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Abstract

Background: Manduca sexta is a large lepidopteran insect widely used as a model to study biochemistry of insect
physiological processes. As a part of its genome project, over 50 cDNA libraries have been analyzed to profile gene
expression in different tissues and life stages. While the RNA-seq data were used to study genes related to cuticle
structure, chitin metabolism and immunity, a vast amount of the information has not yet been mined for
understanding the basic molecular biology of this model insect. In fact, the basic features of these data, such
as composition of the RNA-seq reads and lists of library-correlated genes, are unclear. From an extended view
of all insects, clear-cut tempospatial expression data are rarely seen in the largest group of animals including
Drosophila and mosquitoes, mainly due to their small sizes.

Results: We obtained the transcriptome data, analyzed the raw reads in relation to the assembled genome,
and generated heatmaps for clustered genes. Library characteristics (tissues, stages), number of mapped bases,
and sequencing methods affected the observed percentages of genome transcription. While up to 40% of
the reads were not mapped to the genome in the initial Cufflinks gene modeling, we identified the causes
for the mapping failure and reduced the number of non-mappable reads to <8%. Similarities between libraries, measured

based on library-correlated genes, clearly identified differences among tissues or life stages. We calculated
gene expression levels, analyzed the most abundantly expressed genes in the libraries. Furthermore, we
analyzed tissue-specific gene expression and identified 18 groups of genes with distinct expression patterns.

Conclusion: We performed a thorough analysis of the 67 RNA-seq datasets to characterize new genomic
features of M. sexta. Integrated knowledge of gene functions and expression features will facilitate future

functional studies in this biochemical model insect.
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Background

As a typical holometabolous insect with five larval
instars, the tobacco hornworm Manduca sexta has been
studied for more than 70 years. Research papers on this
species from 1970 to 2016 reached 3309 based on
PubMed, next only to the fruit fly Drosophila melanogaster
(47,828), the yellow fever mosquito Aedes aegypti (7807),
the domestic silkworm Bombyx mori (7396), the African
malaria mosquito Anopheles gambiae (4151), and the honey
bee Apis mellifera (3717). As a wild insect living on
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solanaceous plants (e.g. tobacco and tomato) in the larval
stages, M. sexta well represents a large group of agricultural
pests in the order of Lepidoptera. It is easy to rear under
laboratory conditions, grows to a weight of over 10 g on a
simple artificial diet, and has a well conserved life cycle with
each developmental stage in a clear time range [1]. The
development includes embryo (E), five larval (L1 to L5),
wandering (W), pupal (P) and adult (A) stages (Fig. 1).
M. sexta has been extensively used as a model for
research on cuticle formation [2, 3], hormonal regula-
tion [4], neurobiology [5], lipid metabolism [6], immun-
ity [7], and many others.

Next-generation sequencing (NGS) is a powerful tech-
nology for transcriptome analysis [8]. Up to January 1 of
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Fig. 1 M. sexta life cycle and the 67 lllumina RNA-seq datasets. Bars in the circle represent different life stages of M. sexta, which are proportional
to time periods of the insect raised with artificial diet as previously described [1]. Color-coded library identifications (1-67) are placed outside the
circle at the corresponding developmental stage. The first part of the library names (on the right) indicates that the libraries are made from head
(H/H), fat body (F), whole body (W), midgut (G), Malpighian tubule (vT), muscle (w), testis (T), ovary (0), and antenna (
major stages of the insect, i.e. embryo (E), 1st to 5th instar larvae (L1 — L5), pupae (P), and adults (A). In the third part, “D” stands for day, “h" for
hour, “preW” for pre-wandering, “W" for wandering, “M” for male, and “F" for female. “S" in the last part of library names indicates single-end sequen-
cing; no "S" in the end indicates paired-end sequencing. The cDNA libraries represent the following tissues and stages: head (H) [1. 2nd (instar) L (lar-
vae), D1 (day 1); 2. 3rd L, D1; 3. 4th L, 12 h (hour); 4. 4th L, late; 5. 5th L, D0O.5; 6. 5th L, D2; 7. 5th L, preW (pre-wandering); 8. P (pupae), late; 9. A
(adults), D1;10. A, D3; 11. A, D7], fat body ) [12. 4th L, late; 13. 5th L, D1; 14. 5th L, preW; 15. 5th L, W (wandering); 16. P, D1-3; 17. P, D15-18; 18. A,
D1-3;19. A, D7-9], whole body (W) [20. E (embryo), 3 h; 21. E, late; 22. 1st L; 23. 2nd L; 24. 3rd L], midgut (G) (25. 2nd L; 26. 3rd L; 27. 4th L, 0 h; 28.
4th L, 12 h; 29. 4th L, late; 30. 5th L, 1-3 h; 31. 5th L, 24 h; 32. 5th L, preW; 33-34. 5th L, W; 35. P, D1; 36. P, D15-18; 37. A, D3-5), Malpighian tubule
(viT) (38. 5th L, preW; 39. A, D1; 40. A, D3), muscle (v) (41. 4th L, late; 42-43. 5th L, 12 h; 44-45. 5th L, preW; 46-47. 5th L, W), testis (T) (48. P, D3; 49.
P, D15-18; 50. A, D1-3), ovary (0) (51. P, D15-18; 52. A, D1), head (H) [53-56. A, D1, F (female); 57-60, A, D1, M (male)], antenna (

