
found a significant difference (p < 1.0e-6) in the propor-
tion of eSNPs in genic (5’-UTR, exons, introns, 3’-UTR)
regions between cis (0.346) and trans (0.483) eSNPs
(Additional file 1: Table S17).

eQTLs shared across treatments
Separate eQTL analyses of treatments in Matrix eQTL
indicate that the majority of genes regulated by eSNPs in
cis are specific to one treatment (41.0%) or shared be-
tween two treatments (27.7%), while only 18.3% were
shared across three treatments and 13.4% of all genes
were shared across four treatments (Fig. 3a). To visualize
how significance of eQTLs changed between treatments,
we compared p-values for high confidence cis and trans
eQTLs that were significant in at least one treatment in
a heatmap with hierarchical clustering (Fig. 3c–d). We
also jointly modeled the four treatments with eQTL by
Bayesian Model Averaging (eQTLBMA), which identified
3990 significant eQTLs (one eSNP per gene) almost all
of which were shared across all treatments (Additional
file 1: Figure S6. Additional file 1: Table S18, and S1
Text). More cis eSNPs and genes were shared in differ-
ent treatments in the eQTLBMA analysis than in the
Matrix eQTL analysis (Fig. 3a, Additional file 1: Figure
S6A). However, 94.2% of the same genes were signifi-
cantly associated with an eSNP in both analyses. With
Matrix eQTL, the large discrepancy between the number
of genes shared across all treatments regulated by any

Table 1 KS Test trimmed and normalized read count cutoffs and numbers of genes after each filter

Treatment MCK LPS RCA HDE Mean

All NCBI Genes 26,707 26,707 26,707 26,707 26,707

Number of genes with > 1 read mapped 23,804 23,855 23,869 23,899 23,857

Number of genes after mean cutoff 13,058 12,520 12,792 12,574 12,736

Number of genes after mean cutoff and common to all four treatments 12,254

KS-Test: Mean Read Count Cutoff 20 23 22 24 22.25

KS-Test: Median Read Count Cutoff 18 20 20 24 20.5

Four in vitro treatments of PBMCs from European Warmblood horses: no treatment (MCK), lipopolysaccharide (LPS), recombinant cyathostomin antigen (RCA), and
hay dust extract (HDE) [9]
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eSNP (1137) (one eSNP per gene with lowest FDR) and
the number of genes regulated by the same eSNP (140)
indicated that the majority of high confidence eSNPs
with lowest FDR differ across treatments. However, this
result could be influenced by stochastic noise, or ‘best’
eSNP selection procedures.

To test if the genes shared across all treatments regu-
lated by different eSNPs identified by Matrix eQTL are
regulated by the same genomic regions, we constructed a
distribution of the distances between SNP chromosomal
coordinates for all six pairwise combinations of treatments
for the 997 genes shared across all treatments that have

Fig. 1 Methods flow chart. Describes the sequence of analyses and programs used for tag SNP eQTL analyses in this study. Code
available: https://github.com/VCMason
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different eSNPs (Additional file 1: Figure S7). The distri-
bution is heavily skewed towards zero indicating that
eSNPs with lowest FDR values for each treatment, al-
though different, often are not distant from eSNPs with
lowest FDR values identified in another treatment. We
constructed a null distribution of distances between all
SNPs within 100 random 2 Mb windows on chromosome
1. We compared the two distributions of distances and
found them to be significantly different (p < 2.2e-16) from
a uniform distribution based upon a two-sided KS test (D
= 0.48) (Additional file 1: Figure S7).

Trans regulatory hotspots
The relationship between genomic positions of eSNPs and
genes of high confidence eQTLs is summarized for treat-
ment HDE in a cis-trans eQTL plot (Fig. 4). High densities
of high confidence eSNPs can be visualized on chromo-
somes 11 and 13 indicating the presence of trans regulatory
hotspots (Figs. 4, 5, Additional file 1: Figure S8). This

evidence suggests that eSNPs including one SNP at position
60,892,596 on chromosome 11 (SNP: MNEc.2.
11.60892596.PC) and one SNP at position 18,333,037 on
chromosome 13 (SNP: MNEc.2.13.18333037.PC) regulate
44 and 74 genes respectively across the genome (Additional
file 1: Tables S19-S20). These two SNPs were represented
in significant trans eQTLs much more often than other
SNPs throughout the genome, and on their respective chro-
mosomes (Figs 4, 5, Additional file 1: Figure S7). These two
SNPs were enriched in eQTLs relative to background dis-
tribution of all tag SNPs that were included in analyses
(Fig. 5). SNP MNEc.2.11.60892596.PC lies within an intron
of gene ubiquitin specific peptidase 22 (USP22). SNP
MNEc.2.13.18333037.PC is intergenic lying 30,803 bps
away from its nearest gene septin 14 (SEPT14).
Panther gene enrichment analysis for the trans regula-

tory hotspot on chromosome 11 found significant en-
richment for GO processes involved with regulation of
ion transmembrane transport (FDR = 3.16e-3), regulation

Table 2 Number of significant eQTLs identified and sorted according to confidence level in all treatments and all models

