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Abstract

Background: Colon cancer occurrence is increasing worldwide, making it the third most frequent cancer. Although
many therapeutic options are available and quite efficient at the early stages, survival is strongly decreased when the
disease has spread to other organs. The identification of molecular markers of colon cancer is likely to help
understanding its course and, eventually, to uncover novel genes to be targeted by drugs. In this study, we compared
gene expression in a set of 95 human colon cancer samples to that in 19 normal colon mucosae, focusing on 401
genes from 5 selected pathways (Apoptosis, Cancer, Cholesterol metabolism and lipoprotein signaling, Drug
metabolism, Wnt/beta-catenin). Deregulation of mRNA levels largely matched that of proteins, leading us to build in
silico protein networks, starting from mRNA levels, to identify key proteins central to network activity.

Results: Among the analyzed genes, 10.5% (42) had no reported link with colon cancer, including the SFRP1, IGF1 and
ADH1B (down), and MYC and IL8 (up), whose encoded proteins were most interacting with other proteins from the same or
even distinct networks. Analyzing all pathways globally led us to uncover novel functional links between a priori unrelated or
rather remotely connected pathways, such as the Drug metabolism and the Cancer pathways or, even more strikingly,
between the Cholesterol metabolism and lipoprotein signaling and the Cancer pathways. In addition, we analyzed the
responsiveness of some of the deregulated genes essential to network activities, to chemotherapeutic agents used alone or
in presence of Lovastatin, a lipid-lowering drug. Some of these treatments could oppose the deregulations occurring in
cancer samples, including those of the CHECK2, CYP51A1, HMGCS1, ITGA2, NME1 or VEGFA genes.

Conclusions: Our network-based approach allowed discovering genes not previously known to play regulatory roles in
colon cancer. Our results also showed that selected drug treatments might revert the cancer-specific deregulation of genes
playing prominent roles within the networks operating to maintain colon homeostasis. Among those genes, some could
constitute novel testable targets to eliminate colon cancer cells, either directly or, potentially, through the use of lipid-
lowering drugs such as statins, in association with selected anticancer drugs.
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Background
Colorectal cancer (CRC) is the third most common can-
cer type, and affords several hundred thousand deaths
each year [1]. The implementation of screening methods
has contributed significantly to reduce mortality, thanks
to the early detection of precursor lesions [2]. Many
curative options are available, essentially at the early
stages, but survival drops down to a few percent in case
of metastases. The amount of knowledge that has accu-
mulated for this cancer is rather large, yet the means to
prevent its development are dramatically insufficient.
The temporality of genetic and epigenetic changes that
occur in the course of CRC onset have been largely doc-
umented, including data contributed recently by the
TCGA consortium, and CRC-enriched signaling path-
ways have been identified [3]. Many gene expression
studies have been performed with whole transcriptome
coverage by DNA chips and, more recently, by RNA se-
quencing methods [4, 5]. A recent study analyzed a re-
ported data set distinguishing colon cancer from healthy
samples with the Gene Ontology (GO) and the Kyoto
Encyclopedia of Genes and Genomes (KEGG), and built
a protein-protein interaction network using the Cytos-
cape environment [6]. Such a network analysis allowed
identifying central proteins, or hubs, belonging to over-
or under-represented pathways. In silico protein network
construction can indeed provide sensible information on
homeostasis disruption linked to disease [7, 8]. Several
parameters can be characterized, which help establishing
hierarchies between proteins from a network or even be-
longing to a priori distantly related networks [9]. Func-
tional interactions existing between the products of
deregulated genes can add to the sole knowledge of fold-
change deregulation, by highlighting relationships be-
tween genes and the presence of hub genes that concen-
trate information transmission. Such a strategy can bring
to light potential novel targets towards which corrective
approaches may be developed. In this study, we used a
dedicated PCR approach to identify putative novel gene
expression markers relevant for colon cancer. We se-
lected specific PCR arrays from Qiagen™, representing 5
specific signaling pathways, to compare 95 individual
CRC samples to a set of 19 normal mucosae. These as-
says analyzed the Apoptosis, Cancer, Cholesterol metab-
olism and lipoprotein signaling, Drug metabolism and
Wnt/beta-catenin pathways. Such a PCR-based ap-
proach, although of relatively low throughput, has the
advantage to allow investigating directly, in a robust and
straightforward analysis, the expression of genes in-
volved in a given functional pathway, in this case most
linked to cancer. These data led us to build up protein
networks into the Cytoscape environment. A number of
hierarchical links involving most of the proteins, some
with key positions, both within a given pathway and