). The second part indicates

) (61-63, 5th L;

2017, over 82,340 sequencing tests from about 1700
insect species were deposited in NCBI Sequence Read
Archive. D. melanogaster and A. gambiae account for 41
and 17% of the sequencing runs, and 28 and 24% of the
sequenced bases, respectively. Most of the sequencing
experiments fulfilled their specific research goals using
whole insects or major body parts. Others analyzed
specific parts of the insects, such as different regions of
the digestive tract [9]. In comparison, the nucleic acids
of other insects have been much less sequenced. One of
the exceptions is M. sexta, whose cDNA libraries of fat
body, hemocytes, and other tissues were sequenced in
2005 when NGS became commercially available [10].
Over the years, nucleic acids from this insect have
been sequenced many times to understand digestion
[11], immunity [12, 13], sex-biased gene expression
[14], chemosensory perception [15], and microRNA
regulation [16-18].

Recently, a draft genome sequence of M. sexta was
published along with extensive RNA-seq data from 52
combinations of tissues and stages [19], providing an

overview of the genome in action and support for
evidence-based gene modeling. The expression data
were also analyzed as a part of the companion papers
focusing on cuticle proteins [2], chitin metabolism
enzymes [3], chitin-binding proteins [20], pathogen
recognition proteins [21, 22], serine proteases [23], im-
mune signal transducers [24], and immune effectors
[25]. Nevertheless, the RNA-seq data were neither thor-
oughly described nor systematically analyzed to provide
an overview of gene expression in tissues and life stages.
We published a paper describing the development of
methods to incorporate the extensive RNA-seq data into
genome annotation, evaluate gene models in the
MAKER2, Cufflinks, Oases and Trinity assemblies, and
select the best ones to constitute MCOT1.0 [26]. After
manual annotation through global cooperation of
researchers, the Official Gene Set 2.0 (OGS2.0) were
released in 2014 with the genome paper published in
2017 [19]. The MCOT1.0 models (ftp://ftp.bioinforma
tics.ksu.edu/pub/Manduca/)  contain  protein-coding
genes uncovered by OGS2.0 [26] and, since both gene
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sets are biased toward protein-coding genes, a large
portion of the noncoding genes were not analyzed.
Additional Illumina RNA-seq reads from head and
antenna (15 datasets) are publicly available for fuller use
in the discovery of tissue-specific genes beyond the goals
of the original studies [14, 27]. Due to these reasons, we
performed an overall transcriptome study of the 67
datasets and report our findings here.

Methods

Data and program acquisition

The final version of M. sexta genome assembly
(Msex1.0) and gene models in M. sexta official gene set
2.0 (0GS2.0) were downloaded from the M. sexta work-
space at National Agricultural Library (https://i5k.nal.us
da.gov/Manduca_sexta) [28]. The MCOT1.0 gene
models were generated from our previous work [26].
The RNA-seq datasets were downloaded from NCBI
Sequence Read Archive with accession numbers listed in
(Additional file 1: Table S1) or previously acquired from
Dr. Gary Blissard at Cornell University. Trimmomatic
(0.32) [29], SAMtools (1.3.1) [30], Bowtie2 (2.2.6) [31],
TopHat (2.0.12) [32], Cufflinks (2.2.1) [33], STAR
(2.5.2a) [34], TransDecoder (3.0.0) (https://github.com/
TransDecoder), RSEM (1.2.29) [35], BLAST+ (2.2.30)
[36], and tRNAscan-SE (1.3.1) [37] were downloaded
from their official sites and installed on a local super-
computer. MeV (Multiple Experiment Viewer 4.9.0,
http://mev.tm4.org/) and Cluster 3.0 (by Michael B.
Eisen) were installed in a local computer.

Reads alignment and generation of Cufflinks4.0 gene
models

As described previously [26], Cufflinks4.0 was generated
using Cufflinks (2.2.1) [33] and reads from the 67 RNA-
seq libraries. The reads were first trimmed with
Trimmomatic to remove adaptors and low quality bases
with the setting “SLIDINGWINDOW:4:20 LEADING:10
TRAILING:10 MINLEN:50”. Trimmed single and paired
reads in each library were aligned to the genome by
TopHat. Cufflinks and Cuffmerge were used as
described before [26] to generate and combine GTF files
to make final gene models in Cufflinks4.0. The
Cufflinks4.0 GTF file was used to build the genome and
assist STAR alignment. Trimmed reads were also aligned
to the genome by STAR in the 2-pass mapping mode to
ensure maximum alignment. Unmapped reads were
separately stored for further analysis.

Classification of reads as mitochondria, rRNA, protein-
coding, and noncoding gene fragments

Gene models in Cufflinks4.0 were analyzed and classi-
fied into four groups: mitochondrial, rRNA, mRNA,
and noncoding. Genes in the three scaffolds
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AIXA01038378.1-80.1 were mitochondrial. Since the
four scaffolds AIXA01021581.1-2.1, 01032915.1 and
01037114.1 were mostly rRNA fragments, reads
matching these were classified as rRNA. Genes were
considered as protein-coding, if any of their tran-
scripts can be translated to >100-residue proteins
using TransDecoder. Genes did not meet the criteria
were classified as noncoding. The read count and
fragments per kilobase per million mapped reads
(FPKM) value of each gene in each library were cal-
culated using RSEM (1.2.29) [35]. Read counts of the
four gene categories were summed for figure plotting.