Treatment: MCK LPS RCA HDE Mean

Linear Model, Cis eQTLs, FDR < 0.05

Matrix eQTL: Number of eQTLs, All 5045 5750 5218 6127 5535

Matrix eQTL: Number of eQTLs, Low Confidence 1207 1250 1153 1266 1219

Matrix eQTL: Number of eQTLs, High Confidence 3838 4500 4065 4861 4316

Linear Model, Trans eQTLs, FDR < 0.05

Matrix eQTL: Number of eQTLs, All 1244 1463 1088 3496 1823

Matrix eQTL: Number of eQTLs, Low Confidence 397 379 294 800 468

Matrix eQTL: Number of eQTLs, High Confidence 847 1084 794 2696 1244

Fig. 2 eQTLs. a Linear regression for the effect of genotype (homozygous reference = 0, heterozygous = 1, and homozygous alternative = 2) on
gene expression for gene glucosidase alpha (GAA) in treatment MCK1. The line was fitted to all individuals and grey shading is the standard error.
Red triangles are cases, and black circles are controls. Density functions surround plot points: black for genotype 0, red for genotype 1, and green
for genotype 2. Here, one unit change in genotype is a good predictor for an additive change in gene expression. This eQTL implies that some
variant inside the QTL (surrounding the significant SNP) is regulating gene expression. b Histogram showing the frequency of distances between
a genes’ transcription start site (TSS) and the eSNP that is associated with that genes’ expression in the HDE treatment
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of synapse assembly (FDR = 5.23e-3), and others when
projected onto humans (Additional file 1: Table S21)
[32]. Panther gene enrichment analysis of the 74 genes
regulated in trans by SNP MNEc.2.13.18333037.PC on
chromosome 13 shows significant enrichment for GO
processes involving generation of neurons (FDR =
7.1e-8), regulation of nervous system development (FDR
= 7.5e-8), regulation of neuron differentiation and pro-
jection development (FDR = 8.5e-7, and FDR = 1.31e-6),
and others when genes names were projected onto
humans (Additional file 1: Table S22).

RAO associated SNPs and genes they regulate
We performed a GWAS on a filtered subset of (1,056,195)
SNPs in 361 individuals (168 healthy and 193 with RAO)
(Additional file 1: Table S23) (Methods). Similar to previous
studies, we observed two RAO associated genomic regions
on chromosome 13 (positions 23,001,364 and 32,843,309 –
33,525,948), however no SNPs were significant after
genome wide multiple testing correction (Additional file 1:
Figure S9) [12, 13]. We focused on MCK and HDE as these
represent gene expression differences between baseline and
RAO exacerbation. We report all significant cis eQTLs

Fig. 3 Number of genes associated with a cis-eSNP shared across all four treatments and comparison of eQTL p-values between the four treaments.
eQTLs were calculated with Matrix eQTL. Venn diagram shows the number of genes shared and unique to all treatments of PBMCs for a) cis and b)
trans eQTLs identified from Matrix eQTL analyses. P-values were compared across all four treatments for eQTLs that were significant in at least one
treatment and all eQTLs must have had a raw p-value <1e-2 in c) cis and d) trans. Each p-value was transformed with –log10(pvalue) and hierarchically
clustered. We compared 4066 eQTLs in cis 4582 eQTLs in trans
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(FDR < 0.05) for the same 1,056,195 SNPs used in the
GWAS for each treatment (Additional file 1: Tables
S24-S27). Of the top fifteen RAO associated SNPs only four
were also cis eSNPs in MCK (chr13.33502488,
chr21.52625145, chr13.32844446, and chr13.32843309),
and two in HDE (chr13.33502488, and chr28.3692072).
Three of the four MCK disease associated eSNPs resided

on chromosome 13 from positions 32,843,309–33,502,488 in
introns of Thioredoxin domain containing protein 11
(TXNDC11) and Class II Major Histocompatibility Complex
Transactivator (CIITA), and were associated with gene ex-
pression of dexamethasone induced protein (DEXI). Two of
these eSNPs (chr13.32843309, chr13.32844446) were in
strong linkage disequilibrium (r2 = 0.87, D’ = 0.97), while
the other SNPs were not in strong linkage disequilibrium
(r2 < 0.75, D’ < 0.75) with another RAO associated eSNP
(Additional file 1: Table S28). Therefore, a minimum of
two RAO associated eQTLs regulate DEXI in MCK. We
observed a significant loss of eQTL regulation of DEXI
between MCK and HDE for SNPs chr13.32843309
(p-value = 3e-4) and chr13.32844446 (p-value = 5e-4),

however the change in gene expression regulation was not
significantly different between healthy and RAO horses
(Additional file 1: Figure S10, Additional file 2). In HDE,
one of the two eSNPs were the same as in MCK
(chr13.33502488), however all eSNPs regulate different
genes (ATF7IP2, and GLIPR1L2). We found no significant
association between gene expression and disease status for
the genes regulated by RAO associated eSNPs: DEXI
(p-value > 0.83), or HDE: ATF7IP2 (p-value = 0.53), or
GLIPR1L2 (p-value = 0.35) (Additional files 3 & 4).