across pathways, were identified. We next treated hu-
man CRC cell lines by anticancer drugs alone or in com-
bination with Lovastatin, a cholesterol-lowering drug
that can efficiently trigger apoptosis, and analyzed
marker gene expression in response to the drugs. This
led us to sort out genes that responded to treatments in
a way that would lead to restoring gene expression as it
stands in non-cancerous cells. On the whole, we believe
that this work based on an integrative approach, in
addition to identifying new deregulated gene expression
networks in colon cancer, highlighted some interactions
between the protein products of these genes, and identi-
fied genes whose cancer-specific expression could be
reverted by pharmacological agents already used in the
treatment of patients, or that may be so by other drugs
like Lovastatin.

Methods
Tissue samples processing
Colon and rectum tissue samples were obtained after surgi-
cal removal and informed patient consent. The samples
were processed anonymously: 95 colorectal carcinomas
(CRC) and 19 normal tissues (NT) were collected between
2005 and 2011. Detailed patient information is presented in
Table 1. Additional patient characteristics, such as potential
comorbidity conditions at time of diagnosis (obesity, drug
absorption, tobacco exposure or alcohol consumption, etc.)
were not available. H/E staining was performed for all sam-
ples, and the tumor content within cancer samples was
above 80%. Repartition of low grade (stages 0, I and II) and
high-grade carcinoma samples (stages III and IV) was
homogeneous. The tissue fragments were stored in RNAla-
ter® stabilization solution (Ambion, France), a reagent that
prevents mRNA from degradation. Total RNA was ex-
tracted with the AllPrep DNA/RNA Mini kit (Qiagen,
Courtaboeuf, France) from homogenized tissue samples
(20 mg). RNA purity and integrity were evaluated by meas-
uring the optical density ratio (A260/A280) and the RNA
Integrity Number (RIN) using the RNA 6000 Nano
LabChip and the 2100 BioAnalyzer (Agilent, Massy,
France), respectively. Only RNA samples with a 28S/18S ra-
tio > 1.0 and RIN > 5.0 were used.

Cultured cell lines and viability assay
HT-29 cells were cultured in Dulbecco’s modified Eagle’s
medium (DMEM; 4.5 g/L glucose) (Lonza, Belgium)
supplemented with 10% fetal bovine serum (FBS) (Gibco
Invitrogen, U.S.A.), and HCT-116 cells were maintained
in Dulbecco’s modified Eagle’s medium: Nutrient
Mixture F-12 (DMEM/F-12) (Lonza, Belgium), supple-
mented with 5% FBS. All cultures were incubated at 37 °
C in a humidified atmosphere containing 5% CO2. The
medium was changed every 2 days, and cells were pas-
saged using 0.05%/1 mM Trypsin/EDTA.