Coverage of the genome mapped with reads and
calculation of gene expression

The number of reads mapped to each scaffold of the
genome was extracted using idxstats function of SAM-
tools [30]. The sequence depth for each base of the gen-
ome in each library was extracted using SAMtools’
depth function. Transcribed genome regions were ob-
tained by counting the non-zero numbers in each li-
brary. Transcripts in Cufflinks4.0 were translated with
TransDecoder in the genome-guided mode, which yield
a GTF output file with coding sequence (CDS), mRNA,
gene, and untranslated region locations. The length of a
gene transcript was defined as the maximum distance
between its exons’ edges. Parts of the genome are tran-
scribed, and a part of a transcript is a protein coding re-
gion (i.e. CDS). For calculation of transcript or CDS
ratio in the genome, a base of the genome was consid-
ered transcribed if it was within any exon or CDS region
of Cufflinks4.0, regardless of its being on the positive or
negative strand of the exon. The GTF files of D. melano-
gaster and human were downloaded from Flybase (ftp://
ftp.flybase.net/releases/FB2017_03/dmel_r6.16/gtf/dmel-
all-r6.16.gtf.gz) and NCBI (ftp://ftp.ncbinlm.nih.gov/
refseq/H_sapiens/annotation/GRCh38_latest/refseq_i-
dentifiers/GRCh38_latest_genomic.gff.gz), respectively.
Gene, exon and CDS were defined in their GTF files.
For scaffolds longer than 200 kilobases (the 3 mitochon-
drial and 4 rRNA scaffolds were less than 11 kilobases),
mapping depth for each base was normalized and shown
as a BPKM (bases per kilobase per million mapped
bases) value [38], which is equal to the number of bases
mapped to one base out of one billion mapped bases. All
the bases in the genome were sorted based on BPKM
values and divided into 19 groups for each library, which
are top 1-400, 401-800, 801-1600, 1601-3200,
400 x 2™ + 1 to 400 x 2™ * !, where n equals 0 to 17 for
groups 2 to 19, respectively. BPKM values were 0 for
bases below 400 x 2'®. Average BPKM value and z-score
for each group were calculated across the 67 libraries;
Percentages of bases in each group were calculated for
plotting Fig. 3d. To calculate gene expression, trimmed
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reads were aligned to OGS2.0, MCOT1.0 and Cuf-
flinks4.0 in different runs using RSEM [35]. The FPKM
values and expected read counts for each gene or tran-
script in each library were summarized in an intermedi-
ate table (data not shown) prior to further analysis.

Unmapped reads analysis

After STAR alignment to Msex1.0, the unmapped reads
in each library were used as queries to search the NCBI
non-redundant nucleotide database (2016—07-18) down-
loaded to the local supercomputer. For the BLASTN
search, e-value threshold was set to 107° and the top hit
was kept in the hit table. Reads with hits were classified
into 7 categories based on their subject sequences and
then counted in each category for ratio calculation. The
categories are: 1) rRNA (“ribosomal RNA” or “rRNA”),
2) mitochondrion (“mitochondri”), 3) phage (“phage”), 4)
M. sexta (“M. sexta”, “manduca” or “sexta”), 5) E. coli
(“Escherichia coli”, “e.coli” or “E. coli”), 6) Oryza
(“oryza”), and 7) others, where keywords in parentheses
were used for classification and counting in each library
with simple python scripts. The search terms, listed
along with the group names and subject sequences, were
grouped by matching these keywords in a case-
insensitive manner in the order of the group names,
meaning a sequence of M. sexta rRNA would be
grouped to rRNA instead of M. sexta.

0GS2.0 gene naming

Proteins from OGS2.0 were used as query sequences in
a BLASTP search against NR database of NCBI in a
local supercomputer with “hit-table” as the output for-
mat. Subject sequences which had at least one hit with
identity >25%, alignment length > 50, e-value <10™® and
bit score > 100 were considered homolog of the query
sequences. Query genes were named by the best
matched homologous sequences by retrieving gene in-
formation with the accession number of subject se-
quences from NCBI with Python scripts. The file linking
the accession number with gene ID (gene2accession.gz)
and the file with details information for genes (gene_in-
fo.gz) can be downloaded from NCBI (ftp://ftp.ncbi.nlm.
nih.gov/gene/DATA/). Highly expressed genes were
manually examined to ensure accuracy.

Library-correlated genes and interlibrary comparisons

The same definition and method used by Li et al.
[39] were used to identify library-correlated genes and
to compare different libraries. Basically, z-scores
[z; = (x;-p)/s] were calculated from the FPKM values
of each gene in all the libraries, where x; is the FPKM
value in a specific library, p and s are the average FPKM
and its standard deviation. Genes with z-score > 1.5 and
FPKM value >1 were considered to be correlated with that
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library. Pairwise library comparisons were done by testing
dependence of the correlated genes. Libraries X and Y are
two samples of a population; null hypothesis is that they
are independent. Suppose total gene number is n, corre-
lated genes in X and Y are x and y, and they share some
library-correlated genes. If X and Y are independent, ¢ (for
common correlated genes) equals (x x y)/(n x n), and
probability for observing a higher ¢ will decrease as the
value of c increases. The probability over c¢ values were
calculated as:

e (N0
=00

o min(xy) xyl(n-x)(n-y)!
N Zf:c nlil (=) (y=i)!(n + i—xc—y)!”