Discussion
Our results uncover thousands of SNPs, representing
eQTLs, that have a significant linear association with gene
expression in cis and trans in PBMCs from European
Warmblood horses. We filtered results to improve repro-
ducibility for future studies by implementing iterative KS
tests, testing linear modeling assumptions, and detecting
outlier individuals (S1 Text). We identified two trans
regulatory hotspots in the HDE treatment. To identify
RAO associated SNPs, we performed a GWAS with the

Fig. 4 HDE9 cis- and trans- eQTLs from Matrix eQTL. X-axis is the genomic position of eSNPs while the y-axis is the genomic position of genes.
Points were plotted for all eSNP/gene pairs for all high confidence significant eQTLs identified by Matrix eQTL for the HDE9 treatment. Cis eQTLs
are present along the diagonal, while trans eQTLs are off the diagonal
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highest density of SNPs (1,056,195) to date. Some of the
top fifteen RAO associated SNPs were also eSNPs in treat-
ments of PBMCs most relevant to RAO (MCK and HDE).
However, none of the gene expression distributions (for
genes regulated by these eSNPs) were significantly associ-
ated with RAO disease status. Therefore, we found no
RAO associated SNPs that strongly influence disease sta-
tus by regulating gene expression.

Trans regulatory hotspots
Trans regulatory hotspots can regulate genes that are
significantly enriched for one biological process [23].
This suggests that one variant could influence the regu-
lation of gene expression of many genes from a common
pathway. We identified two trans regulatory hotspots on
chromosome 11 (SNP: MNEc.2.11.60892596.PC) and
chromosome 13 (MNEc.2.13.18333037.PC) (Fig. 4,
Additional file 1: Figure S4). We hypothesize that these
two eQTLs each harbor variants regulating diffusible
elements in cis that subsequently regulate many genes

involved in transmembrane ion transport and neuro-
logical development.

RAO associated SNPs and eQTLs
Current and previously published GWAS for RAO in
horses have been underpowered (no SNPs reached gen-
ome wide significance after multiple testing correction)
however these GWAS have discovered the strongest
known associations to RAO in horses. Therefore, it
could be valuable to identify genes these SNPs regulate,
and test if the regulated gene expression is also associ-
ated to disease status in disease relevant tissues (ex:
PBMCs containing lymphocytes and monocytes) after
disease relevant treatments (MCK and HDE).
Four of the top fifteen disease-associated SNPs (repre-

senting a minimum of two eQTLs) were also eSNPs in
MCK that regulated gene expression of DEXI and were
within the same genomic region (chromosome 13: posi-
tions 32,843,309–33,502,488). This suggests that regula-
tion of DEXI gene expression by these three SNPs could
influence RAO in horses, or these SNPs have pleiotropic

Fig. 5 Trans regulatory hotspots have many genes regulated by one SNP (QTL). a & b Histograms show how often each SNP regulates a gene as
a high confidence eQTL in trans for chromosomes 11 and 13. C) & D) Histograms show the frequency of tag SNPs across chromosomes 11 and
13 that were included in eQTL analyses. Only the eSNP with the lowest FDR for each gene was included in these analyses

Mason et al. BMC Genomics  (2018) 19:581 Page 8 of 15



effects that independently influence RAO and gene ex-
pression regulation. In humans, eSNPs within the same
homologous genomic region in introns of CLEC16A
linked to asthma associated SNPs only regulate gene ex-
pression of DEXI which was also differentially expressed
in human monocytes and bronchiolar lavage fluid
(BALF) [18, 19, 33]. However, we found that in Euro-
pean Warmblood horses DEXI gene expression is a poor
predictor of RAO disease status in PBMCs treated with
MCK and HDE. DEXI is also not differentially expressed
in horse PBMCs and the bronchial epithelium [9, 34].
Additionally, when PBMCs were treated with HDE we
observed a treatment-induced loss of gene expression
regulation of DEXI, however loss of regulation was ob-
served both in healthy and RAO horses (Additional
file 1: Figure S10 and Additional file 2). With the
available evidence it appears that these SNPs might have
pleiotropic effects that independently influence disease
status and regulation of gene expression. Therefore, we
could not explain the cause of the disease-associated
signals to SNPs within this genomic region.

Limitations
We studied a population of cell types (PBMCs), not a
single cell type, therefore RNA expression could be in-
fluenced by inconsistent proportions of cell types be-
tween individuals. Our methods were capable of
detecting thousands of high confidence eQTLs in horses.
However, our methodology was not optimal for deter-
mining which eQTLs were shared across treatments.
Single treatment analyses followed by intersecting lists
of significant eQTLs underestimates the number of
eQTLs that are shared across treatments [17, 35, 36]. A
more accurate list of eQTLs shared across multiple
treatments or unique to one treatment might be possible
by jointly modeling treatments during eQTL analyses
[17, 35]. However when our four treatments were jointly
modeled, we observed possible inflation of shared
eQTLs across all treatments (Additional file 1: S1 Text
and Figure S6). Our methods determine if an eQTL is
‘significant’ and ‘present’ in a particular treatment of
PBMCs. However, recently published tools can better le-
verage shared information (i.e. consistent or inconsistent
weak eQTL signals that are individually not significant)
across treatments, and can define how eQTLs differ
across treatments by focusing on describing effect size
differences rather than significance [36, 37]. These
methods would be valuable in future analyses to quantify
local polygenic effects on gene expression variation, or
detect if a particular variant has major or minor effects
on gene expression in eQTLs shared across treatments.
Many of the results reported here were based upon

analyzing tag SNPs (Additional file 1: Tables S1–S22).
Tag SNPs can represent the variation of multiple other

SNPs with similar patterns of variation within a 100 kb
window. Calling tag SNPs reduces the number of com-
parisons and increases statistical power, however during
the selection process biologically important variants
were excluded, including past RAO associated SNPs.
Additionally, the genomic position of each associated tag
SNP does not represent the location of other SNPs
(removed from analyses) that it represents within the
window.
Gene expression profiles are cell type and treatment

specific [16, 17]. Therefore, analyzing other tissues might
reveal enlightening results. It is also possible that the
strongest RAO associated SNPs could change in future
studies if higher density marker sets or different horse
breeds are analyzed. The sample size for future GWAS
must be increased to find significant associations to SNPs.

