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Abstract

Background: SNP panels that uniquely identify an individual are useful for genetic and forensic research. Previously
recommended SNP panels are based on DNA profiles and mostly contain intragenic SNPs. With the increasing
interest in RNA expression profiles, we aimed for establishing a SNP panel for both DNA and RNA-based
genotyping.

Results: To determine a small set of SNPs with maximally discriminative power, genotype calls were obtained from
DNA and blood-derived RNA sequencing data belonging to healthy, geographically dispersed, Dutch individuals.
SNPs were selected based on different criteria like genotype call rate, minor allele frequency, Hardy–Weinberg
equilibrium and linkage disequilibrium. A panel of 50 SNPs was sufficient to identify an individual uniquely: the
probability of identity was 6.9 × 10− 20 when assuming no family relations and 1.2 × 10− 10 when accounting for the
presence of full sibs. The ability of the SNP panel to uniquely identify individuals on DNA and RNA level was
validated in an independent population dataset. The panel is applicable to individuals from European descent, with
slightly lower power in non-Europeans. Whereas most of the genes containing the 50 SNPs are expressed in various
tissues, our SNP panel needs optimization for other tissues than blood.

Conclusions: This first DNA/RNA SNP panel will be useful to identify sample mix-ups in biomedical research and
for assigning DNA and RNA stains in crime scenes to unique individuals.
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Background
Over the past years, DNA profiles have found increasing
use in the identification of human samples: they are
ideal for sample tracking in biomedical studies and
forensic investigations. In recent years, joint analysis of
DNA and RNA has proven to be valuable: 1) Forensic
investigations where RNA profiles may complement
DNA profiles, and may be used to establish the tissue
origin of the specimen [1], wound age, post-mortem
interval, and the age of stains [2–5]; 2) Population

research in which the genetic component of gene ex-
pression is studied.
Single nucleotide polymorphisms (SNPs) and other

genetic markers like mitochondrial haplotypes, Y
chromosomal markers and short tandem repeats (STRs)
are all used for individual identification. Mitochondrial
DNA (mtDNA) is found in both females and males but
it is inherited only through the mother, which makes it
impossible to differentiate between mothers and off-
spring [1, 6]. Y chromosome, a male-specific part is
widely used in genetics studies and forensic data analysis
particularly in cases of sexual assault, although identifi-
cation of individuals using Y chromosome DNA analysis
is limited to non-related subjects [6–8]. STRs, regions
with short repeat units (usually 2–6 base pairs in length),
are highly informative because of the large number of
alleles present even in genetically rather homogeneous
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populations [9–11]. Despite their high discriminatory
power, they have some limitations such as required large
amplicon sizes, high mutation rates, and the presence of
artefacts, which can negatively influence the downstream
analysis [12, 13]. To overcome these limitations, SNPs
have been more recently introduced for individual iden-
tification [14].
SNPs are defined here as single nucleotide substitu-

tions that occur in more than 1 % of the general
population. SNP assays can be used for multiple types
of genetics studies. A recent review by Kayser and de
Knijff provides an overview of recent advances in the
use of SNPs for forensic investigation [15]. Many
studies have discussed the advantages of SNPs
compared to STRs, including low mutation rates, fast
genotyping, high abundance in the genome, and straight-
forward detection using high-throughput technologies
[16–20]. Kidd et al. [21] described a set of SNPs with high
heterozygosity and low frequency variation in differ-
ent populations, both helpful characteristics for an
individual identification panel. In the last decade,
several research groups have found valuable alterna-
tive individual identification SNP (IISNP) panels for
different populations in the world [14, 22–26].
Pakstis et al. [20] selected 86 unlinked candidate
IISNPs for 44 major populations across the world.
Also, recently an IISNP panel for global forensic
casework was established (Illumina, 2015). Moreover,
research groups have tried to develop new SNP
markers to improve their discrimination power using
high throughput data sets [13, 27, 28]. However,
these panels mostly consist of intragenic SNPs or
SNPs in genes that are not expressed in blood or
other tissues relevant for forensic identification.
Therefore, there is no suitable panel that contains a
minimum of informative SNPs that can be used on
both DNA and RNA specimens.
To address the limitations of current IISNP panels, we

present a small and powerful IISNP panel. When turned
into a multiplex assay, this panel can be exploited for
unequivocal identification of individuals in both DNA
and RNA specimens in forensic investigations. Moreover
the panel can be used to identify sample mix-ups in
human gene expression studies, which have been
demonstrated to severely affect the power of such
studies [PMID: 21653519].

