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Abstract

Background: There has been increasing interest in discovering microbial taxa that are associated with human
health or disease, gathering momentum through the advances in next-generation sequencing technologies.
Investigators have also increasingly employed prospective study designs to survey survival (i.e., time-to-event)
outcomes, but current item-by-item statistical methods have limitations due to the unknown true association
pattern. Here, we propose a new adaptive microbiome-based association test for survival outcomes, namely,
optimal microbiome-based survival analysis (OMiSA). OMiSA approximates to the most powerful association test in
two domains: 1) microbiome-based survival analysis using linear and non-linear bases of OTUs (MiSALN) which
weighs rare, mid-abundant, and abundant OTUs, respectively, and 2) microbiome regression-based kernel
association test for survival traits (MiRKAT-S) which incorporates different distance metrics (e.g., unique fraction
(UniFrac) distance and Bray-Curtis dissimilarity), respectively.

Results: We illustrate that OMiSA powerfully discovers microbial taxa whether their underlying associated lineages
are rare or abundant and phylogenetically related or not. OMiSA is a semi-parametric method based on a variance-
component score test and a re-sampling method; hence, it is free from any distributional assumption on the effect
of microbial composition and advantageous to robustly control type I error rates. Our extensive simulations
demonstrate the highly robust performance of OMiSA. We also present the use of OMiSA with real data
applications.

Conclusions: OMiSA is attractive in practice as the true association pattern is unpredictable in advance and, for
survival outcomes, no adaptive microbiome-based association test is currently available.

Keywords: Microbiome-based survival analysis, Microbiome-based association test, Community-level association
test, Microbial group analysis, High-dimensional compositional data analysis, Phylogenetic tree

Background
The human microbiota is the totality of all microorgan-
isms living in and on the human body [1] and its role in
human health and disease has been increasingly studied
[2–5]. Human microbiota studies have been accelerated
by the advent of next-generation sequencing technologies
which enabled an unbiased characterization of all micro-
organisms, often by targeting the bacterial 16S ribosomal
RNA (rRNA) gene [6, 7]. Diverse microorganisms can be
identified based on sequence similarity to known 16S
rRNA genes and classified into operational taxonomic
units (OTUs) [8]. The OTUs are characterized by their

estimated abundance (e.g., read count or relative abun-
dance) and phylogenetic tree structure (i.e., taxonomical
and evolutionary relationships). Accordingly, various mi-
crobial diversity metrics on the basis of microbial abun-
dance and phylogenetic tree information have been
surveyed in microbiome-based association studies [9]. The
data are also large-scale including numerous OTUs (e.g.,
hundreds to thousands) with the presence of a long tail of
rare microorganisms. We now pursue further discovery of
associated microbial taxa for more integrative assessments
about the root causes of maladies.
Recently, a number of microbiome-based association

tests have been introduced to survey the entire mi-
crobial community (e.g., bacterial kingdom) and mi-
crobial taxa (e.g., phyla, classes, orders, families,
genera, and species). As statistical power from
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massive univariate analyses for individual OTUs is
considerably low due to the requisite multiple testing
correction, here, our focus lies on association tests
for microbial groups of multiple OTUs (i.e., the entire
community (e.g., bacterial kingdom) and higher-level
taxa (e.g., phyla, classes, orders, families, and genera)).
A majority of existing methods (e.g., LEfSe [10],
STAMP [11], DESeq2 [12], and metagenomeSeq-fit
Zig [13]) relate aggregated microbial abundance for
each taxon with health or disease outcome [14]. How-
ever, these methods are subject to a substantial loss
of power as its underlying assumption - the same ef-
fect direction for all associated OTUs - is violated
(e.g., within a taxon of interest, some OTUs are sym-
biotic, while others are pathogenic) [14]. To explain,
when OTUs in a taxon of interest are all positively
(or all negatively) associated with an outcome of
interest (i.e., in the case of the same effect direction),
their positive (or negative) association signals are
amplified in their aggregated abundance, so that we
can powerfully discover the association between the
aggregated abundance and the outcome of interest.
However, when OTUs in a taxon of interest are in
mixed effect directions (i.e., some are positively, while
others are negatively associated with an outcome of
interest), their positive and negative association sig-
nals are canceled out in their aggregated abundance,
so that we cannot discover any (positive or negative)
association between the aggregated abundance and
the outcome of interest. Detailed description and
simulation studies have been addressed in [14]. More-
over, those aggregate-based methods do not utilize
phylogenetic tree structure which considers taxonom-
ical and evolutionary relationships among diverse mi-
croorganisms. As an alternative, distance-based
analysis is popular and, for example, microbiome
regression-based kernel association test (MiRKAT)
[15] is spotlighted in this context. MiRKAT incorpo-
rates diverse ecologically informative distance metrics
(e.g., unique fraction (UniFrac) distance [16–18] and
Bray-Curtis dissimilarity [19]) into its kernel machine
regression framework. As different distance metrics
vary in the extent of the relative contributions from
microbial abundance and phylogenetic tree informa-
tion, they can be most accurate in different true
underlying association patterns, respectively. However,
prior knowledge about the true association pattern is
limited and it is thus difficult to predict which dis-
tance metric is optimal in practice. The adaptive test
of MiRKAT, called Optimal MiRKAT, approximates to
an optimal test adaptively among multiple MiRKAT
tests using different distance metric specifications;
hence, in practice, Optimal MiRKAT is attractive.
OMiAT [14] is a further adaptive test which