Conclusions
Thousands of genetic variants regulate gene expression
in PBMCs of European Warmblood horses in cis and
trans. Most high confidence cis eSNPs are significantly
enriched near the transcription start sites of their target
genes. Two trans regulatory hotspots on chromosome
11 and 13 are significantly enriched for genes involved
in transmembrane cell signaling and neurological devel-
opment respectively when PBMCs are treated with HDE.
We could not explain the cause of the disease associa-
tions to the top fifteen RAO associated SNPs. RAO asso-
ciated SNPs that were also eSNPs in PBMCs treated
with MCK and HDE in European Warmblood horses
likely have pleiotropic effects that independently influ-
ence disease status and regulation of gene expression.

Methods
Samples, RNA extraction, and DNA extraction, PBMC
treatment
Samples used in this study were previously collected, iso-
lated, treated, and extracted as described in earlier publica-
tions [8, 11, 12, 38, 39]. Horses were kept in “low dust”
environments before sample collection so that the RAO
affected horses were in partial or full remission of RAO [8].
Horses were kept in stables with daily access to pasture all
over Switzerland [8]. RAO horses received no prior treat-
ment for RAO and a clinical exam was performed to rule
out other systemic or localized infections [8].
DNA was previously extracted from PBMCs for two

different studies [11, 12]. PBMCs were previously
treated, RNA extracted, and RNA sequenced (RNAseq)
by Pacholewska et al. [39]. Pacholewska et al. followed
the density gradient centrifugation procedure from
Hamza et al. to isolate PBMCs and followed the treat-
ment of PBMCs and RNA extraction method from Lanz
et al. [8, 38, 39]. European Warmblood horses were
selected as the breed to study because of the two
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warmblood families (Fam1 and Fam2) with high inci-
dences of RAO [40]. eQTL analyses used DNA and
RNA from 82 European Warmblood horses (40 with
RAO, and 42 healthy). Information on the independent
variables (covariates) used is provided (Additional file 1:
Tables S29-S30). Ages of RAO (mean = 16.7, min = 10,
max = 24, units = years) and healthy controls (mean =
17.8, min = 6, max = 32, units = years) were comparable.
These 82 horses belong to three familial cohorts, two
half-sibling (half-sib) families with 17 individuals (Fam1)
and 15 individuals (Fam2) respectively, and 50 unrelated
horses (Additional file 1: Tables S29-S30). The sires of
Fam1 and Fam2 both had RAO. Unrelated horses are
not part of Fam1 or Fam2, and do not show strong
patterns of population structure within the group
(Additional file 1: Figure S3). Unrelated horses were
defined as not having a common ancestor for at least
two generations [12]. These 82 horses with SNP and
RNAseq data represent a subsample of 379 European
Warmblood horses with SNP data (Additional file 1:
Table S30). 361 individuals (excluding HOARSI 2 indi-
viduals, and individuals with missing covariate informa-
tion) from this larger cohort were used for imputation
and GWAS (168 healthy, 193 RAO horses) (Additional
file 1: Table S30). Additional file 1: Table S30 identifies
which individuals were used in the GWAS and all eQTL
analyses on the MCK, LPS, RCA, and HDE treatments.

RAO phenotyping
The severity of the RAO phenotype was classified with the
Horse Owner Assessed Respiratory Signs Index (HOARSI)
index previously described by Ramseyer et al. and vali-
dated by Laumen et al. [41, 42]. Phenotype data was col-
lected with a survey completed by horse owners. HOARSI
indices range from one to four, representing horses with
the following clinical signs: 1) no episodes of coughing or
nasal discharge, 2) mucous nasal discharge and/or cough-
ing, 3) abnormal breathing and/or regular or frequent
coughing, and 4) abnormal breathing, and/or regular or
frequent coughing, and poor performance [41]. Control
horses were horses with a HOARSI index of one or two
while case horses were horses with a HOARSI index of
three or four. In the GWAS we excluded HOARSI 2 indi-
viduals to be consistent with past publications [13].

RNA library preparation, RNA sequencing, and DNA 670 k
SNP chip
RNA library preparation and RNA sequencing were pre-
viously described [39]. DNA was previously run on the
Affymetrix Axiom Equine HD 670 k SNP chip [13]. De-
tails of the Affymetrix® Axiom® Equine HD 670 k array
design (MNEc670k) and imputation to 2 M SNPs
(MNEc2M) was described by Schaefer et al. [30].