Durand et al. BMC Genomics  (2017) 18:758 Page 2 of 22



Cell viability was measured by the colorimetric MTT
(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide) test (EMD Millipore, U.S.A.). Cells (103) were
seeded in 100 μL medium into each well of 96-well
plates and incubated for 24 h at 37 °C. The medium was
then changed with fresh medium and exposed for 72 h
to the drugs at the following concentrations: 1 and
10 μM Oxaliplatin (Teva Sante, France), 1 and 10 μM 5-
Fluorouracil (Pfizer, U.S.A.) or 0.01 and 0.1 μM Camp-
tothecin (Sigma, U.S.A.), in combination or not with
5 μM Lovastatin (TCI, Belgium). After the incubation
periods, 10 μL of MTT reagent (5 mg/mL in PBS) were
added into each well and cells were incubated at 37 °C
for 3 h to allow MTT cleavage to occur. The reaction
was then stopped with 100 μL isopropanol with 10%
Triton X100 and 0.1 N hydrochloric acid. The absorb-
ance was measured within 1 h, on a multiplate reader
(Thermo Labsystems Multiskan spectrum, UV/Visible
Microplate Reader, U.S.A.) with a test wavelength of
570 nm and a background wavelength of 690 nm.
The effects of drug treatment on transcripts levels

were evaluated after 24 h of exposure to the drugs used,
as mentioned above.

Gene expression profiling by PCR array
Reverse transcription of 4 μg of total RNA was per-
formed using the High Capacity cDNA RT kit, according
to the manufacturer’s instructions (Applied Biosystems).
Differential expression between CRC and NT was evalu-
ated by real-time PCR (ABI 7000 and ABI 7300, Applied
Biosystems) with the RT2 Profiler PCR array (Qiagen) in
96-wells plates according to the manufacturer’s instruc-
tions (Qiagen). Five types of plates (to assay expression
of 84 specific genes each) were used: Apoptosis (PAHS-
012A), Cancer pathways (PAHS-033A), Lipoprotein sig-
naling and cholesterol metabolism (PAHS-080Z), Drug
metabolism (PAHS-002A) and Wnt signaling pathway

(PAHS-043A). Gene composition and Qiagen’s func-
tional gene groups are indicated in Additional file 1.
Nineteen genes were both present in two different PCR
arrays: 14 genes in the “Apoptosis” and “Cancer path-
ways” arrays (AKT1, APAF1, BAD, BAX, BCL2, BCL2L1,
CASP8, CFLAR, FAS, TNF, TNFRSF10B, TNFRSF11A,
TNFRSF25 and TP53), 2 genes in the “Cancer pathways”
and “Wnt signaling pathway” arrays (JUN and MYC), 2
genes in the “Lipoprotein signaling and cholesterol me-
tabolism” and “Drug Metabolism” arrays (APOE and
CYB5R3) and 1 gene (LRP6) in the “Lipoprotein signal-
ing and cholesterol metabolism” and “Wnt signaling
pathway” arrays. Data analysis was performed using the
ΔΔCt method [10] with normalization of the raw data to
housekeeping genes. NormFinder [11] and geNorm [12]
algorithms were used to determine the optimal
normalization genes. A set of 4 invariant genes was used
for each specific PCR array: BIRC2, CASP8, FADD and
TP53BP2 for the Apoptosis array; MTA1, MTA2, PNN
and RAF1 for the Cancer pathway array; LDLRAP1,
OSBPL5, PMVK and SNX17 for the Lipoprotein signal-
ing and cholesterol metabolism array; ADH5, ALDH,
CES2 and SMARCAL1 for the Drug metabolism array
and BTRC, CTBP1, EP300 and PPP2CA for the Wnt
pathway array. Homogeneity of gene expression in the
group of normal tissues was validated through splitting
randomly the samples into two groups. Gene expression
showed no significant difference in fold-changes between
the two groups. Subsequently we used the mean of the
pooled sample of NT for the calculation of fold-changes.
Statistical analyses were performed using the R software.
For each gene and each pathway, the difference in means
of log2-transformed fold-change between NT and CRC
was tested using a Student t-test. To control for multiple
testing of the genes and pathways, the raw p-values ob-
tained from this analysis were further adjusted with the
q-value method. The false discovery rate (FDR)-adjusted

Table 1 Characteristics of the colorectal cancer patients used in the present study. Clinical and pathological information from
normal and cancer samples were indicated according to number, sex ratio, age of patient, location and stage grading

PCR array (Paired) PCR array (All) Western Blot (Paired)