approximates to an optimal test adaptively throughout
the sum of powered score tests (SPU) [20] and MiR-
KAT tests. By including SPU tests in the search
space, OMiAT robustly discovers rare, mid-abundant,
and abundant associated lineages along with the func-
tionality of Optimal MiRKAT.
There has also been increasing interest in discovering

microbial taxa that are associated with survival (i.e.,
time-to-event) outcomes on the basis of prospective
study designs (e.g., randomized clinical trials and pro-
spective cohort studies) [21–23]. Survival outcomes are
better informed by examining health or disease progres-
sion at multiple times over a lengthy period of follow-
up. However, all of the above methods can handle only
binary or continuous outcomes at a single time point.
Currently, a remarkable association testing method in
microbiome-based survival analysis is microbiome
regression-based kernel association test for survival
traits (MiRKAT-S) [24]. As with MiRKAT, MiRKAT-S
incorporates distance metrics into its kernel machine re-
gression framework, but is designed to handle survival
outcomes. Plantinga et al. [24] also demonstrated that
MiRKAT-S has higher power than other distance-based
approaches used in prior studies, such as Cox propor-
tional hazards regression followed by principal coordi-
nates analysis [21] or Ward’s agglomerative hierarchical
clustering method [25].
However, MiRKAT-S has three critical issues. First,

Plantinga et al. [24] reports that MiRKAT-S performs
poorly when associated OTUs are rare in abundance.
Microbiome data usually contain mostly rare OTUs and
only few OTUs representing most of the abundance, es-
pecially for gut or oral microbiota which has greater mi-
crobial diversity. This indicates that if the test works
only for few dominant associated OTUs, numerous rare
or mid-abundant taxa are simply ignored. As a remedy,
we introduce a new set of association tests, namely,
microbiome-based survival analysis using linear and
non-linear bases of OTUs (MiSALN), which weigh rare,
mid-abundant, and abundant OTUs, respectively, and its
adaptive testing method, Optimal MiSALN (OMiSALN),
to ensure a robust performance for OTUs with low or
high abundance. Second, MiRKAT-S handles distance
metrics one-by-one and no adaptive testing method is
available. The cherry-picking approach from multiple
item-by-item MiRKAT-S tests cannot correctly control
type I error rate or the requisite multiple testing correc-
tion can lead to a substantial loss of power. Therefore,
we also introduce an adaptive testing method for
MiRKAT-S, namely, Optimal MiRKAT-S (OMiRKAT-S).
Third, as with MiRKAT, MiRKAT-S can assess only the
entire community and is not currently applicable to
higher-level taxa. Thus, we extend its usability as a gen-
eral microbial group analytic method.
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Our major proposed method is a highly adaptive test,
namely, optimal microbiome-based survival analysis
(OMiSA), which creates an optimal test throughout mul-
tiple MiSALN and MiRKAT-S tests. As a result, OMiSA
performs well whether the underlying associated lineages
are rare or abundant by MiSALN and phylogenetically
related or not by MiRKAT-S.
We now present the methodological details of the ap-

proach, and then provide extensive simulations and real
data applications, before discussing limitations and other
feasibilities.

Methods
This section is devoted to describe the methodological
details of our proposed methods. Here, we first organize
our new methods separated from existing methods in
Fig. 1. That is, MiRKAT-S [24] for the individual use of
different distance metrics is an existing method (blue
letters, Fig. 1), and our methods (red letters, Fig. 1) are
its adaptive test, OMiRKAT-S, MiSALN and its adaptive
test, OMiSALN, and OMiSA. Again, OMiSA is our
major proposed method, and the other individual and
sub-adaptive tests are necessary to reach our final des-
tination, OMiSA.

Models and notations
Suppose that there are n subjects, p OTUs, and q covari-
ates (e.g., age and sex) and the subscripts, i, j, and k, in-
dicate a subject, an OTU, and a covariate, respectively.
For each subject i, let Ti be a survival time, Ci be a cen-
soring time, and Yi be an observed time. Then, Yi is de-
fined as Yi = min(Ti, Ci) and an event indicator, δi, is
defined as δi = I(Ti ≤ Ci). The ordered observed event
times are denoted by τ1, ..., τm, where m is the number
of total events (m ≤ n), and the risk set at time τg, is de-
noted by Rg, for g = 1, ..., m. In addition, for each subject
i, denote a p × 1 vector, Zi, for the microbial composition
of the entire community or a higher-level taxon, marked
for its elements in OTU-level relative abundance as Zij

for j = 1, ..., p, and denote a k × 1 vector, Xi, for the co-
variates, marked for its elements as Xik for k = 1, ..., q.
Here, we assume that n subjects are identically and

independently distributed (e.g., random subjects) and Ci

is independent of Ti conditional on Zi and Xi.
To relate microbial composition with survival out-

comes adjusting for covariates, we consider a Cox pro-
portional hazard model (Eq. 1) [26].