Bonferroni corrected p-value = p-value x number of
pairwise comparison.

Mapping score = —-log;o(Bonferroni corrected p-value).

Here, the pairwise comparisons are 67 x 67 = 4489.
For a mapping score > 10, the corrected p-value is so
small that the null hypothesis can be rejected, i.e. the
two libraries are considered to be dependent. The
log,(mapping score) values were calculated for
plotting Fig. 5.

Library-correlated gene expression and gene ontology
(GO) enrichment analysis

FPKM values based on 0OGS2.0, MCOTI1.0, and
Cufflinks4.0 were calculated using RSEM. Z-score were
calculated based on the FPKM values. MCOT1.0 genes
with bad or no match with OGS2.0 were considered as
MCOT-specific genes, and noncoding genes in Cufflinks4.0
were defined as those that cannot be translated by Trans-
Decoder to proteins longer than 100 residues. OGS2.0,
MCOT-specific, and noncoding genes were combined;
Genes with at least one FPKM value of >100 in the 67
libraries were selected for hierarchical clustering of
the z-scores with MeV (4.9.0). The clustered genes
were separated into their original three groups for
plotting in Fig. 7 and Additional file 2: Figure S1. GO
annotations for OGS2.0 genes were acquired by run-
ning InterProScan with BLAST2GO program [40].
Genes in Fig. 7 were divided into 18 groups based on
the expression pattern. GO enrichment analysis for
each group was performed with GOATOOLS [41],
using all genes in Fig. 7 as background reference. The
corrected p-values of different GO terms were calcu-
lated with the Benjamini/Hochberg method with a
false discovery rate (FDR) of 0.05. Significantly
enriched GO terms (corrected p-value <0.05) were
labeled in Fig. 7.
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tRNA gene modeling and codon usage

tRNAscan-SE was used to scan the genome to identify
tRNA genes under the default setting for eukaryotes.
Genome-based codon usage was calculated by directly
adding all codons used by protein-coding regions in
0OGS2.0 sequences. Transcriptome-based codon usage
was calculated by first obtaining numbers of codons in
the longest open reading frames of different tran-
scripts, multiplying these numbers by FPKM values of
the individual transcripts, summing them according
to the 64 codons, calculating percentages of usage in
each library, and averaging the percentage data across
the 67 libraries.

Results

Overview of the 67 cDNA libraries

NCBI Sequence Read Archive contains 67 M. sexta
RNA-seq datasets (Fig. 1), representing different tissues
and life stages of this insect: P for 33 paired-end (read
length: 100 bp) and S for 19 single-end (51 bp)] samples
sequenced as a part of the genome project [28], H for 8
head samples (single-end, 51 bp) to study sex-biased
gene expression [14], and A for 7 antenna samples
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(single-end, 94 bp) to examine chemosensory receptor
genes [27]. Names and descriptions of the libraries are
shown in Fig. 1 and (Additional file 1: Table S1). The
four groups of P (33), S (19), H (8), and A (7) libraries
are analyzed and compared. While there is no biological
replicate for libraries 1-52, four samples (i.e. G-L5-W,
M-L5-12 h, M-L5-preW, M-L5-W) were analyzed by
both single- and paired-end sequencing (Fig. 1). The
numbers of total reads in these libraries vary greatly
(Fig. 2a), ranging from 4.2 million in G-L5-preW-S
(library 32) to 73 million in F-L5-preW (library 14). In
general, there are many more reads in group P than in
group S (Fig. 2¢), with an average of 37 million versus
7.7. The variation of read numbers is the highest in
group P and smallest in groups H and A, as these 15
libraries include biological replicates from the same
sample types.

We generated more accurate Cufflinks4.0 gene models
based on a newer version of the genome assembly
Msex1.0 (with new IDs for scaffolds and three mito-
chondrial sequences) and quality-controlled reads from
the 67 RNA-seq libraries. In the first step, reads with
low quality bases were removed by Trimmomatic and
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and A (antenna, single-end, 61-67). e Percentages of trimming-survived reads mapped to the genome using STAR and TopHat in the four
categories. f Percentages of TopHat-mapped reads corresponding to mitochondrial (blue), protein-coding (white), noncoding (green), and rRNA
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The first 52 libraries were sequenced as a part of the genome project [28], the next 8 were for detecting sex-biased genes expression in brain
[14], and the last 7 were used to study chemosensory receptor gene expression [27]
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reads longer than 50 were kept for further studies (e.g.
unmapped read analysis) to reduce the chance of non-
specific matching. Higher percentages of read survival
were detected in group S (average: 96%) than in groups
H (90%), P (88%), and A (82%) (Fig. 2b and d). Rates for
libraries 66 and 67 (group A) were as low as 61%. We
then mapped the remaining reads to the genome using
TopHat and obtained Cufflinks4.0 gene models
(Additional file 3 for coding transcripts; Additional file 4
for noncoding transcripts) [33]. Interested in unmapped
reads, we also used STAR [34] to map the reads to the
genome. Assisted by the GTF file generated from the
Cufflinks program and running in the 2-pass mapping
mode, STAR mapped nearly 10% more reads to the
genome than TopHat did (Fig. 2e).