SNP filtration and SNP imputation
Prior to imputation, SNPs with > 10% missing genotypes
(7532 SNPs) and SNPs that deviated strongly from
Hardy-Weinberg equilibrium (HWE) (HWE, p ≤ 0.0001;
29,720 SNPs) were removed [13]. SNPs were imputed
with Beagle 4.1. The effective population size was set to
1000 while the rest of the parameters remained at their
default values to impute individuals from 636,897 SNPs
to 1,926,709 SNPs [28–30].
Accuracy of SNP imputation was measured by compar-

ing 1,542,103 variants from the imputed dataset to vari-
ants overlapping the same genomic coordinates from
genome wide sequence variants for two individuals (short
read archive (SRA) Biosample IDs: SAMEA4351933 and
SAMEA4351934). We measured 98.5% concordance for
SAMEA4351933, and 98.6% for SAMEA4351934. Whole
genome variants for individuals SAMEA4351933 and
SAMEA4351934 were called with Genome Analysis Tool-
kit (GATK) best practices version 4. Genotypes were called
with VCFtools v0.1.1.4 using option --012 [43]. Resulting
genotypes were compared and concordance was calcu-
lated with a python script.
Tag SNPs were calculated on the imputed MNEc2M

SNP set for the 82 individuals in this study using Fas-
tTagger v.1.0 [31]. We required tag SNPs to have a
minor allele frequency (MAF) greater than 0.05, and the
variation in the tag SNP must represent 99% of the
genotypic diversity within each haplotype. Input files for
FastTagger were created by converting the variant call
format (vcf ) file with python code, and chromosomes
were analyzed one at a time (Fig. 1).
We obtained the filtered subset of imputed SNPs

(1,056,195 SNPs) for the high resolution GWAS and
eQTL analyses by filtering SNPs for the 379 individuals
in the VCF file we deposited in the European Nucleotide
Archive (ENA) (see Availability of data and material)
with VCFtools v0.1.14 [43]. We required SNPs to be
biallelic, and removed SNPs if MAF < 0.05, or SNPs
(from control individuals only) deviated strongly from
HWE (p ≤ 1e-6). Subsequently, we called genotypes with
the --012 argument in VCFtools.

Individual filtration
PCA analysis of the imputed SNP matrix revealed one
outlier individual that did not cluster with our defined
cohorts (unrelated horses, FAM1, and FAM2) and was
removed from all downstream analyses. The biplots of the
first three principal components based upon the genotype
matrix shows the family structure, and that our covariate
labels (Fam1, Fam2, and Unrelated) correctly identify the
three cohorts (Additional file 1: Figure S3). The prcomp()
function in R was used for PCA analyses. We used the
check.marker() function in R library GenABEL (version
1.8–0) to determine if additional individuals should be
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removed from the analysis, due to incorrect covariate la-
bels for sex, due to poor microarray genotype calling rates,
or due to DNA contamination [44]. The check.marker()
function did not remove any individuals based upon the
following criterion: no individuals were identified as the
incorrect sex (odds > 1000), no individuals had an exces-
sively low genotyping call rate (< 0.1), no individuals had
an excessively high identity by state (IBS, > = 0.95), or no
individuals had an excessively high autosomal heterozy-
gosity (FDR < 0.01).

RNA sequence alignments
RNA sequences were previously aligned with GEM map-
per (v1.6.2). Details of alignment settings are described
by Pacholewska et al. [39]. Alignment files (BAMs) are
available from the ENA database (http://www.ebi.ac.uk/
ena/data/view/PRJEB7497).

RNAseq counts: Gene features, counting, filtration,
normalization, and variance stabilization
We defined gene features with the NCBI annotation
(release 102) of the horse reference genome sequence
EquCab2.0 (Assembly accession: GCF_000002305.2). We
specified desired features to be all transcripts of genes
with the transcriptsBy() function in the Bioconductor R
library GenomicFeatures [45]. We counted the number of
RNA reads that aligned to all transcripts of each gene with
the summarizeOverlaps() function in the Bioconductor R
library GenomicAlignments [45]. We simplified the count
matrix to have one feature per gene, making genes (not
transcripts of genes) the RNAseq count feature. In the
summarizeOverlaps function we specified ‘mode
= “Union”, singleEnd = FALSE, ignore.strand = TRUE,
fragments = TRUE’. When any mode is specified in the
summarizeOverlaps function each read is assigned to at
most one feature. Therefore, mapping of a single read to
multiple genes does not influence our read counts. We
counted each treatment separately, and required genes to
have at least one RNAseq read aligned to the gene in one
individual which reduced the initial 26,707 genes to ~
23,800 genes (Table 1). After this initial light filtration we
normalized the reads with the counts(dds, normalized =
TRUE) function in DESeq2. We normalized read counts
to make them comparable across individuals, and then
exported them to calculate a mean read count cutoff with
the KS test statistic (described below). Genes with mean
normalized read counts below this mean count threshold
were removed from analysis for each treatment separately
(Table 1). After trimming the number of genes, the gene
expression raw counts were again normalized and then
variance stabilized with the varianceStabilizingTransfor-
mation() in DESeq2 once for each treatment separately
(Table 1) [46].