Group NT CRC NT CRC CRCa NT CRC

Number of samples 17 17 19 95 75 27 27

Sex Ratio 11 M / 6 W 13 M / 6 W 57 M / 38 W 45 M / 30 W 14 M / 13 W

Mean Age (±SD) 72 (± 3.1) 73 (± 2.8) 69 (± 1.4) 70 (± 1.5) 70 (± 2.5)

Location 15 colon / 2 rectum 16 colon / 3 rectum 73 colon / 21 rectum 56 colon / 19 rectum 23 colon / 4 rectum

Stage 0 / 0 (0%) / 2 (2%) 1 (1%) / 0 (0%)

I / 3 (18%) / 16 (17%) 14 (19%) / 6 (22%)

II / 4 (24%) / 30 (31%) 25 (33%) / 6 (22%)

III / 8 (47%) / 28 (30%) 21 (28%) / 7 (26%)

IV / 2 (12%) / 19 (20%) 14 (19%) / 8 (30%)

Abbreviations: NT Colorectal normal tissue, CRC colorectal carcinoma, M Man, W Women
aOnly for analysis with the “Lipoprotein signaling and cholesterol metabolism” PCR array (the 75 samples were among the set of 95 CRC)
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q-values (FDR 5%) were calculated using the p.adjust
command in R. Significance was set at q < 0.05 and
fold-change limit was set at 1.7-fold. The Principal Com-
ponent Analyses have been performed with R and the
FactoMineR package (FactoMineR: An R Package for
Multivariate Analysis, Journal of Statistical Software,
March 2008, Volume 25, Issue 1).

Protein extraction and Western blot analysis
Acetone precipitation of proteins was performed from
the flow-through of the RNeasy spin column, according
to the manufacturer’s instructions (Qiagen). Precipitated
cytosolic proteins were suspended in 500 μL of boiling
buffer (1% SDS, 1 mM Na3VO4, 10 mM Tris-HCl
pH 7.4) for Western blot application. Protein quantifica-
tion was carried out using the Bio-Rad DC Protein Assay
system and the absorbance was measured within 1 h on
a multiplate reader (Thermo Labsystems Multiskan
spectrum, UV/Visible Microplate Reader, U.S.A.) at
750 nm. Forty micrograms of protein extracts were
boiled in Laemmli buffer for 5 min before separation by
SDS-PAGE using 8 to 12% polyacrylamide gels and
transfer onto a polyvinylidene fluoride membrane (GE
Healthcare, France) by electroblotting. Membranes were
saturated using Sea Block Blocking Buffer (Thermo Sci-
entific, France) for 1 h at room temperature. Primary
antibodies (BCL-2, CASP7 (Cell Signaling Technology,
U.S.A.); ADH1C, BCL2L1, GSTP1, IGF1, NME1 (Abnova,
Taïwan); FDPS (Epitomics, France); CYP39A1, GPI,
HMGCS1, PCSK9, PKM2, HSC70 (Santa Cruz Biotechnol-
ogy, U.S.A.)) were diluted in blocking buffer (Odyssey
LI-COR Biosciences, U.S.A.), containing 0.1% Tween®20.
Membranes were incubated with the suitable primary
antibody, at 4 °C overnight, then washed four times with
PBS / 0.1% Tween®20 at room temperature and incu-
bated with the infrared absorbing secondary antibody
(Odyssey®) for 1 h at room temperature. Membranes
were washed again and protein bands revealed using the
Odyssey®-LI-COR imaging system. Twenty paired CRC/
NT samples were analyzed for each antibody. Protein ex-
pression fold-changes between 20 CRC and paired NT
were evaluated by densitometry analysis, using Hsc-70
as normalization control.