λi tð Þ ¼ λ0 tð ÞeΣq
k¼1αkXikþh Zið Þ; ð1Þ

where λi(t) is the conditional hazard function given Zi

and Xi, λ0(t) is the baseline hazard function, α’s are coef-
ficients for the effect of covariates (e.g., age and sex),
and h(Zi) is a function which characterizes the relation-
ship between microbial composition and survival out-
comes. For example, if we specify h(Zi) =

Pp
j¼1 β jZij , we

can relate the linear effects of OTUs in relative abun-
dance to the log hazard rate. The non-linear effects of
OTUs in relative abundance can also be surveyed by the
use of non-linear bases of OTUs (e.g., polynomials/
splines) [27]. Moreover, we can specify h(Zi) more flex-
ibly by the use of different positive semi-definite kernel
functions modeled for different distance/similarity met-
rics among subjects [27, 28]. In the following sections,
we introduce two different machineries for the specifica-
tion of h(Zi) - one for the use of different linear/non-lin-
ear bases of OTUs and the other for the use of different
kernel functions - and illustrate how their performance
varies by different true underlying association patterns.
The former is a newly introduced method, MiSALN.
The latter is an existing method, MiRKAT-S [24]; hence,
we describe its main ideas and formula and refer to its
original paper for more details. Of most importance is
that we introduce new adaptive testing methods which
approximate to an optimal test for each of the two ma-
chineries (namely, OMiSALN and OMiRKAT-S, respect-
ively) and throughout the two different machineries
(namely, OMiSA).

MiSALN
Suppose that β = (β1,…, βp)

T is the vector of regression
coefficients for p OTUs. We are particularly interested
in testing the null hypothesis of no association between
the microbial composition consisting of those p OTUs
and survival outcomes, H0: β = (β1,…, βp)

T = 0.

Fig. 1 An overview which organizes existing methods (blue letters) and our new methods (red letters). Our major proposed method is OMiSA
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Assuming the coefficients, β1, ..., βp, are random and in-
dependent with mean zero, a common variance, σ2, and
a pairwise correlation matrix, Ρ, (i.e., E(β) = 0 and Cov(β)
= σ2Ρ), the same null hypothesis and its corresponding
alternative can be formulated as a variance-component
score test with Eq. 2 [28–32].

H0 : σ2 ¼ 0vs:H1 : σ2 > 0 ð2Þ
Note here that any full distributional form for the coeffi-

cients, β1, …, βp, was not required, but we need to specify
the correlation matrix, Ρ [29]. For the choice of Ρ, we can
consider different choices which have greater deviations
from H0 in directions corresponding to the larger eigen-
values of P [29]. However, we consider the p × p identity
matrix, Ip, for no correlation over βj’s for MiSALN [30].
The Cox proportional hazard model for the null hy-

pothesis can be formulated with Eq. 3.

λi tð Þ ¼ λ0 tð ÞeΣq
k¼1αkXik ð3Þ

Based on the maximum likelihood estimates, α̂’s, the
estimated cumulative hazard rate for subject i at its ob-

served time, Λ̂i , can be derived as in Eq. 4 [29]. We here
used Efron’s approximation [33] to handle observations
which have tied survival times.

Λ̂i ¼ Στg ≤Yi

exp Σq
k¼1α̂kXik

� �
Σ f∈Rg exp Σq

k¼1α̂kXfk
� � ð4Þ

Based on α̂ ’s and the resulting estimates, Λ̂i’s, Verweij
et al. [29] derives a variance-component score test statis-
tic to test H0: σ

2 = 0 against H1: σ
2 > 0 as in Eq. 5.

U ¼ ðd−Λ̂ÞTRðd−Λ̂Þ; ð5Þ
where d = (δ1,…, δn)

T, ê = ðΛ̂1;…; Λ̂nÞT , and R is the
n × n correlation matrix for n subjects that we need to
specify. Here, d−Λ̂ is the vector of the estimated martin-
gale residuals under the null model (Eq. 3). Verweij et al.
also derives the mean and variance of U and demon-
strates that the null distribution of the standardized
score test closely approximates to standard normal dis-
tribution [29]. However, since our proposed tests are
based on a residual permutation-based scheme for p-
value calculation and the mean and variance of U are
evaluated under the null, the unstandardized score test,
U, is sufficient in our study.
Of importance is that with different specifications for R, we

can survey different correlation structures among subjects.
For MiSALN, our choices for R are formulated with Eq. 6.

RMiSALN γð Þ ¼ ZγZγT ; ð6Þ
where Z is the n × p matrix for OTU relative abundances
(i.e., compositions), Z = (Z1,…, Zn)

T, and γ (ϵ ℝ+) powers

Z and needs to be pre-specified. The variance-
component score test with this correlation matrix, RMi-

SALN(γ), can be simply derived as in Eq. 7.