Kolmogorov-Smirnov (KS) test
We used the KS test to determine a read count thresh-
old to remove lowly expressed genes (Text S1). We
compared the trimmed and normalized gene expression
profiles for all pairs of individuals for each treatment
separately (described above). For each pair of individual
in each treatment, we iteratively removed genes if the
mean read counts were below a specified value (ranging
from 0 to 300 with a step of 2), and stopped iterating if
three criterion were satisfied (described below). There-
fore, the gene set was reduced up to a maximum of 150
(300/2) times and up to a maximum of 150 separate KS
tests were calculated (from which we collected
D-statistics) for each pair of individuals. The total num-
ber of pairs of individuals were: MCK: 2628, LPS: 3240,
RCA: 3160, HDE: 3321. For each iteration, we tested
that the current D-statistic was lower than the starting
(first) D-statistic, that the current D-statistic was lower
than the next D-statistic, and that the current D-statistic
is less than 0.0001 less than the starting (first)
D-statistic. If these three criteria were satisfied then the
iterative process stopped and the current cutoff value for
one pair of individuals was recorded. After the iterative
process completed for all pairs of samples we calculated
the mean and median of all cutoff values (one for each
pair of individuals).
We calculated KS statistics on the trimmed and nor-

malized gene expression counts with the python module
ks_2samp contained within python module scipy. We
modified Python code that iteratively computes KS sta-
tistics for all pairs of normalized gene expression profiles
of individuals from Farrell et al. (https://github.com/
dmnfarrell/mirnaseq) to accept a gene expression count
matrix as input [27]. We used this modified code to pro-
duce all cutoff values.

KS test determines significantly different distribution
The KS test was applied twice more: 1) for distances be-
tween a genes transcription start site and associated
eSNP from the HDE treatment, and 2) for each of the
993 eQTLs (with lowest FDR values) with a different
eSNP but the same gene, we calculated the distance
between each pair of differing eSNPs for each gene. We
then used the ks.test() function in R to calculate
two-sided KS test, and compare the distribution of
distances to that of a uniform distribution.

Accounting for unknown batch effects
Probabilistic estimation of expression residuals (PEER)
(v1.3) was run with default parameters and adding mod-
el.setAdd_mean(True) separately for each treatment of
PBMCs to account for batch effects in gene expression
matrices for the linear additive model analysis in Matrix
eQTL and our independent linear modeling of additive
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eQTLs in R (Text S1) [47, 48]. We included known
sources of possible confounding covariation as covariates
(sex, age, Fam1 status, and Fam2 status, case/control
status) and input the DESeq2 trimmed, normalized, and
variance stabilized RNAseq counts to calculate the resid-
uals of gene expression in PEER.
We calculated surrogate variables with Surrogate Vari-

able Analysis (SVA) (v3.22.0) to account for batch effects
prior to testing if gene expression predicted RAO disease
status [49, 50]. Surrogate variables are covariates esti-
mated from the gene expression matrix that can be in-
cluded in downstream analyses to account for common
sources of latent (unwanted) variation, while protecting
variation between specified categorical variables [49, 50].
Surrogate variables can represent biased variation in the
gene expression matrix that were introduced through
changes in methodological procedures, date of sample
processing, or changes to reagents between subsets of
samples included in the linear model. We included
known sources of possible confounding covariation as
covariates (sex, age, Fam1 status, and Fam2 status), and
protected variation in the disease status covariate. We
input the DESeq2 normalized and variance stabilized
RNAseq counts and ran the sva() function (to avoid the
log transformation in the svaseq() function) to calculate
surrogate variables [46]. These surrogate variables were
then included as independent variables in downstream
analyses to account for batch effects.

Additive linear model
Linear model equation for the Linear models in Matrix
eQTL and our independent linear modeling of additive
eQTLs in R:

y ¼ μþmuþ ε ð1Þ

In equation one, y is the dependent variable represent-
ing the residuals of the trimmed, normalized, and vari-
ance stabilized gene expression counts with known and
unknown sources of confounding variation regressed
out. In equation one, μ is the intercept, m is a vector of
SNP marker genotypes (0, 1, or 2 for each individual: 0
is homozygous reference allele, 1 is heterozygous, and 2
is homozygous alternative allele), u is the SNP marker
effect, and ε is the residuals.

Cis and trans eQTL discovery with Matrix eQTL
eQTLs were cis if the SNP location was within 1 Mb up-
stream or downstream of a genes’ transcription start site
by setting cisDist = 1e6 (resulting in a 2 Mb cis window).
We input the 347,455 tag SNPs into Matrix eQTL and
excluded the X-chromosome. For ‘modelLINEAR’ we in-
put the residuals of gene expression calculated in PEER
(see above). Each treatment of PBMCs (MCK, LPS,

RCA, HDE) was run separately. Matrix eQTL was run
with ‘modelLINEAR’ for cis and trans eQTLs. False dis-
covery rates (FDRs) following the Benjamini Hochberg
method were calculated by Matrix eQTL [25, 51]. We
set a FDR threshold at 0.05, and therefore eQTLs with
FDR < 0.05 were considered statistically significant. We
generated histograms and QQ-plots for cis and trans
eQTLs with Matrix eQTL prior to high confidence
eQTL filtration. We selected the eQTL with the lowest
FDR for each gene to represent the best gene/eSNP pair.
We classified eQTLs as significant or not significant,
however we additionally classified each eQTL as ‘high
confidence’ or ‘low confidence’ (see below).