Immunohistochemistry
Formalin-fixed and paraffin-embedded samples of colo-
rectal adenocarcinomas (n = 27, same patients used for
Western blot analyses, Table 1) were used for the
immuno-histochemical (IHC) analyses. For each case, a
block containing adenocarcinoma areas and adjacent
normal mucosa was selected. Immuno-histochemical
techniques were performed for each case on 4 μm
formalin-fixed and paraffin-embedded tissue sections
mounted on Superfrost® Plus slides (Thermo Scientific,

Saint-Herblain, France) dried overnight at 37 °C before
processing. IHC processing was performed on a Ventana
Benchmark XT® automated slide preparation system
(Roche Diagnostics, Meylan, France) using the UltraView
Universal DAB Detection Kit (Roche Diagnostics). The
following antibodies were used: NME1 (mouse monoclo-
nal antibody, clone 1D7, Abnova, 1:200 diluted), FDPS
(rabbit monoclonal antibody, clone EPR4628, Epitomics,
1:400) and CCND1 (rabbit monoclonal antibody, clone
SP4, Thermo Scientific). The slides were pre-treated with
cell conditioner 1 (pH 8) for 30 min., followed by incu-
bation with each antibody at 37 °C for 1 h. After wash-
ing, the slides were counterstained with one drop of
hematoxylin for 12 min and one drop of bluing reagent
for 4 min. Slides were next washed in water with dish-
washing detergent and mounted. For each case, the
staining intensities were compared between the adeno-
carcinoma glands and the adjacent normal glands. Stain-
ing of the stroma was also noted.

Real-time polymerase chain reaction
To evaluate the impact of drug treatment on the tran-
script content of HCT-116 and HT-29 cells, the differen-
tial expression of selected genes was analyzed by real time
PCR (StepOne plus, Applied Biosystems). Briefly, total
RNA was extracted using TRIzol® reagent according to the
manufacturer’s instructions (Invitrogen, France). Two mi-
crograms of total RNA were reverse-transcribed using
random hexamers and M-MLV (Moloney-murine-leukae-
mia virus) reverse transcriptase (New England Biolabs,
France). Retro-transcribed RNA (~5 ng cDNA) was used
as template for all PCR experiments (except for the 18S
ribosomal RNA which was amplified from ~5 pg cDNA).
PCR was performed with the Power SYBR GREEN PCR
Master Mix, according to the manufacturer’s instructions
(Applied Biosystems). All conditions were normalized
relative to the 18S control rRNA. Primer sequences (and
amplicons lengths) were: TCACTTGTGGCCCAGA-
TAGGC and GGATGCCTTTGTGGAACTGT for BCL2
(136pb), AGGTTTAGCGCCACTCTGC and GAGCCT-
CAACATCCGACTCC for CHECK2 (98pb), TGCAGT
GTCTCGGGACTTCG and CGCTGGTGTGGAACATC
TGG for CYP11A1 (218pb), TGGAGGAATGGTA-
TACCCTG and TCCTTTGACTGATGATGAAGTAGC
for CYP51A1 (310pb), ATTTGGAGCACAGGTGTCTA
and TGTCATTGGTGACGCCATCT for DHCR7(163pb),
CCTGCACACCTTCCAAAACG and GTAGCAGTCGG-
CATACAGC for DHCR24 (236pb), TGTGGCACCA-
GATGTCTTCG and GCTGTGGCAGGGAGTCTTG for
HMGCS1(271pb),TTCTGCAGCTCTGTGTGAAGG and
TTTGGGGTGGAAAGGTTTGG for IL8 (97pb), GGAG
TGGCTTTCCTGAGAAC and GGTGAGAAGCTGGC
TGAGAG for ITGA2 (285pb), AAAGGATTCCGC
CTTGTTGGT and GCCCTGAGTGCATGTATTTCAC
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for NME1 (124pb), TCCTGTATGGCTCCGAGACC and
ACACCACGTCATACTCATCC for NOS3 (114pb),
CTCAGAGCGGAGAAAGCATTTG and TCACCGCCT
CGGCTTGTCAC for VEGFA (259pb), TAGAGGGACA
AGTGGCGTTC and CGCTGAGCCAGTCAGTGTAG
for 18S (104pb). The results were analyzed using the ΔΔCt
method [10]. Reactions were run in three independent ex-
periments. Statistical analyses were performed using the
Student t-test (p<0.05).