As anticipated, mRNA reads account for the largest
portion of total reads in each library (Fig. 2f). The rRNA
and mitochondrial gene reads are substantial in libraries
1-52, especially when their low gene counts are consid-
ered. This indicates that poly-A-minus RNA was not
completely removed in these libraries (e.g. H-A-D7, G-
L5-1~3 h-S). Higher percentages of rRNA reads were
often accompanied by lower percentages of mitochondrial
gene reads (Fig. 2f-h). In comparison, libraries 53-67
were mostly mRNA and noncoding RNA reads. The
33,378 genes in Cufflinks4.0 include 3 mitochondrial, 4
rRNA, 14,532 mRNA and 18,839 noncoding genes. Even
though noncoding gene number is higher than coding
genes in Cufflinks4.0, noncoding genes were generally
shorter than coding genes [26] and their contribution to
the total reads is only about 10% of that by coding genes
in each library (Fig. 2f).

Genome transcription

Genes in disparate parts of the genome are differentially
transcribed in various tissues or life stages and their
RNA products can be detected by RNA-seq technology.
Based on the Cufflinks4.0 models, 51.7% of the M. sexta
genome contains genes, 17.1% is transcribed to exons of
genes, and 5.3% is protein-coding regions. The percent-
ages are 41.6%, 9.2% and 5.1% based on OGS2.0 models
for M. sexta, 65.4%, 24.9% and 15.9% for D. melanoga-
ster, and 52.1%, 4.1% and 1.2% for human. The percent-
age of CDS for D. melanogaster is much higher than M.
sexta, but the total DNA length is 22.8 million, similar
to 22.3 million of M. sexta (Cufflinks4.0). Interestingly,
the transcribed portion goes up to 63.9% based on the
mapped reads which is much higher than 17.1% by
Cufflinks4.0, and the ratios differ strikingly in different
libraries, ranging from 1.5% in library 45 (M-L5-preW-
S) to 23.2% in library 49 (T-P-D15~18) (Additional file 1:
Table S1). While temporospatial expression certainly
affects the mapped portion of genome, more RNA-seq
bases generally lead to higher genome coverage (Fig. 3a).
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The linear regression analyses were performed for both
single (S) and paired (P) end libraries to identify signifi-
cant outliers. Libraries below the lines have relatively
lower ratios or more highly transcribed bases; libraries
above the lines have higher than usual genome coverage
or are less biased toward using various parts of the
genome. The testis libraries (e.g. library 49) are much
higher above the line, consistent with the observation
that they have fewer genes expressed at high levels [28].
In general, the mapped portion in library group P is
higher than in group S, partly due to the higher number
of aligned bases (Fig. 3b).

Portions of mapped genome vary dramatically across
the libraries. In addition to total numbers of aligned
bases, their distribution across the genome may also
contribute to the variations. To test this hypothesis, we
first obtained sequencing depths for each base of the
genome in all libraries. As rRNA and mitochondrial
reads were overrepresented in some libraries (see above),
we removed the scaffolds shorter than 200 kilobases
before the analysis. We then normalized the sequence
depth by using the BPKM values, sorted the bases
according to their sequencing depth, divided them into
19 BPKM groups from high to low, and calculated aver-
age BPKM values and z-scores for each group for com-
parison across the 67 libraries (Fig. 3c). Figure 3d shows
the ratio of aligned bases in each group. As expected, in
libraries below the linear regression line in Fig. 3a gener-
ally, more RNA-seq bases were aligned to top tran-
scribed base groups (Fig. 3d), and the average BPKM
values for top groups were higher than other libraries
(more red in top base groups in Fig. 3c). For instance,
top base groups of libraries 14 and 15 have higher
BPKM values than most other libraries (more red than
for groups 1 to 6 in Fig. 3c). In fact, 12,800 top tran-
scribed bases (0.004% of the studied scaffolds) in groups
1 to 6 contribute 64.8% and 49.9% of aligned RNA-seq
bases, respectively (Fig. 3d). For libraries 5 and 16, which
have similar number of aligned bases (0.5 billion) but
very different percentages of mapped genome (2.5% and
7.7%), average BPKM value of library 5 is higher than
library 16 (BPKM: 3.7 x 10° vs. 1.3 x 10°) in highly tran-
scribed groups 1-5 (ratio: 23.6% vs. 8.5% of the mapped
bases) but lower (BPKM: 3.8 vs. 6.4) in lowly transcribed
groups 10-19 (ratio: 39.9% vs. 68.5%). In the midgut
libraries 25-37, a clear change of high z score in BPKM
ranking is observed from larva to adult (Fig. 3c). In testis
and ovary libraries 48-52, base groups 1 to 10 have
lower than average BPKM values (green color in Fig. 3c),
while groups 13 to 19 have higher BPKM values (red
color in Fig. 3c), which is consistent with their higher
positions in Fig. 3a. There are large variations in the
ratio of each highly-transcribed groups: Groups 1 to 4
are top 3200 transcribed bases, which may come from a
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Groups z-score

m17 m18 m19

(single-end, 19), H (head, single-end, 8) and A

~1600, 1601-3200, ... 400 X 2" + 110 400 x 2" " !, where n

few genes, as the average length of transcripts in
0GS2.0 is about 2000 bp. In other words, such genes
may contribute to 20-40% of the total mRNA bases.
Groups 1-12 cover top 819,200 transcribed bases, which
may represent 400 genes or 2.6% of the total OGS2.0 set
and, on average, they account for >63% of the aligned
bases. Groups 13-16 have contributed another 32% or
about 6000 genes. These results confirm the large vari-
ation in expression levels, with a few highly expressed
genes contributing to a major part of the sequenced
RNAs [28]. Additionally, the observed variations among
the libraries suggest that lists of highly expressed genes
are quite different and worth exploring.