Methods
Sample collection and sequencing
Several Dutch biobanks contributed to sample collection
of Dutch ancestry (with parents born in the Netherlands)
within the Biobanking and Biomolecular Research
Infrastructure-Netherlands (BBMRI-NL), established as a
national node of the European BBMRI infrastructure in

the Netherlands [29]. Our DNA datasets are derived from
Genome of the Netherlands (GoNL), a whole-genome-
sequencing effort within BBMRI-NL consisting of 250
representative parent-offspring families widely dispersed
across the Netherlands (231 trios and 19 quartets, of
which 11 had monozygotic twins and 8 had dizygotic
twins), which aims to characterize DNA variation in the
Dutch population. DNA-based genotype calls were de-
rived from DNA isolated from blood [29].
The Biobank-based Integrative Omics Studies Consortium

(BIOS Consortium) is also part of BBMRI-NL. Its aim is to
create a large-scale data infrastructure and to bring together
BBMRI researchers focusing on integrative omics studies in
Dutch biobanks. The BIOS Consortium applies a functional
genomics approach that integrates genome-wide genetic data
with data on the epigenome and transcriptome. The RNA
data were derived from individuals from seven Dutch bio-
banks participating in the BIOS Consortium (LL, LifeLines
Cohort Study; LLS, Leiden Longevity Study; RS, Rotterdam
Study; CODAM, Cohort on Diabetes and Atherosclerosis
Maastricht; NTR, the Dutch Twin Registry; PAN, Prospect-
ive ALS study Netherlands). Globin RNAs were removed
from whole blood and the polyA fraction of the remaining
RNA was subjected to RNA sequencing using HiSeq2000 se-
quencers and were analyzed as described by [30]. RNA-Seq
data are available in the European Genome-Phenome
Archive (EGA) under accession: EGAD00001001623.
Additionally, for each sample microarray-derived SNP
data (Immunochip on all samples and at least one
other GWAS array per sample) were generated by the
biobanks [30–33]. Sequencing and the primary
analysis of the data was performed within the BIOS
and GoNL working groups. Variant calling was done
using Samtools (v1.1) and Varscan (v2.3.7) and geno-
type calling then was performed at the SNP sites. We
have carried out further analysis based on RNA-based
genotypes calling on 2115 samples (after removing
related samples) (Additional file 1: Table S1).

Filtering and identifying SNPs
Our strategy and criteria are shown in Fig. 1. Briefly, the
allele frequencies for each SNP were calculated by geno-
type counting within population assuming each marker
is a two-allele, co-dominant system. Genotype frequen-
cies and maximum/minimum allele frequencies were
then calculated based on allele frequencies. Reference al-
leles were extracted from Ensembl GRCh37 release 84
and alternative alleles were acquired for each SNP.
Alternative allele frequencies (AAF) were measured and,
minor allele frequency (MAF) was calculated based on
the frequency of least common allele for each SNP in
population. Then we have eliminated: 1) SNPs with
genotype call rate less than 90%, 2) SNPs with more
than three genotypes or more than two alleles, 3) SNPs
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with MAF less than 0.2 in both DNA-Seq and RNA-Seq
data. To further filtration, the Hardy–Weinberg equilib-
rium (HWE), and linkage disequilibrium (LD) tests were
used. Also, we have ignored SNPs located on human
leukocyte antigen (HLA) loci where the SNP calls are
prone to artefacts, particularly in NGS-derived datasets
(Fig. 1). Finally, consistency was determined by analyzing
the AAF in the RNA and DNA data from the same set
of 2115 individuals (Additional file 1: Table S1), and 50 in-
dependent SNPs were selected with high MAF, high het-
erozygosity and no LD between them in our population.
The selected SNPs were compared with previously

published panels such as SNPforID 52-plex, 75 Chinese
SNPs, 30 Korean SNPs and 92 IISNPs [20, 23, 34, 35].
Furthermore, the AAF of the 50 SNPs were compared to
1000 Genomes, Exome Aggregation Consortium (ExAC),
NHLBI GO Exome Sequencing Project (Go.ESP) and the
1000 Genomes phase-3 populations. Moreover, the
predicted effect of our variants on protein sequence was
extracted from Ensembl. R scripts implementing all these
filtering steps.