UMiSALNðγÞ ¼ ðd−Λ̂ÞTRMiSALNðγÞðd−Λ̂Þ; ð7Þ

The correlation structure, RMiSALN(γ), describes pair-
wise similarities in microbial abundance among subjects
and the variance-component score test, UMiSALN(γ), rep-
resents the degree of overall association between RMi-

SALN(γ) and the estimated martingale residuals [30, 31].
Here, only the microbial abundance information is con-
tributed and no phylogenetic tree information is
incorporated.
Note that, γ transforms OTUs to the γ’s power of the

original relative abundances, so that different bases of
OTUs can be surveyed. When γ = 1, the original scale of
OTUs is used for testing the linear effect of OTUs. The
resulting correlation matrix, ZZT, is equivalent to the
linear kernel in kernel machine regression models [28]
and has also been used for a gene-set association testing
method, namely, Global Test [30]. When γ ≠ 1, the non-
linear bases of OTUs can be surveyed. Here, we demon-
strate different γ value specifications as different weight-
ing schemes for OTUs in relative abundance as follows.
As γ increases, abundant OTUs will be relatively
weighted, while rare OTUs will gradually be lost, but
vice versa as γ decreases. Therefore, we can expect that
when abundant OTUs are associated with survival out-
comes, a large value of γ can be more suitable by
weighting them more, but vice versa when rare OTUs
are associated. However, in practice, the true underlying
association pattern is mostly unknown and we cannot
presume whether rare, mid-abundant, or abundant
OTUs are associated with survival outcomes. Therefore,
we propose a data-driven approach, Optimal MiSALN
(OMiSALN), which approximates to an optimal test
adaptively through different γ value specifications and
its test statistic is formulated with Eq. 8.

QOMiSALN ¼ min
γ∈Γ

PMiSALN γð Þ; ð8Þ

where Г is a set of candidate γ values and PMiSALN(γ) is
the estimated p-value for MiSALN(γ), where γϵГ. We
can observe that QOMiSALN is the minimum p-value
among different MiSALN(γ) tests, where γϵГ. Again,
QOMiSALN itself is a test statistic which requires its own
p-value estimation. We use a residual-based permutation
method to estimate p-values for individual MiSALN(γ)
tests, where γϵГ, and OMiSALN (see Additional file 1).
For a set of candidate γ values, we used Г = {1/4, 1/3,

1/2, 1} and it was sufficient in our simulations and real
data analysis.
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MiRKAT-S
The key idea behind MiRKAT-S [24] is that diverse dis-
tance metrics (e.g., UniFrac distance [16–18] and Bray-
Curtis dissimilarity [19]) can be incorporated into the
kernel machine Cox proportional hazards model. Hence,
we can survey the relationship between ecologically re-
lated metrics and survival outcomes on health or disease
with covariate adjustments (e.g., age and sex) [24]. First,
we need to specify a sample-by-sample pairwise distance
matrix based on a chosen distance metric and transform
it into a kernel (similarity) matrix using the kernel for-
mula, Eq. 9.

K ¼ −
1
2

�
I−
110

n

�
D2

�
I−
110

n

�
; ð9Þ

where D is the n × n pairwise distance matrix and D2 is
its element-wise square, I is the n × n identity matrix,
and 1 in 11′ is the vector of n ones. To ensure the ker-
nel matrix, K, to be positive semi-definite, negative ei-
genvalues are replaced with zero [24]. Then, using the
resulting kernel matrix, the variance-component score
statistic can be formulated with Eq. 10 [24, 27].

UMiRKAT-SðkÞ ¼ ðd−Λ̂ÞTKðkÞðd−Λ̂Þ; ð10Þ

where k is an index for a particular kernel matrix based
on a chosen distance metric. Plantinga et al. [24] has
also proposed a modified score statistic which accounts
for over-dispersion, but since we calculate p-values
based on a residual permutation-based method and the
dispersion parameter, 1

ðd−Λ̂ÞTðd−Λ̂Þ
, is evaluated under the

null, the variance-component score test statistic of Eq.
10 is sufficient in our study.
Importantly, different distance metrics reflect different

relative contributions from microbial abundance and
phylogenetic tree information; as such, the performance
of MiRKAT-S differs according to the choice of distance
metric and the true underlying association pattern
[16–18, 24]. The UniFrac distances are constructed
based on phylogenetic tree information and the con-
tribution of microbial abundance is modulated by dif-
ferent weighting schemes. The unweighted UniFrac
distance incorporates only microbial presence/absence
information so that it is most inclined to phylogenetic
tree information [16], whereas the weighted UniFrac
distance further incorporates microbial abundances [17].
In this context, the generalized UniFrac distance is
regarded as a compromised version between the un-
weighted and weighted UniFrac distances [18]. In contrast,
the Bray-Curtis dissimilarity [19] does not incorporate any
phylogenetic tree information so that it is most inclined to
microbial abundance information. Accordingly, when as-
sociated OTUs are phylogenetically related, the UniFrac

distances can be better choices than Bray-Curtis dissimi-
larity, but vice versa when they are not phylogenetically
related. However, we cannot predict which distance metric
is optimal to our study. Therefore, here, we proposed a
data-driven approach, namely, Optimal MiRKAT-S
(OMiRKAT-S), which is taken adaptively through multiple
distance metric specifications and its test statistic is for-
mulated with Eq. 11.

QOMiRKAT−S ¼ min
k∈ψ

PMiRKAT−SðkÞ; ð11Þ

where Ψ is a set of candidate distance metrics and
PMiRKAT − S(k) is the estimated p-value for UMiRKAT − S(k),
where kϵΨ. Note that, OMiRKAT-S is similar to Optimal
MiRKAT [15], but the difference is that OMiRKAT-S han-
dles survival outcomes, while Optimal MiRKAT handles
binary or continuous outcomes at a time point. Here
again, QOMiRKAT − S is the minimum p-value among differ-
ent MiRKAT-S(k) tests, where kϵΨ, and it is a test statistic
that requires its own p-value estimation. Similar to MiS-
ALN(γ)/OMiSALN, a residual-based permutation method
was used to estimate p-values for individual MiRKAT-S(k)
tests, where kϵΨ, and OMiRKAT-S (see Additional file 1).
For a set of candidate distance metrics, Ψ, we used Ψ =

{unweighted UniFrac (KU), generalized UniFrac(0.5) (K0.5),
weighted UniFrac (KW), Bray-Curtis (KBC)}, where K0.5 is
the generalized UniFrac distance with the parameter, ϴ =
0.5, as suggested [9].