Unmapped reads

During the initial gene modeling by the standard proto-
col of Cufflinks [33], we noticed that percentages of
mapped reads were only around 60% (data not shown).

Curious about ratio and composition of the unmapped
reads, we controlled the read quality using Trimmo-
matic, mapped the reads using TopHat and then STAR
in the 2-pass mode [34] with the splicing site informa-
tion from Cufflinks, and improved the mapping ratio to
92.6% on average. For unknown reasons, library 11 still
had a low ratio of 69% (Fig. 4a). Since unmapped reads
may come from un-sequenced regions of the genome,
symbionts, viruses or other sources, we searched NCBI
nr/nt database (M. sexta OGS2.0 sequences not yet
included) with the STAR-unmapped reads using
BLASTN. Sequences with more than 10 reads matched
were summarized in (Additional file 5: Table S2). There
was a positive correlation between ratios of STAR-
unmapped and BLASTN matching. Paired-end libraries
had higher ratios in both than single-end ones, with the
exceptions of libraries 48—51. Reads without BLASTN
match, accounting for 22% of the total unmapped reads,
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might be low complexity ones (e.g. AT-rich sequences)
or from not sequenced parts of the genome.

We divided the BLASTN hits to seven groups after
initial analysis (Fig. 4b). rRNA reads accounted for
80.2% of the total (Additional file 2: Table S3), indicating
their genes were incomplete in the OGS2.0. Correlating
with the higher mapped ratios (Fig. 2g), library group P
had higher ratio of unmapped rRNA reads (Fig. 4c),
except for library 19. Libraries 19, 66 and 67 contained
phage ¢174 reads accounting for 62.6, 79.6, and 80.5%
of the total unmapped reads — the phage DNA was used
as internal positive control in DNA sequencing. While
percentages for the phage reads varied a lot in the librar-
ies, the average was 6.9% (Table S3). The mitochondrial
reads (1.8% of the total) were mapped to a more
complete version of M. sexta mitochondrion in NCBL
The Oryza reads (1.1%), linked with the midgut libraries (26,
28-33) of feeding larvae, probably represented plant RNA in
the artificial diet; E. coli reads (1.7%), correlated with the
midgut and certain head libraries (26, 28-33, 53—60), may
represent microbiota of the midgut and foregut, as part of
the head. The other head libraries (1-11) apparently were
less contaminated by foregut tissues. Likely due to allelic
variations, 2.8% of the total were mapped to the M. sexta

sequences previously deposited at NCBI, including highly
expressed lysozyme, apolipophorin and other genes. Other
reads (5.5%) matched sequences of lepidopteran insects and
other bacteria. No viral sequence was detected in this lab
strain which had been established for a long period of time
[28]. Insects caught in the field are often infected by viruses
that are detectable by RNA-seq analyses [42].

Comparisons of different libraries and their gene
expression

FPKM values and gene names of OGS2.0 are enlisted in
(Additional file 6: Table S4). So are FPKM values of
Cufflinks4.0 genes in (Additional file 7: Table S5) and
MCOT1.0 genes in (Additional file 8: Table S6). Based
on the definition of library-correlated genes (FPKM >1,
z-score > 1.5) [39], 15,289 of the 15,543 OGS2.0 genes
are correlated with at least one library, and the rest are
expressed at low levels (FPKM <1). The correlated genes
range from 200 to 3000 in each library. Early embryo,
pupa, and adult generally had more correlated genes,
but lower than testis (libraries 48—50) (Fig. 5b). Percent-
ages of the highly expressed ones (FPKM >100) vary to
some extent.
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We compared the 67 libraries based on mapping
scores using the same strategy described by Li et al. [39].
Digitized scores in the color gradient clearly showed the
interlibrary relationships (Fig. 5a). As anticipated, map-
ping scores close to the diagonal line were much higher,
indicating that the libraries with closer developmental
stages from the same tissue type are more similar to
each other. Some square-shaped regions of different
sizes along the diagonal line overlap each other (e.g.
midgut libraries 27-32, 32-35 and 34-37); others do
not (e.g. head libraries 1-3 and 4-5). Gene expression
(e.g. digestive enzymes) in midgut of the feeding larvae,
wandering larvae, and pupal - adult stage changed pro-
gressively, with each library more similar to its neighbor-
ing libraries or developmental stages [23, 28]. Libraries
from the same tissue/organ/body part but distant in life
stage share fewer correlated genes and behave

independently in the heatmap. Conversely, those with
close developmental stages share more correlated genes
(e.g. libraries 53-60 vs. 9-10, head, young adults). For
antenna libraries 61-67, larvae and adults are somewhat
similar, female adults (64—66) resemble female head
(53-56) and, surprisingly, the male antenna library 67 is
similar to female head (53-56). The whole body libraries
20-24 show higher similarity with libraries of midgut
from feeding larvae, larval head and muscle. The ovary
libraries 51-52 (O-P-D15~18 and O-A-D1) are highly
similar to fat body libraries 17 (F-P-D15~18) and 19
(F-A-D7~9). Surprisingly, the fat body library 18 (F-
A-D1~3) is most similar to the Malpighian tubule li-
braries 39 (MT-A-D1) and 40 (MT-A-D3). Sequencing
methods seem to affect library similarity (i.e. mapping
scores) for unclear reasons. Single-end muscle librar-
ies 43, 45 and 47, but not the corresponding paired-
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end ones (42, 44 and 46), are highly similar to single-
end head libraries 5-7.