Statistical analysis
Observed heterozygosity and expected heterozygosity were
estimated based on genotype counts and allele frequencies,
respectively. So, deviation from HWE was determined by

comparing the expected and observed number of individuals
with each possible genotype using Fisher exact test. The
p-values of the HW tests were corrected for multiple testing
using the method developed by Benjamin and Hochberg
[36], implementing a false discovery rate (FDR) of 1%.
To evaluate statistical independence of the SNPs, r2

was calculated for all unique pairwise combinations of
the common SNPs between DNA-Seq and RNA-Seq
data. The LD values were used to determine whether
there was any evidence for significant linkage among
the markers. In addition, heterozygosity, fixation
index (also called the inbreeding coefficient, is defined
as (He – Ho) / He (where He is expected heterozy-
gosity and Ho is observed heterozygosity). It may
range from − 1 to + 1. Values close to zero are
expected under random mating, while substantial
positive values indicate inbreeding or undetected null
alleles. Negative values indicate excess of heterozygos-
ity, due to negative assortative mating, or selection
for heterozygotes.), polymorphism, Hardy–Weinberg
equilibrium and probability of identity (provides an
estimate of the average probability that two unrelated
individuals, drawn from the same randomly mating
population, will by chance have the same multilocus geno-
type. It is also called Population Match Probability), were
checked using the Excel add-in GenAlEx [37, 38].

Fig. 1 Flow chart of different steps to select panel of 50 SNPs and downstream analysis
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Validation
The performance of the 50 SNP panel was examined by
two strategies. First, the ability of the 50 SNP panel to
identify sample mix-ups was checked in the second
batch of samples from the BIOS project with 1357 inde-
pendent samples, not used for the panel identification,
using the same genotype calling methods as described in
the first phase of the project. In the second strategy, the
SNP panel was compared with a much larger set of 2622
SNPs. The 2622 SNP panel was selected as follows: 1)
All ExAC v0.3 biallelic SNPs were selected [39]; 2) over-
lapped with exonic regions from Ensembl v75 and 1000
Genomes phase 1 high confidence SNPs, and 3) filtered
on MAF > 0.4. Simultaneously, 1) SNPs that were called
using Unified Genotyper in the LL subset of GoNL
RNASeq samples were selected, and 2) filtered on a
Unified Genotyper quality score of > 100,000. The final
set of 2622 SNPs was constructed by overlapping the
ExAC based and RNA-Seq based SNP lists. Both 2622
SNP and 50 SNP panels were used to evaluate the ability
for sample and mismatch identification in samples from the
Diabetes Care System (DCS) cohort [40], where there were
562 RNA-Seq as well as 3428 GWAS samples imputed using
the HapMap reference panel. Genotype calling at all genom-
ics coordinates was performed for the two SNP panels in
both RNA-Seq and imputed GWAS samples. Briefly, our
RNA-Seq pipeline (http://biopet-docs.readthedocs.io/en/lat-
est/pipelines/gentrap/) was used to obtain genotype calls for
562 RNA-Seq samples. Further, for imputed GWAS samples,
genotyping using the Human Core Exome chip was per-
formed according the manufacturers protocol (Illumina Inc.
San Diego, Ca, USA). Then, quality control was demon-
strated using following settings: a cut-off of 99% for geno-
typing call rate, gentrain and cluster score < 0.6 and 0.4,
respectively, and p-value cut-off for Hardy-Weinberg
equilibrium was set at 10− 4. Consequently, imputation
was done using SHAPEIT (v2.r644) and IMPUTE (v2.3.2).
These two files were merged into one multi-sample VCF
file that contained genotype information of total 3990
samples. All genomics coordinates specified by those two
SNP lists were included in this VCF file. To compare these
two SNP panels, we first calculated the pair-wise allele
concordance scores for all 3990 by 3990 sample pairs by
examining only the genomics coordinates specified in the
50 SNP panel. The allele concordance score (ranging from
0 to 1) for each sample pair was defined as the ratio be-
tween the number of identical alleles and the total number
of alleles (100 alleles in total) through all 50 SNPs coordi-
nates. In addition, the identification of the best matching
GWAS samples for each RNA-Seq sample was examined
with a minimal allele concordance score of 0.8. Multiple
best GWAS sample hits for one RNA-Seq sample was
possible as there have been repeated GWAS mea-
surements performed on the same person. Then we