OMiSA
Our major proposed method, OMiSA, approximates to
an optimal test adaptively throughout all the different
variance-component score tests of MiSALN(γ), where
γϵГ, and MiRKAT-S(k), where kϵΨ, and its test statistic
can be simply formulated with Eq. 12.

QOMiSA ¼ minðQOMiSALN;QOMiRKAT-SÞ ð12Þ

QOMiSA is the minimum p-value among different MiS-
ALN(γ) tests, where γϵГ, and MiRKAT-S(k) tests, where
kϵΨ. It is a test statistic, like QOMiSALN (Eq. 8) and
QOMiRKAT − S (Eq. 11). We do not report this genuine
minimum p-value as the final p-value to be reported for
OMiSA, but estimate its p-value using a residual
permutation-based method (see Additional file 1). We
emphasize that throughout the machineries of MiSALN
and MiRKAT-S, OMiSA powerfully discovers microbial
taxa whenever their underlying associated OTUs are rare
or abundant by MiSALN and phylogenetically related or
not by MiRKAT-S. Our extensive simulations in later
sections also demonstrate the robust performance of
OMiSA.
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Assessment of higher-level taxa
We extend all the individual and adaptive tests as gen-
eral group analytic methods which can assess any
higher-level taxon (e.g., phyla, classes, orders, families,
and genera), not only the entire community (e.g., bacter-
ial kingdom), as long as they include multiple OTUs
with phylogenetic tree structure. The only matter that
requires attention is that when we assess higher-level
taxa, their OTU relative abundances (i.e., compositions)
are computed based on total reads in the entire commu-
nity (i.e., OTU relative abundances are not sub-
compositions which have unit sum to each higher-level
taxon). Specifically, such normalization needs to be ap-
plied to the OTU relative abundances for MiSALN and
to the UniFrac distances for MiRKAT-S.

A graphical representation
As for visual representations of discoveries, we used an
existing software tool, GraPhlAn [34], which is ad-
dressed later in our real data analysis. As GraPhlAn is
flexibly customizable with beautiful circular representa-
tions of hierarchical taxonomic tree [34], here, we do
not introduce any new graphical representation and sug-
gest to use GraPhlAn after obtaining outcomes from
OMiSA.

Results
Simulations
This section is devoted to simulations which evaluate in-
dividual MiSALN and MiRKAT-S tests and their adap-
tive tests, OMiSALN, OMiRKAT-S, and OMiSA in
terms of type I error and statistical power. While the as-
sociation testing methods can be applied to higher-level
taxa, as a demonstration, here, we survey the entire
community.

Simulation design
We simulated microbiome data according to prior ap-
proaches [35] which are based on a Dirichlet-multinomial
distribution reflecting real microbial composition. We first
estimated proportion means and a dispersion parameter to
be inserted into the Dirichlet-multinomial distribution
using actual intestinal microbiome data of non-obese dia-
betic (NOD) mice in [23]. The complete microbiome data
include NOD mice in different treatment groups and se-
quencing time points; however, as a demonstration, we se-
lected 35 fecal samples from NOD mice at 6 weeks of age
in the control group which had not been disturbed by anti-
biotic exposure. Then, 353 OTUs which have proportional
mean abundance > 10−4 were included in the analysis. The
total reads per sample was set to be 1000 [15, 24]. Based
on these specifications, we simulated OTU counts for
small (n = 50) and large (n = 100) samples, respectively,
from the Dirichlet-multinomial distribution.

Two covariates for age and sex were simulated from a
normal distribution, N(50, 52) and a Bernoulli distribu-
tion, Bern(0.5), respectively. The survival time, Ti, was
simulated through Eq. 13, assuming proportional haz-
ards and a Weibull distribution, Weibull(2,2), for the
baseline at age = 50 and sex = 0 [28, 36].

Ti ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−

4logUi

expð0:5ðagei−50Þ þ 0:5sexi þ Σp
j¼1β jscaleðZi jÞ

s

ð13Þ
where Ui was randomly sampled from a uniform distri-
bution, Unif(0,1), βj is a coefficient for each OTU j =
1,…,p, and scale(Zij) =

Zij−meanðZ1 j;Z2 j;…;ZnjÞ
SDðZ1 j;Z2 j;…;ZnjÞ , for subjects i =

1, …, n and OTUs j = 1, …, p. The censoring time, Ci,
was simulated based on uniform distribution with two
different schemes to survey different extent of censoring: 1)
Ci ~ Unif(0,10) which is of the estimated proportions of
censored outcomes, 25.78%, and 25.88%, for small (n = 50)
and large samples (n = 100), respectively, and 2) Ci ~
Unif(0,5) which is of the estimated proportions of censored
outcomes, 40.42% and 40.48%, for small (n = 50) and large
samples (n = 100), respectively (Table 1). Then, the ob-
served time, Yi, and the event indicator, δi, were calculated
by the formula, Yi = min(Ti, Ci) and δi = I(Ti ≤ Ci),
respectively.
Empirical type I error rates with the proportions of cen-

sored outcomes were estimated by setting β = (β1,…, βp)
′ =

0. Statistical power was estimated with four different sce-
narios: (i), 10 most abundant OTUs; (ii), 10 random OTUs;
(iii), 10 least abundant OTUs; and (iv), OTUs in a selected