Highly expressed genes in the libraries
Genes with high FPKM values contribute a major por-
tion of the total reads in all libraries. For the current
study, we selected top 3 expressed genes in each library,
removed the redundant ones, and examined expression
patterns of the remaining 69 (Fig. 6). Among them,
housekeeping genes (e.g. ribosomal proteins) are highly
expressed in nearly all libraries. Expression of odorant-
binding/chemosensory proteins are high in head and an-
tenna. Some cuticle proteins are abundantly made by
epithelial cells in the head and whole body samples.
Very high read numbers of serine protease-102 in li-
braries 17 and 51 (F-P-D15~18 and O-P-D15~18) sug-
gest its role in tissue remodeling during metamorphosis
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in the late pupal stage (Fig. 6). Other tissue-specific pro-
teins include titin in young adults (MT-A-D1 and MT-
A-D3), histones H2B and H4 in embryo (W-E-3 h-S and
W-E-Late-S), circadian clock-controlled gene products
in head (H-L5-preW-S for OGS2.0 genes Msex2.07414
and Msex2.14769); adult head libraries 9-11 and 53-60
for gene Msex2.04015), lysozyme in fat body and mid-
gut, and diapausin-4 and -13 (Msex2.13832 and
Msex2.13057) in head, fat body, and other tissues. Insect
development is controlled by diverse clocks, including
the circadian clock [43]. The fact that circadian clock-
controlled genes (Msex2.07414 and Msex2.14769) are
expressed in very high levels in head of pre-wandering
larvae suggests vital roles for their proteins in this and
the wandering stage. The founding member of the dia-
pausin protein family in the leaf beetle was named dia-
pausin on the basis of stage-specific synthesis [44]. A
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group of 14 diapausins was later identified in the M.
sexta genome, with diapausin-1 shown to be an antifun-
gal peptide [25, 45]. While the high mRNA levels for
diapausin-4 and -13 in fat body may contribute to the
antifungal activity of hemolymph, it is interesting to note
that their expression levels were even higher in head.

Library-correlated expression of genes

In theory, FPKM values are proportional to mRNA levels
inside cells, especially for genes with high FPKM values.
To acquire an overview of library-correlated gene ex-
pression, we prepared a heatmap of z-scores for genes
with at least one FPKM value >100 and divided these
6108 genes into 18 clusters based on their expression
patterns (Fig. 7). The 896 genes in cluster 1 are (more)
highly expressed in the testis libraries, some highly
expressed in all three and others either in T-P-D3 or in
T-P-D15~18 and T-A-D1~3. Cluster 3 genes are (more)
highly expressed in adult ovary (O-A-D1); cluster 7 in
3 h embryo; cluster 9, including many digestive enzyme
genes, in larva midgut (data not shown); cluster 13 in
pre-wandering head; clusters 16 and 17 in adult and
larva antenna, respectively. Noncoding genes and
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MCOT specific genes show similar expression patterns
(Additional file 2: Figure S1). The original z-scores for
Fig. 7 and Additional file 2: Figure S1 can be found in
(Additional file 9: Tables S7-S9).

To describe general features of the genes in different
clusters, we performed a GO enrichment analysis (Fig. 7).
As expected, the enriched GO terms were well corre-
lated with the expression pattern of gene clusters. For
example, the most significantly enriched terms of cluster
1 include microtubule binding, microtubule motor activ-
ity, and protein kinase activity under molecular function
(Fig. 7). These terms suggest that meiosis and sperm
generation in testis heavily use kinase cascades and
microtubule-binding for chromosome movement. The
upregulation of microtubule-related proteins was also
observed in D. melanogaster [46]. Cluster 3 genes are
more specifically expressed in adult ovaries, and the
enriched GO terms, including chorion and eggshell
formation, were tightly linked with female
reproduction [47]. Similar clusters of genes more spe-
cifically expressed in testes and ovaries were also
identified in D. melanogaster [38]. Cluster 7 genes are
highly expressed in early embryo, and the enriched
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Fig. 7 Library-specific expression of different genes in 0GS2.0. Z-scores for highly expressed genes were calculated from FPKM values. Genes were
clustered based on z-scores and divided to different groups manually based on the expression pattern. Significantly enriched GO terms (p < 0.05)
for different clusters were labeled on the right, with GO numbers in red, green and blue represent Biological process, Cellular component and
Molecular function, respectively
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terms, including DNA replication, transcription and
methylation, were tied to early embryonic develop-
ment, same as observed in D. melanogaster [48].