performed the same steps using the long 2622 SNP
panel to identify the best matching GWAS samples
for each RNA-Seq sample.

Results
Data and SNP identification
In previous studies, most of the recommended indi-
vidual identification SNP panels were generated based
on DNA profiles and they mostly contain intragenic
SNPs. Therefore, there is no efficient panel with
informative SNPs which can be used for both DNA
and RNA. To overcome these limitations, in this
study both DNA and RNA-based genotype calls were
used to find a small set of SNPs that can be used for
identification of individuals. DNA-based genotype
calls (19,562,004 SNP positions) and RNA-based
genotype calls were made on 2115 individuals from
four Dutch biobanks. Reliable RNA-based genotype
calls were obtained for 507,975 SNP positions across
four cohorts (Additional file 1: Table S1).
To find the most informative SNPs, we applied a num-

ber of filtering steps: details on the different filters applied
and number of SNPs remaining can be found in the
Method section, Fig. 1 and Table 1. After selection of
SNPs with reliable genotype calls and high discriminative
power (i.e. high MAF) and SNPs in Hardy–Weinberg
equilibrium, 100 SNPs remained (Table 1). A final step to
select the smallest informative set of SNPs for individual
identification is absence of linkage disequilibrium between
the SNP positions. To evaluate statistical independence of
the SNPs, r2 was calculated for all unique pairwise combi-
nations of 100 SNPs (Fig. 2a). SNP positions with r2 less
than 0.01 were selected (Fig. 2b). We removed the least
heterozygous SNP of any two SNPs, with LD and close
genetic distance based on criteria of Kidd et al. [21] and
Hwa et al. [23]. In addition, SNPs located in the HLA re-
gion were removed. Consequently, 50 SNPs were selected
as a final panel to identify Dutch individuals (Table 1;
Additional file 2: Table S2). The r2 values for the final list
of 50 SNPs are very close to zero (median: 2.4 × 10− 4;
average: 5.5 × 10− 4).

Table 1 Filtering steps with number of remaining SNPs

Filter steps Number of SNPs

RNA DNA

Total SNPs 507,975 19,562,004

Genotype calling rate > 90% 4876 –

Biallelic loci contain three genotypes 4672 –

MAF > 0.2 1263 3,077,712

Common SNPs between DNA and RNA 1023

HW p-value > 0.01 100

LD < 0.01 and Ignore SNPs located in HLA loci 50
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Variant consequences for each position were
extracted from Ensembl. As expected, most SNPs are
located in exonic regions, because we selected SNPs
which can be consistently detected in both RNA and
DNA data. Twenty-four SNPs are located in the 3′-
UTR, 22 SNPs in the coding region (14 synonymous,

8 missense), 3 SNPs in the 5′-UTR and 1 SNP in an
intron (Additional file 2: Table S2).