Data integration into biological networks
To obtain biological information about this set of
deregulated genes in CRC as compared to NT, we
searched for direct (physical) and indirect (functionally
associated with no direct interaction) associations be-
tween 111 genes identified by transcriptome analysis in
the STRING (Search Tool for the Retrieval of Interacting
Genes/Proteins) database (version 10.5) [13]. Briefly, in-
teractions in STRING are derived from multiple sources
(experimental/biochemical experiments, curated data-
bases, genomic context prediction, co-expression and
automated text mining). Confidence level of edge, i.e.
interaction between 2 nodes or protein/gene, is com-
puted in a combined score (ranging from 0 to 1). Inter-
actions and transcriptome data were imported and used
for network generation in the Cytoscape environment
(version 3.4) [14] focusing only on deregulated genes re-
trieved for each specific PCR array or on all deregulated
genes. Topological analysis was performed with Network
Analyzer to identify nodes parameters, including degree,
clustering coefficient and betweenness centrality [15].

Results
RT-qPCR analysis of selected genes in colorectal tissue
samples
We selected five biological pathways to compare gene
expression in 95 colorectal cancers (CRC) to a set of 19
normal colon tissues (NT) by RT-qPCR. These genes
were classified in functional groups for each pathway
(Additional file 1). We set the statistical variation thresh-
old at a fold-change (FC) of 1.7, and a q-value of less
than 0.05. From a comparison of 17 CRC to paired NT,
111 mRNAs (28% of the genes surveyed) were either up-
or down-regulated in CRC samples (Fig. 1a). For each
gene, we also show the % of samples with a FC of 1.7 or
more (from 39% (SREBF1) to 100% (ADH1B and
SFRP1)) and, secondly, with a FC of 2.0 or more (from
23% (FZD6) to 99% (ADH1B and SFRP1)). As shown in
the “All” column, the data from the 17 paired samples
matched well with the majority of data obtained from all
samples, paired and unpaired (n = 95 CRC and 19 NT).
There were 3 up- / 11 down-regulated genes in the
Apoptosis array, 24 up- / 9 down-regulated genes in the
Cancer pathway array, 21 up- / 8 down-regulated genes

in the Lipoprotein signaling and cholesterol metabolism
array, 14 up- / 9 down-regulated genes in the Drug me-
tabolism array and 11 up- / 7 down-regulated genes in
the Wnt pathway. The strongest increase in gene expres-
sion in CRC vs. NT was for the IL8 gene in paired sam-
ples (25.8-fold, 16-fold for unpaired), whereas the largest
decrease was −10.5-fold for ADH1B in paired samples
(−14.7-fold for unpaired).
Hierarchical clustering analysis from each PCR array

based on differentially expressed genes showed an over-
all clear CRC vs. NT sample separation for all but the
Apoptosis pathway (Additional file 2). About 1/4 CRC
did not separate out from NT samples. The majority of
samples from this set behaved similarly among the five
clustering analyses. They could not be discriminated ac-
cording to specific stages or other clinical data (data not
shown). However, hierarchical marker clustering, taking
22 up- and 25 down-regulated genes that all displayed
altered (>1.7-fold) expression in at least 75% of CRC
samples, we could separate most CRC out of NT sam-
ples. Only 11 out of 95 (11%) CRC samples still clus-
tered among the NT samples (Fig. 1b). In addition, no
separation was observed among cancer samples accord-
ing to stage (S1 to S4). Of note, the 47 genes-based clus-
tering was highly contributed by genes from the
Lipoprotein signaling and cholesterol metabolism and
(n = 10) and Drug metabolism (n = 15) pathways. These
data highlight the importance of these two pathways not
previously associated to CRC pathogenesis (Table 2) but
showing a deregulation in the majority of CRC.
Quite expectedly, several of our observed gene expres-