Table 1 Estimated type I errors and proportions of censored
outcomes for different sample sizes and censoring schemes
(Unit: %)

Method Small samples (n = 50) Large samples (n = 100)

Unif(0,10) Unif(0,5) Unif(0,10) Unif(0,5)

MiRKAT-S(KU) 4.97 4.99 4.94 4.99

MiRKAT-S(K0.5) 4.99 4.98 5.10 5.03

MiRKAT-S(KW) 5.00 4.92 5.09 5.06

MiRKAT-S(KBC) 4.98 4.93 5.00 4.99

OMiRKAT-S 4.97 4.91 5.06 5.12

MiSALN(1/4) 4.99 4.96 4.91 5.13

MiSALN(1/3) 5.04 4.95 4.93 5.13

MiSALN(1/2) 4.98 4.92 4.88 5.06

MiSALN(1) 4.96 4.93 4.90 5.03

OMiSALN 5.01 4.93 4.92 5.07

OMiSA 4.94 4.94 4.98 5.15

Prop. of Censoring 25.78 40.42 25.88 40.48

KU, K0.5, KW, and KBC, indicates the use of unweighted UniFrac, generalized
UniFrac with ϴ = 0.5, weighted UniFrac, and the Bray-Curtis dissimilarity kernels,
respectively, for MiRKAT-S [24]
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cluster performing the partitioning-around-medoids
(PAM) algorithm [37], which are associated with survival
outcomes, respectively. The first three scenarios evaluate
discovery ability when abundant, random/mid-abundant,
or rare OTUs are associated. For the fourth scenario, we
distributed all OTUs into 10 clusters using the PAM algo-
rithm on the basis of their cophenetic distances in the real
phylogenetic tree. The 10 clusters have contained 7.8%,
8.2%, 13.9%, 6.6%, 33.3%, 8.3%, 1.1%, 1.8%, 17.2%, and 1.8%
of total reads, respectively, and in each simulation iteration,
the selection of one associated cluster was randomized to
overcome arbitrary selection. The fourth scenario addition-
ally reflects phylogeny, which may provide a more realistic
evaluation.
We also surveyed different effect sizes and directions

for the associated OTUs. Λ is denoted as a set of indices
for the associated OTUs. For the same effect direction,
we set βj ∈Λas a vector of the elements randomly sam-
pled from Unif(0,1), Unif(0,2), or Unif(0,3) and for the
mixed effect direction, we set βj ∈Λas a vector of the ele-
ments randomly sampled from Unif(− 1,1), Unif(− 2,2),
or Unif(− 3,3).

Simulation results
Type I error
We can observe that empirical type I error rates are
well-controlled at the significance level of 5% across all
the individual and adaptive tests for different censoring
schemes and for both small samples (n = 50) and large
samples (n = 100) (Table 1).

Power
As we observed similar comparative performances of in-
dividual and adaptive tests for different sample sizes and
censoring schemes, we include here only the outcomes
for large samples (n = 100) and the censoring scheme,
Unif(0,10), and moved all of the other outcomes to
Additional material (see Additional file 2: Figure S1,
Additional file 3: Figure S2, Additional file 4: Figure S3,
Additional file 5: Figure S4, Additional file 6: Figure S5,
Additional file 7: Figure S6). Figs. 2 and 3 report esti-
mated powers for the same effect direction and mixed
effect directions, respectively. We observe that with the
increase of effect size, power increases for all the
methods under any simulation setting (Figs. 2 and 3), as
expected. We also observe that MiRKAT-S/OMiRKAT-S
gains slightly more power than MiSALN/OMiSALN for
the same effect direction, but it is vice versa for mixed
effect directions (Figs. 2 and 3).
MiSALN is powerful using either a large γ value when

abundant OTUs are associated with survival outcomes
(Figs. 2a and 3a), or using a small γ value when rare
OTUs are associated (Figs. 2c and 3c), as expected. For
MiRKAT-S, the Bray-Curtis dissimilarity gain power for

the first two scenarios in which only the microbial abun-
dances for abundant and random OTUs influence the
association (Figs. 2a, b and 3a, b), while the UniFrac dis-
tances gain power for the fourth scenario in which
phylogenetic tree information is reflected (Figs. 2d and 3d),
as expected.
It is notable that the Bray-Curtis dissimilarity is most

powerful across all the tests when abundant OTUs are
associated with survival outcomes, resulting in high
power for OMiRKAT-S (Figs. 2a and 3a). However, as re-
ported in [24], the major problem of MiRKAT-S is that
it is underpowered using any distance metric when rare
OTUs are associated with survival outcomes; as such,
OMiRKAT-S is also underpowered (Figs. 2c and 3c). In
contrast, we observed that MiSALN using a small γ
value gains power when rare OTUs are associated with
survival outcomes, resulting in power for OMiSALN
(Figs. 2c and 3c). Overall, we observe that individual
item-by-item tests fit specific scenarios, respectively, and
there is no single test which fits every scenario. Remark-
ably, OMiSA is highly robust, approaching the most
powerful performance, throughout the four scenarios in
which abundant, random, and rare OTUs are associated
with survival outcomes and phylogenetic tree informa-
tion is present (Figs. 2a-d and 3a-d).