Characteristics and quality control of the 50 SNP set
The final selection of SNPs showed highly concordant
AAF, for DNA and RNA-derived genotypes suggestive of

Fig. 2 Pairwise LD comparisons of the set of a 100 SNPs before and b 50 SNPs after filtering for LD (r2 < 0.01). A color bar represents the p-values
from the LD test
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the absence of bias in the genotype calls of these SNPs
(Fig. 3a, r2 = 0.98). The correlation of MAF between RNA
and DNA genotype calls was much higher for 50 selected
SNPs (r2 = 0.81) than all confidently called SNP genotypes
in both datasets (r2 = 0.6) (Additional file 3: Figure S1).
The average MAF in the 50 selected SNPs was 0.35. The
final selection of SNPs also had AAF > 0.15 in 1000
Genomes, but the AAF was generally higher in the Dutch
population (Fig. 3b).
Observed heterozygosity and expected heterozygosity

were measured based on genotype counts and allele fre-
quencies, respectively. There was a high positive correlation

(r2 = 0.96) with nearly equal frequency between expected
heterozygosity and observed heterozygosity of 50
selected SNPs, suggesting that there was no large
bias in detection of these SNPs. (Additional file 4:
Figure S2 and Additional file 5: Figure S3).
Population genetic parameters were calculated to further

characterize the SNPs in the panel (details in the Methods
section) using the Excel add-in GenAlEx [37, 38]. The
fixation indices were slightly negative for most SNPs
(average: − 0.019), indicating some negative assortative mat-
ing with proper heterozygosity (Additional file 6: Figure S4
and Additional file 7: Figure S5).

Discrimination power
The probability of identity was analyzed for the panel of
50 SNPs in 2115 Dutch samples. The PI provides an es-
timate of the average probability of two independent
samples having identical genotype calls. It is used to
determine the minimum number of SNPs which are
needed for identity calling. PI can be calculated under
the assumption that all individuals are unrelated or
under that the assumption that individuals may be re-
lated (PI-sibs). Figure 4 shows that at least 17 SNPs are
required to achieve uniqueness in 2115 Dutch samples
(PI is 3.3 × 10− 7 for unrelated individuals and PI-sibs is
4.4 × 10− 4). For our final list of 50 SNPs, the PI was
6.9 × 10− 20 and PI-sibs were 1.2 × 10− 10 (Fig. 4). This
makes the marker set appropriate for tagging and track-
ing samples in large biomedical, association, and
epidemiological studies.

Population comparison
To investigate the utility of our 50 SNP panel in other
than the Dutch population, AAF of 50 SNPs were com-
pared with the AAF in 1000 Genomes, ExAC and
Go.ESP (Fig. 5a; Additional file 4: Figure S2). Figure 5a
shows the AAF in Dutch SNPs are mostly consistent
with those from ExAC. They are overall slightly higher
in the Dutch population than in the populations catalo-
gued in these three other databases, but consistently
high for these databases which contain mostly individ-
uals from European descent (Fig. 5a).
Even in non-European populations, such as the

South Asian and American populations, most of the
50 SNPs had MAF > 0.2 (AAF between 0.2 and 0.8)
(Fig. 5b; Additional file 2: Table S2). However, for
the African population, our SNP panel was less
effective, because 18 out of the 50 SNPs had MAF < 0.2
(Fig. 5b; Additional file 2: Table S2).
The selected SNPs were compared with previous pub-

lished panels such as SNPforID 52-plex, 75 Chinese
SNPs, 30 Korean SNPs and 92 IISNPs [20, 23, 34, 35].
There were no common SNPs between these panels and
our 50 SNP panel.

Fig. 3 a Comparison of AAF between RNA (BIOS, x-axis) and DNA
(GoNL, y-axis) data. b AAF comparison between Dutch population
(common DNA/RNA, x-axis) and 1000 Genomes phase_3 populations
(y-axis). Black points depict the common DNA/RNA SNPs before filtering
and the red ones depict the 50 selected SNPs. r refers to Pearson
correlation between data sets
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Validation of the 50 SNP panel
The ability of the SNP to uniquely identify individuals in
both RNA and DNA level was evaluated by studying geno-
type concordance in an independent, paired set of 1357
DNA and blood-derived RNA samples. The distribution of
concordant genotype calls for matched and unmatched
DNA and RNA samples was clearly distinct and non-
overlapping, with all matching samples having concordant
genotype calls for at least 38 out of 50 of the SNPs (Fig. 6).
Forty out of 50 SNPs demonstrated more than 90% con-
cordant DNA and RNA genotype calls in this validation set
of 1357 samples, whereas the minimum concordance ob-
served was 65% for SNP rs2230267.
The ability of the 50 SNP panel to identify DNA and

RNA sample concordance was compared with a bigger
panel of 2622 SNPs in an independent study. The list of
best GWAS hits for all 538 RNA-Seq samples with the
RNA-Seq to GWAS mapping list provided by the study
coordination center showed that the shorter 50 SNP panel
detected more matching samples, while still reporting po-
tential sample mix-ups (Table 2). Specifically, the number
of samples where the genotype concordance test was in-
decisive was larger for the 2622 SNP panel.