sion changes agreed with former reports, including a
previous microarray study that we recently reported
[16]. For all those mRNAs that were detected by both
PCR arrays and microarrays, there was a 100% concord-
ance in the up- or down-regulations observed (28 / 28
genes in CRC and 41 / 41 genes in colorectal adenomas).
However, there were a few discrepancies between our
studies and some other reported data (Additional file 3).
For instance, BCL2 mRNA and protein levels were de-
creased in our samples (−2.18-fold in the PCR array,
−2.71-fold in microarray in CRA, −5.62-fold in micro-
array in CRC and −4.76 in TCGA study [17]), but in-
creased in the study of Sun et al. [18]. NOS3 mRNA was
increased in our study and in that of Yagihashi et al.
[19], but decreased in the study of Yu et al. [20] and
showed no change in TCGA study [17]. GPX1 mRNA
was increased in our study and in that of Yagublu et al.
[21] and a small increase in TCGA study [17], but de-
creased in that of Nalkiran et al. [22].
To confront our data to other available data sets, we

used these same genes to test for the correct separation
of NT and CRC using the colorectal carcinoma cohort
(COADREAD) from The Cancer Genome Atlas (TCGA)
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Fig. 1 (See legend on next page.)
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dataset (gdac.broadinstitute.org). We performed a Prin-
cipal Component Analysis (PCA) using expression data
for 47 genes selected in our study (fold-change >1.7, re-
trieved in more than 75% of CRC samples). Similarly to
our hierarchical clustering (Fig. 1b), the PCA clearly dis-
tinguished two groups: NT and CRC, thereby validating
the expression data from our sample (Fig. 2). Further-
more, based on expression of the same 47 genes, colon
and rectum carcinoma were undistinguishable on PCA
plots. A similar observation was made from PCA per-
formed with other datasets (sets of deregulated genes re-
lated to functional Qiagen classification and all of the
111 deregulated genes identified with our samples)
(Additional file 4). Finally, the colorectal tumors could
not be separated according to the grading stage or the
APC and KRAS mutational status of (Fig. 2, Additional
file 4), indicating that the deregulated gene expression of
genes identified with our samples was independent of
tumor grades and of APC and KRAS mutations.
A high proportion of the deregulated genes found here

have not been reported in CRC, although the very large
majority had been described in other cancers, mostly
solid cancers, at the mRNA and/or protein levels
(Table 2). Not surprisingly, the most deregulated genes
had been identified in CRC in previous studies, whereas
less deregulated genes were new. For instance, PCSK9
(6.3-fold increase), CEL (15.1-fold increase), or GSTM5
(3.9-fold decrease), despite their relatively important de-
regulation, had only been reported in lung cancer for
PCSK9 [23], pancreatic and nasopharyngeal carcinoma
for CEL [24, 25], Barret esophagus and glioblastoma for
GSTM5 [26, 27]. Some of the deregulated genes had no
known deregulation linked with cancer, including several
genes that belonged to the Lipoprotein signaling and
cholesterol metabolism pathway (DHCR7, CYP51A1,

NSDHL, HMGCS1, IDI1, CNBP, APOL1, SREBF1), and a
few from other pathways, like RHOU (Wnt signaling
pathway) and EPDR1 (Cancer pathway).
To analyze the repercussion of these gene expression

changes at the protein level, we selected a set of genes
deregulated in more than of 75% of CRC (Fig. 1d). West-
ern Blot analysis was conducted for 9 up-regulated
(BCL2L1, CYP39A1, FDPS, GPI, GSTP1, HMGCS1,
NME1, PCSK9 and PKM2) and 4 down-regulated genes
(ADH1C, BCL2, CASP7 and IGF1). The majority of
changes in mRNA (19 or 20 out of 20 analyzed CRC
samples) levels were associated with comparable changes
in protein levels, with the exception of PCSK9, which
showed a large mRNA increase but a small and not sig-
nificant drop at the protein level, and for GPI, which
remained essentially unchanged in the majority of CRC
(17 out 20) (Additional file 5: Figure S3). As expected,
with respect to transcript levels, these changes occurred
regardless of cancer stage, for both up- and down-
regulated genes. In addition, BCL2L1 mRNA up-
regulation, which occurred in 63% of CRC, was associ-
ated with a parallel increase in protein level. Immuno-
histochemistry analysis of NME1 and FDPS proteins
conducted for 27 paired NT/CRC samples confirmed
the deregulation observed in Western blot analyses
(Additional file 6). CCND1, a Wnt signaling target gene
that showed mRNA up-regulation in 82% of CRC, was
also increased in CRC vs. NT in IHC analyses.