Software comparison
For individual MiRKAT-S tests, we also tried the software
package, MiRKATS [24], to determine whether there is
any disparity between software facilities. For the use of
MiRKATS, we applied the permutation method for small
samples (n = 50) and the analytic p-value calculation for
large samples (n = 100), as suggested [24]. We show that
two software packages, OMiSA (our software) and MiR-
KATS [24], produce nearly identical power estimates for
individual MiRKAT-S tests (see Additional file 8:
Figure S7, Additional file 9: Figure S8, Additional file 10:
Figure S9, Additional file 11: Figure S10, Additional
file 12: Figure S11, Additional file 13: Figure S12,
Additional file 14: Figure S13, Additional file 15:
Figure S14).

Real data analysis
Early-life interactions between microbiota and their hosts
have been considered as potential key factors in immuno-
logical and metabolic development [38]. Type 1 diabetes
(T1D) is an autoimmune disease which is growing in
incidence with decreasing age of onset [39]. Livanos
et al. performed a microbiome profiling study to sur-
vey whether antibiotic-mediated gut microbiome per-
turbation accelerates onset of T1D in mice [23]. For
the study, NOD mice were exposed to different anti-
biotic treatments or not, and their intestinal microbial
populations were sequenced over time, as described
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in detail [23]. In brief, fecal, cecal, or ileal specimens
from NOD mice were collected and the V4 region of
bacterial 16S rRNA gene was amplified by triplicate
PCR (F515/R806) using barcoded fusion primers.
OTUs, as well as their phylogenetic relationships,
were examined using the QIIME pipeline [8].
The data are extensive and motivate diverse study ori-

entations, but, here, we analyze whether perturbed mi-
crobial composition by antibiotic use is associated with
T1D survival. This analysis is necessary as a part of me-
diation analysis to understand the process by which the
antibiotic use causally affects T1D development [40]. As
a demonstration, we used 19 fecal samples from male
NOD mice at 6 weeks of age in therapeutic-dose pulsed
antibiotic (PAT) treatment. The mice were followed for

30 weeks, during this time, 10 mice developed T1D,
while 9 mice did not. Livanos et al. [23] also performed
analyses to determine differences in relative abundance
of genera between the T1D-free and T1D-development
groups at 30 weeks of follow-up. However, those ana-
lyses were limited to surveying the binary T1D status
(T1D-free vs. T1D-development) at an arbitrary single
time point. Thus, we re-analyzed the data by taking the
entire survival process into account using our proposed
methods. We applied a filtering rule, a proportion mean
> 10−4, identifying 120 OTUs in the entire community.
We first conducted association testing for the entire
community (i.e., bacterial kingdom) using the individual
and adaptive tests. Then, we tested microbial taxa at five
different taxonomic levels, phylum, class, order, family,

a b

c d

Fig. 2 Power estimates for the individual and adaptive tests. The censoring scheme, Ci ~ Unif(0,10), and the same effect directions, where βj ∈ Λ is
a vector of the elements sampled from Unif(0,1) (blue), Unif(0,2) (yellow), or Unif(0,3) (red), for a large sample size (n = 100) were surveyed. KU, K0.5,
KW, and KBC, indicates the use of unweighted UniFrac, generalized UniFrac with ϴ = 0.5, weighted UniFrac, and the Bray-Curtis dissimilarity kernels,
respectively, for MiRKAT-S [24]. (a 10 most abundant OTUs are associated. b 10 random OTUs are associated. c 10 least abundant OTUs
are associated. d OTUs in a chosen cluster are associated)
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and genus, respectively. We tested microbial taxa that
have ≥2 OTUs in the data using OMiSA and microbial
taxa that have only one OTU in the data using univariate
Cox proportional hazards models. At each taxonomic
level, we omitted OTUs that do not have any taxonomy
assignment. For multiple testing correction, we applied
the Benjamini-Hochberg (BH) procedure [41] per taxo-
nomic level. However, we are not restricted to the use of
BH procedure for multiple testing correction and other
less conservative procedures might be considered [42]. No
covariate adjustments were included as with [23].
Table 2 reports adjusted p-values for the entire com-

munity using the individual and adaptive tests. Based on
either of the adaptive tests, OMiSALN, OMiRKAT-S,
and OMiSA, we observe that the microbial composition

of the entire community is significantly associated with
T1D survival (Table 2). Here, we further observe that
MiRKAT-S using the Bray-Curtis dissimilarity has the
smallest p-value among all the individual tests and the
p-value for MiSALN is decreasing as the specified γ
value is increasing (Table 2). This may indicate that rela-
tively abundant OTUs in the entire community are asso-
ciated with T1D survival in microbial abundance.
We created Fig. 4 using a software tool, GraPhlAn, for

circular representations of hierarchical taxonomic tree
[34] and Fig. 4 summarizes discovered taxa (red circles).
We observe that the microbial composition of a phylum,
Verrucomicrobia (adj. p: 0.005), a class, Verrucomicrobiae
(adj. p: <.001), an order, Verrucomicrobiales (adj. p: <.001),
two families, Verrucomicrobiaceae (adj. p: <.001) and