Discussion
We have established a pipeline to select a Dutch-specific
SNP panel based on both DNA-Seq and RNA-Seq data.
This panel consists of 50 SNPs with high heterozygosity,
high MAF, low LD and robust detection in blood DNA
and RNA (Table 1; Additional file 2: Table S2).
During the past years, various SNP panels have been

published for individual identification [20–25, 41–47].
The SNPforID consortium developed 52 SNPs for indi-
vidual identification [35]. Also, Kim et al. [34] developed

a SNP-based individual assignment system containing 30
SNP loci for Korean individuals. Lou et al. [48] reported
the performance of a 44 SNPs individual identification
assay for Chinese. In addition, studies indicated consid-
erable potential of high throughput platforms for SNP
detection which could increase unprecedented dis-
criminative power for human identification [49–51].
These panels are all based on DNA profiles and
mostly contain intragenic SNPs which disqualify them
for RNA-based genotype calling. Our set of SNPs is
98% exonic and can uniquely identify individuals in
DNA and RNA profiles. Although use of coding SNPs
in forensic DNA analysis may be restricted due to
specific legislation in certain countries, this should
not apply to highly polymorphic SNPs without any
associations with appearance phenotypes.
There is no overlap between Dutch selected IISNPs

and the established IISNP panels [13, 20, 23, 35]. One of
our selected SNPs (rs1866141) is located in an intronic
region of the highly expressed GNLY gene (MIM #
188855). Observing intronic SNPs among RNA-based
calls analysis is common because of the presence of pre-
mRNA, incomplete splicing or intron retention.
The 50 SNP panel showed better identification per-

formance when it was compared with another panel
containing 2622 SNPs (Table 2). Although the 50 SNP
panel had superior performance in the Dutch and other
populations of European descent, it is less optimal for
individuals from African populations (Fig. 5b). There
was no information for two SNPs (rs1950943 and
rs1042558) in non-European populations.
RNA profiles can complement DNA profiles in re-

search projects and forensic applications. In forensics,
despite the presumed low stability of RNA, RNA profiles

Fig. 4 Probability of identity for 50 SNPs in 2115 samples. The blue line refers to PI between unrelated individuals. The red line refers to PI when
related individuals are included in the samples (PISibs). The x-axis indicates the number of SNPs which are needed for identity when PI is zero
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could not only identify individuals but also provide in-
formation about the type of tissues found at the crime
scene, wound age determination, determination of the
post-mortem interval and the functional status of cells
as well as organs [2–5, 41, 52–59]. Unlike previous
studies [20, 21, 25], 98% of our final SNPs located in ex-
onic regions. For this reason, a SNP profiling assay for

this 50 SNP panel can be an efficient method for indi-
vidual identification in RNA and DNA stains from crime
scenes. Analysis of RNA from crime scenes has demon-
strated differences in RNA degradation rates. Although
the SNPs from the 50 SNP panel are in high expressed
genes and are robustly detected in biobank samples,
their robust detection in forensic specimens containing

Fig. 5 a AAF comparison of 50 selected SNPs in different populations. (Correlation between Dutch SNPs are: rDutch SNPs _ ExAC: 0.94, rDutch SNPs _ ESP: 0.87,
rDutch SNPs _ 1000 Genomes: 0.85. b Distribution of 50 selected SNPs in different populations. Correlation between Dutch SNPs is: r Dutch SNPs_Europe: 0.99, rDutch
SNPs_South Asia: 0.87, rDutch SNPs_America: 0.86, rDutch SNPs_East Asia: 0.72, rDutch SNPs_Africa: 0.58