Reproducing linear models in R, diagnostic plots, outlier
detection, and validating linear model assumptions
Multiple linear regressions of Matrix eQTL were repro-
duced in R (v3.3.3) for each significant eQTL identified
from Matrix eQTL using the lm() function. The linear
regression model to reproduce ‘modelLINEAR’ is shown
as eq. (1). We used the PEER gene expression residuals
as the dependent variable and genotype as the independ-
ent variable (eq. 1).

Detecting outlier individuals and validating linear model
assumptions
If an eQTL had outlier individuals, or violated linear
modeling assumptions (see below) the eQTL was placed
in a separate ‘low confidence’ category (Additional file 1:
Figure S5 and S11) (Additional file 1: Tables S2, S4, S6,
S8, S10, S12, S14, and S16). We applied outlier detection
for all significant cis and trans eQTL (gene/SNP pair)
results from Matrix eQTL. Individuals were detected as
outliers in R by calculating Cook’s Distance and leverage
of all individuals for each eQTL. Individuals with high
Cook’s distance > 0.5 and leverage > 2(p/n) (p = number
of linear model coefficients (parameters) and n = sample
size) were determined to be outliers [52, 53].

Checking linear model assumptions
Linear model assumptions were tested with the r pack-
age Global Validation of Linear Models Assumptions
(gvlma) (v1.0.0.2) and using the gvlma() function (alpha-
level = 0.05) [54]. We categorized eQTLs as ‘low confi-
dence’ if the global statistic was not accepted. The global
test statistic combines separate tests assessing skewness,
kurtosis, link function, and heteroscedasticity as a global
omnibus statistic [54].

Cis eQTL discovery with eQTLBMA
The four treatments of PBMCs were jointly modeled
with Bayesian methods for eQTL detection in
eQTLBMA (v1.3.1) (14). The gene expression residuals
calculated by PEER (see above) were used for each
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treatment. In the eqtlbma_bf command we set ‘--error
hybrid’ to designate that some sample treatments were
from the same individuals, but some individuals were
not shared across all treatments. This option assumes
that the error covariance matrix is correlated between
treatments, but calculates this matrix between all pairs
of treatments with only individuals common to each
treatment (eQTLBMA manual). We designated cis
eQTLs as SNPs within 1000,000 bases upstream or
downstream of gene transcription start sites by setting
‘--cis 1000000’ (resulting in a 2 Mb cis window). We
followed the EBF procedure in the eQTLBMA manual to
estimate the probability for a gene to have no eQTL in
any treatment (π0) and then calculated the posterior
probabilities for each different configuration with
eQTLBMA. Our code used for eQTLBMA is provided at:
https://github.com/VCMason and an outline of how
eQTLBMA fits into the overall workflow is shown in
Additional file 1: Figure S1.

Two proportion Z-test
Using the two-proportion z-test we calculated a signifi-
cant difference in the proportion of eSNPs in genic
(5’-UTR, exons, introns, 3’-UTR) regions between cis
and trans genic eSNPs (Additional file 1: Table S17). We
limited the analysis to only high confidence eSNPs
(with the lowest FDR) for each gene. We calculated
the numbers of cis and trans eSNPs lying in genic regions
(5’ UTR, exons, introns, 3’ UTR) with a python script and
divided them by the total numbers of cis or trans eSNPs
in in the HDE treatment to obtain the proportions.

GWAS
Using 1,056,195 SNPs we ran a mixed-effects logistic re-
gression model in R with the glmer() function from the
lme4 library (version 1.1–14) to search for the genotypic
association to disease status. Disease status was coded as
a binary variable (0 == control, and 1 == case). We in-
cluded genotype (0 == homozygous reference, 1 == het-
erozygous, or 2 == homozygous alternative), sex (0 ==
male, 1 == female), Fam1 (0 == Fam2 or unrelated, 1 ==
Fam1) and Fam2 (0 == Fam1 or unrelated, 1 == Fam2)
to account for population structure, and age (continuous
numeric values in years) as covariates in equation two.

y∼Xβþmuþ ε ð2Þ

In equation two, y represents the dependent variable
disease status, X is an incidence matrix for fixed effects
intercept, age, sex, Fam1, and Fam2, β is the solution for
the fixed effects intercept, age (in years), sex, Fam1, and
Fam2, m is a vector of SNP marker genotypes, u is the
SNP marker effect, and ε are the residuals. We removed
individuals with missing phenotype data for any

covariate. We ranked GWAS results by p-values for
fixed effect genotype.

Quantifying linkage disequilibrium between SNPs
We extracted all SNPs imputed and phased from an inter-
val 1 Mb upstream and downstream (positions: 31843309–
33,843,309 on chromosome 13) from RAO associated SNP
MNEc.2.13.32843309.PC with VCFtools v0.1.14. We calcu-
lated the haplotype r2, D, and D’ (r2 = correlation between
haplotypes, D = linkage coefficient, D’ = normalized linkage
coefficient) for pairwise combinations of RAO associated
with the --hap-r2 argument for this genomic interval for
the 361 individuals analyzed in the GWAS. We filtered the
results to SNPs associated with RAO that were also eSNPs
in MCK (Additional file 1: Table S28).