a b

c d

Fig. 3 Power estimates for the individual and adaptive tests. The censoring scheme, Ci ~ Unif(0,10), and the mixed effect directions, where βj ∈ Λ is
a vector of the elements sampled from Unif(− 1,1) (blue), Unif(− 2,2) (yellow), or Unif(− 3,3) (red), for a large sample size (n = 100) were surveyed.
KU, K0.5, KW, and KBC, indicates the use of unweighted UniFrac, generalized UniFrac with ϴ = 0.5, weighted UniFrac, and the Bray-Curtis dissimilarity
kernels, respectively, for MiRKAT-S [24]. (a 10 most abundant OTUs are associated. b 10 random OTUs are associated. c 10 least abundant OTUs
are associated. d OTUs in a chosen cluster are associated)
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Streptococcaceae (adj. p: 0.040), and a genus, Akkermansia
(adj. p: 0.012), are significantly associated with T1D survival
(Fig. 4).

Discussion
We described that our computational procedures are
efficient as they are based on the score-based tests
without double permutations (see Additional file 1),
but Plantinga et al.’s analytical p-value calculation -
based on a closed form asymptotic null distribution
suggested for large samples (n > 100) - should be
more efficient [24]. Testing all higher-level taxa
throughout all different taxonomic ranks may impose
a greater computational burden on OMiSA. Thus, for
such complete association mapping, we suggest to use
multi-core computers to simultaneously implement
multiple OMiSA tests. Our software package is cur-
rently written in R to exploit existing R functions, but
the use of lower-level languages (e.g., C or Fortran)
may further enhance its computational performance.
Although OMiSA approaches the smallest p-value and
thus the highest power adaptively, varying p-values
from individual candidate tests may provide some

Table 2 The estimated p-values for the association between
microbial composition of the entire community and T1D survival

Method p-value

MiRKAT-S(KU) 0.043

MiRKAT-S(K0.5) 0.012

MiRKAT-S(KW) 0.009

MiRKAT-S(KBC) 0.004

OMiRKAT-S 0.006

MiSALN(1/4) 0.025

MiSALN(1/3) 0.024

MiSALN(1/2) 0.023

MiSALN(1) 0.022

OMiSALN 0.026

OMiSA 0.006

KU, K0.5, KW, and KBC, indicates the use of unweighted UniFrac, generalized
UniFrac with = 0.5, weighted UniFrac, and the Bray-Curtis dissimilarity kernels,
respectively, for MiRKAT-S [24]

Fig. 4 The circular representations of hierarchical taxonomic tree to organize discovered microbial taxa (red circles) at five different taxonomic
levels, phylum, class, order, family, and genus. The software tool, GraPhlAn, was used [34]
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biological insights on the basis of their methodological as-
pects and simulation outcomes (Figs. 2 and 3). For MiS-
ALN, we may, in reverse, infer that when the use of a
small γ value gains a relatively smaller p-value, rare OTUs
might be associated, but it is vice versa when the use of a
large γ value gains a relatively smaller p-value. Similarly,
for MiRKAT-S, when the use of UniFrac distances gains a
relatively smaller p-value than the use of Bray-Curtis dis-
similarity, associated OTUs might be phylogenetically re-
lated, while when the use of Bray-Curtis dissimilarity gains
a relatively smaller p-value than the use of UniFrac dis-
tances, associated OTUs might not be phylogenetically re-
lated. However, “rare or abundant” and “phylogenetically
related or not” are conceptual terms with no firm defin-
ition, so such interpretations might be challenging.
It is a well-recognized issue in the microbiome re-

search community that the compositional nature of data
renders spurious correlation among microbial markers
by the unit sum constraint per sample. As a remedy, di-
verse data transformation procedures (e.g., log-ratio
transformation [43]) have been studied, but it is still
highly debatable on which procedure is the most robust
one [13, 44]. Thus, here, we did not employ any specific
data transformation procedure, but would let users de-
cide. For example, centered log-ratio transformation [43]
can be considered for OMiSALN as it is usable for either
data format in count or composition.
While we illustrated our proposed methods to be used

for microbiota profiling studies via 16S rRNA gene tar-
get sequencing, they are transferrable to metagenomic
studies via whole microbial genome sequencing [45]. As
long as the data are organized for a group of multiple
count markers with their phylogenetic tree structure,
any of our proposed methods can be readily used.

Conclusions
As current item-by-item approaches have limitations
due to the unknown true association pattern, we intro-
duced three new adaptive tests, OMiSALN, OMiRKAT-
S, and OMiSA, for microbiome-based association studies
with survival outcomes. We ascertained that they are all
statistically valid with well-controlled type I error rates
for different sample sizes and censoring proportions.
Among those, our major proposed method, OMiSA, is
highly attractive, as it is robustly powerful through a
breadth of association patterns. We also presented that
it is not restricted to test the entire community, but also
applicable to any taxonomic level above species, and our
residual-based permutation method always produces a
closed form p-value (see Additional file 1 [14, 15, 20,
46]). Consequently, we recommend that OMiSA can ex-
tensively be used for microbiome-based survival analysis
as a robust group analytic method.
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