tRNA genes and codon usage

Different organisms have different codon preferences,
which is associated with the age of genes and influenced
by natural selection [49, 50]. Most codon frequency
tables are calculated based on a limited number of pro-
tein sequences and might be inaccurate [51]. To
complete this transcriptome study, we took advantage of
the OGS2.0 and transcriptome data to examine a con-
ceivable relationship between codon preferences and
tRNA genes (Additional file 2: Table S10). For some co-
dons, the predicted tRNA gene number is 0 (e.g. CTC),
while its codon frequency in the genome and transcrip-
tome is 15.2 and 17.7 per thousand, respectively. In
other words, there is no direct correlation with tRNA
gene numbers due to codon-anticodon wobbling. How-
ever, the tRNA gene number and codon frequency of
different amino acids are highly correlated both in
genome and transcriptome as shown in (Additional file 2:
Figure S2). This suggests that the number of tRNAs
might be regulated at the amino acid level instead of
codon level. We also found the codon usages in genome
and transcriptome generally agree. By calculating codon
preferences in different libraries based on the RNA-seq
data, we realized that codon usage is mainly influenced
by highly expressed genes and there are no obvious
global changes in codon preference.

Discussion

We performed an in-depth analysis of the M. sexta
RNA-seq libraries and described their qualities in terms
of read composition. Data indicate that, in a few librar-
ies, over 30% of the reads came from rRNA or mito-
chondrial genes (Fig. 2f) due to problems in sample
preparation. We excluded these reads when calculating
FPKM values because, otherwise, abundant rRNA and
mitochondrial reads would greatly increase the total
number of mapped reads and FPKM values of other
genes would be lower than normal.

The Cufflinks4.0 genes and exons cover 51.7% and
17.1% of the genome, higher than those of OGS2.0
(41.6% and 9.2%). Preference for protein-coding genes
during manual annotation, an important step of OGS2.0
[26], may have led to the difference. Some Cufflinks4.0
genes might be pseudo-genes predicted from pervasive
transcribed parts of the genome [52, 53]. Cufflinks4.0
has 33,375 genes, a lot higher than 15,542 in OGS2.0.
From the current data, 64% of the genome is tran-
scribed, somewhat similar to 85% for human [52]. How-
ever, Cufflinks4.0 gene exons composed 17.1% of the
genome of M. sexta. Compared with 4.1% of the human
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genome, the major difference between the exon region
and transcribed region could be caused by deep sequen-
cing of newly transcribed RNAs which may contain in-
trons, failure in modeling some genes by Cufflinks,
pervasive transcription of the genome [52, 53], and gen-
omic DNA contamination.

Embryo, larva, pupa, and adult are the four distinct life
stages of holometabolous insects and genes were differ-
ently expressed in various tissues/organs. The interlib-
rary comparisons showed large differences among 67
libraries (Fig. 5), as most parts of the plot are either
white or grey. The red blocks off the diagonal line are
mostly from libraries sharing tissues. For example, librar-
ies 53-56 from female head with antenna are similar
with libraries 64—66 from female antenna. We also note
that library 5 (H-L5-12 h-S) is similar with libraries 43
(M-L5-12 h-S), but not libraries 42 (M-L5-12 h). The li-
braries 42 and 43 are from same tissue type, but se-
quenced differently, suggesting that other technical
factors may also influence the interlibrary comparison.

The gene expression level based on 0OGS2.0,
Cufflinks4.0 and MCOT1.0 each exhibited similar correla-
tions with tissues and life stages (Fig. 7 and Additional file 2:
Figure S1). Some genes, including the highly expressed ones
(Fig. 6) are expressed at very high levels in one or a
few closely-related libraries. Such sharp distinctions
are seldom seen in Drosophila or mosquito studies,
probably due to their small sizes and short larval and
pupal stages. As clear separation of unrelated tissues
or stages is a prerequisite for accurate identification
of tissue/stage-specific genes, M. sexta, a large insect
similar to many lepidopteran insects, is ideal for
future tissue/stage-specific transcriptome analyses to
serve as a better model for agricultural pest species.

Differentially expressed genes can provide useful leads
for their functional elucidation. For example, the serine
protease-102 is highly expressed in library of pupal ovary
day 15 to 18 (Fig. 5), suggesting its function in female
reproduction. Additionally, in-depth analyses of the
RNA-seq data may reveal tissue/stage-specific alternative
splicing and transcriptional co-regulation to guide func-
tional investigations. To date, less than 15% of the
OGS1.0 genes have been manually curated by a sizable
community of experts [28]. While GO terms describe
the general gene functions, we were only able to assign
GO terms to 60% of the genes. By carefully examining
individual gene groups along with homolog search and
domain prediction, we expect an acceleration of gene
function research in M. sexta and other insects.

Conclusions

We comprehensively described and summarized the
publicly available 67 RNA-seq libraries of M. sexta,
explored the quality and mapping percentage of RNA-
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seq reads, explained the composition of RNA-seq reads
and found rRNA and mitochondrial reads contributed
remarkably to the mapped and unmapped groups. We
named OGS2.0 genes, calculated and summarized FPKM
values of gene expression in one table to facilitate their
future functional studies. We compared similarities of
various libraries and observed gene expression changed
dramatically within days in libraries from the same
tissues. Some most highly-expressed genes were
unknown, with no homologs which have been studied.
Most genes are library-correlated, including many
highly-expressed genes which are highly library-specific.
This is the first study which analyzed various transcrip-
tome data from well-dissected tissues of an insect at
different life stages. We hope it will greatly facilitate
studies in M. sexta and other insects in the future.
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