Additional files

Additional file 1: Figure S1. Minimum D-statistics determine mean read
count cutoffs. Figure S2. PCA plots of normalized variance stabilized RNA-
seq counts after KS test filter. Figure S3. PCA plots of 1,056,195 SNP geno-
types and colored by cohort. Figure S4. Matrix eQTL histograms and QQ-
plots for all p-values for all cis and trans eQTL analyses using tag SNPs for
the MCK1 treatment. Figure S5. Low confidence cis eQTLs. Figure S6. Joint
modeling with eQTLBMA with possible overestimation of shared eQTLs
across all PBMC treatments. Figure S7. Distance between eSNPs with the
lowest FDR values per gene is small. Figure S8.. Enrichment of SNPs in trans
regulatory hotspots genome wide. Figure S9. GWAS for RAO. Figure S10.
Loss of DEXI gene expression regulation in HDE. Figure S11. Cis trans eQTL
plot for all eQTLs for treatment HDE9. Table S1. High confidence additive
linear cis eQTLs from the MCK treatment. Table S2. Low confidence additive
linear cis eQTLs from the MCK treatment. Table S3. High confidence addi-
tive linear trans eQTLs from the MCK treatment. Table S4. Low confidence
additive linear trans eQTLs from the MCK treatment. Table S5. High confi-
dence additive linear cis eQTLs from the LPS treatment. Table S6. Low confi-
dence additive linear cis eQTLs from the LPS treatment. Table S7. High
confidence additive linear trans eQTLs from the LPS treatment. Table S8. Low
confidence additive linear trans eQTLs from the LPS treatment. Table S9.
High confidence additive linear cis eQTLs from the RCA treatment. Table S10.
Low confidence additive linear cis eQTLs from the RCA treatment. Table S11.
High confidence additive linear trans eQTLs from the RCA treatment. The
eQTLs reported are limited to one eQTL per gene, representing the eSNP with
the lowest FDR value for each gene. Table S12. Low confidence additive lin-
ear trans eQTLs from the RCA treatment. Table S13. High confidence additive
linear cis eQTLs from the HDE treatment. Table S14. Low confidence additive
linear cis eQTLs from the HDE treatment. Table S15. High confidence additive
linear trans eQTLs from the HDE treatment. Table S16. Low confidence addi-
tive linear trans eQTLs from the HDE treatment. Table S17. Two proportion z-
test calculation. Table S18. 4157 significant eQTLs discovered with eQTLBMA.
Table S19. Trans eQTL results for the trans regulatory hotspot on chromo-
some 11 (SNP MNEc.2.11.60892596.PC). Table S20. Trans eQTL results for the
trans regulatory hotspot on chromosome 13 (SNP MNEc.2.13.18333037.PC).
Table S21. Panther gene enrichment GO process results for genes regulated
by the trans regulatory hotpot on chromosome 11 (MNEc.2.11.60892596.PC).
Table S22. Panther gene enrichment GO process results for genes regulated
by the trans regulatory hotpot on chromosome 13 (MNEc.2.13.18333037.PC).
Table S23. GWAS results. Table S24. All significant cis eQTLs for the
MCK treatment. Table S25. All significant cis eQTLs for the LPS treatment.
Table S26. All significant cis eQTLs for the RCA treatment. Table S27. All
significant cis eQTLs for the HDE treatment. Table S28. Linkage disequilibrium
and allele frequencies between RAO associated SNPs on chromosome 13
positions 32,843,309 – 33,502,488. Table S29. Sample information for 82
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individuals used in eQTL analyses. Table S30. Sample information for all 379
individuals. (ZIP 51963 kb)

Additional file 2: Linear mixed models jointly modeling MCK and HDE.
Linear mixed models with random intercepts for each individual model
the association between the top fifteen RAO associated SNPs that were
also eSNPs in either MCK or HDE (chr13.32843309, chr13.32844446,
chr13.33460982, chr13.33502488, chr28.3692072, chr21.52625145) and the
gene expression of the genes they regulated (DEXI, NSUN2, ATF7IP2,
GLIPR1L2) with reduced maximum likelihood (REML) and maximum
likelihood (ML). An R markdown document that generated this html file
is available on GitHub: https://github.com/VCMason. (HTML 5545 kb)

Additional file 3: Association of DEXI and NSUN2 gene expression to
RAO disease status. Html output of an R markdown document. The file
contains two multiple logistic regressions and one simple logistic
regression showing the association between DEXI gene expression and
disease status. Multiple logistic regression with known confounders as
independent variables, and the simple logistic regression only has the
independent variable of interest (DEXI or NSUN2 gene expression) as the
single covariate. An R markdown document that generated this html file
is available on GitHub: https://github.com/VCMason. (HTML 844 kb)

Additional file 4: Association of ATF7IP2, and GLIPR1L2 gene expression to
RAO disease status. Html output of an R markdown document. The file
contains one multiple logistic regression for each gene ATF7IP2, and
GLIPR1L2. These models quantify the association between gene expression
in ATF7IP2, or GLIPR1L2 and disease status. Four significant surrogate
variables were calculated for the HDE treatment by SVA and therefore none
were included in the model. An R markdown document that generated this
html file is available on GitHub: https://github.com/VCMason. (HTML 866 kb)
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