Yousefi et al. BMC Genomics  (2018) 19:90 Page 8 of 12



partially to severely degraded RNA still needs to be
demonstrated.
To address whether the SNP panel could also be used

on RNA samples from tissues other than blood, the ex-
pression level of genes in which the SNPs are located
was surveyed using GTEx portal [60]. While 25 genes
were expressed ubiquitously and 17 genes were
expressed in multiple other tissues, the expression of 8
genes (MNDA (MIM # 159553), SELL (MIM # 153240),
CSF3R (MIM # 138971), IFITM2 (MIM # 605578), FPR1
(MIM # 136537), CXCR2 (MIM # 146928), GNLY (MIM
# 188855), FCN1 (MIM # 601252)) was rather specific
for whole blood, as their expression levels were near to
zero in other tissues. Further, IFI30 (MIM # 604664),
contained the lowest gene expression in different tissues.
As 17 SNPs are sufficient to identify an individual
uniquely in the Dutch population it is assumed that our
SNP panel could be effective for identification of individ-
uals in RNA from different tissues than blood. However,
when testing our panel on another SNP-chip genotype
and RNA-Seq dataset, consisting of 36 samples from
brain tissue, it appeared that many of the 50 SNPs had

insufficient coverage for reliable RNA-based genotype
calling in brain. This indicates that our 50 SNP panel
needs optimization to be used for other tissues than
blood and/or high sequencing depth.
Our SNP panel compared favorably to previously

published panels in terms of discrimination power
(probability of identity (PI)), even for closely related
individuals. The FBI (USA) has selected 13 STR loci
to serve as a panel for forensic investigations (CODIS,
Combined DNA Index System). With this set of loci,
the probability of a match between the profiles of two
unrelated persons in a randomly mating population of
Caucasian Americans PI is 2.97 × 10− 15 [61]. Also, the
52-plex SNP assay, which is now more routinely used
in Europe, has a mean PI of 5.0 × 10− 21 for the
European population [35]. The PI of our SNP panel was
6.9 × 10− 20 and 1.2 × 10− 10 in unrelated and related indi-
viduals, respectively, similar to the 52-plex SNP assay, far
more discriminative than the 13 CODIS markers [61] and
similar to the recently published study of 20 CODIS
markers in Caucasian Americans [61–63] .

Conclusions
We developed a first SNP panel based on both DNA
and RNA data for the Dutch population. This panel con-
tains 50 informative SNPs with high heterozygosity, low
PI and close MAF and AAF frequencies in DNA and
RNA. It will be useful for efficient sample identification/
tagging in large biomedical, association, and epidemio-
logic studies, and for developing forensic profiling and
kinship assays. Our panel will be useful for other
European populations and can be considered in conjunc-
tion with other panels to develop a global IISNP panel
with more markers.

Fig. 6 Distribution of the number of identical genotype calls in 1357 matching (red) and non-matching (random selection, blue) DNA and
RNA samples

Table 2 Number of sample matches in the DCS study using the
50 and 2622 SNP panels

Matching category(*) 50 SNP panel 2622 SNP panel

Passed_Matching 530 514

Failed_Matching 5 8

UnsureRNAseq 3 16

Total 538 538

“Passed_Matching”: contains RNAseq samples where the identified best GWAS
hits are identical to the study’s mapping list
“Failed_Matching”: contains RNAseq samples where the identified best GWAS
hits are different from the study’s mapping list
“UnsureRNAseq”: contains RNAseq samples for which no best GWAS hits were
found based on our threshold (minimal allelic concordance score of 0.8)
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Additional file 1: Table S1. Four biobanks (RNA-Seq) with number of
different SNP positions and number of samples. (DOC 33 kb)

Additional file 2: Table S2. Characteristics of 50 selected SNPs.
(CSV 15 kb)

Additional file 3: Figure S1. Distribution of MAF calculated from DNA
and RNA data. (DOC 58 kb)

Additional file 4: Figure S1. Plot of the expected heterozygosity (x-
axis) and observed heterozygosity (y-axis) for the 50 SNPs in the panel.
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