In silico protein pathways analyses
In view of the overall good correlation between mRNA
and protein expression changes, we went on to build up
presumptive protein-protein interaction maps. We used
the STRING database and the Cytoscape environment
to integrate interactions data into biological networks

(See figure on previous page.)
Fig. 1 Colorectal carcinoma classification based on gene expression profiling. a Heat map analysis of genes deregulated in colorectal carcinoma (CRC)
as compared to normal tissue (NT). Representation of the log2-transformed fold-change values from 111 cellular genes identified as significantly
deregulated in colorectal carcinoma (CRC), compared to normal tissue (NT), with an absolute fold-change >1.7 and a q-value <0.05 (Student-t-test ad-
justed by FDR) using Heat Map analysis (median centered data performed in Cluster and TreeView) [63]. Deregulated genes were shown according to
the type of specific PCR array and ranging from decreasing fold-change (red color for up-regulated genes and green color for down-regulated genes):
Apoptosis: 14 genes, Cancer pathway: 33 genes, Lipoprotein signaling and cholesterol metabolism: 29 genes, Drug metabolism: 23 genes, Wnt path-
way: 18 genes. The mean fold-change expression obtained from paired samples analysis (n = 17 paired CRC and NT) and all samples (n = 95 CRC ver-
sus n = 19 NT) analysis is indicated on the right of each graphic. Percentage of CRC showing an absolute fold-change superior to 1.7 and superior to 2
is also indicated on the right of each graphic. A blue color for gene names indicates a deregulation (> 1.7-fold) observed in more than 75% of tumor
samples. A (−) sign and a green font refer to down-regulation; a red font refers to up-regulation. b Hierarchical clustering of colorectal carcinoma and
normal colon tissue based on the expression profile of 47 genes. Log2-transformed fold-change values from 47 genes fulfilling the criteria of deregula-
tion in more than 75% of CRC samples (fold-change >1.7 and q < 0.05) were subjected to treatment by Cluster and Treeview using uncentered correl-
ation and average linkage [63]. Red and green colors indicate transcript levels above and below the median values, respectively. NT, normal colon
tissue (n = 19) and CRC, colorectal carcinoma (n = 95). Tumor samples are identified by a number followed by the Tumor Bank running number (S0,
S1, S2, S3, S4) corresponding to a grading stage according to the pathological classification. Samples names above the dendrogram were colored ac-
cording to stages: orange: 0 and I, red: II, purple: III and blue: IV. Genes identified by their gene symbol appear on the right side of each panel. Each col-
umn gives the gene expression profile of a sample, and each line indicates the variations in the level of expression of a given gene among tissue
samples. The length of the branches on the trees forming the dendrograms on the top of each panel reflects the degree of similarity between
samples; the longer the branch, the larger the difference in gene expression
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Table 2 Comparison between genes uncovered in this study and other cancers. Literature analysis of the genes not previously
reported as deregulated in CRC, but found deregulated in other cancer types. Different expression data information was listed for
each gene: i) from our study performed by PCR array technology in CRC (n = 95) as compared to NT (n = 19); ii) from literature data
by focusing on expression analysis obtained in other cancers (RNA or protein level) and iii) from other literature data obtained from
genetic association, epigenetic and functional studies in other cancers. Bold lines highlight newly deregulated genes in CRC and not
associated to other cancers

Gene Symbol PCR Array Data (CRC vs. NT) Bibliography Data

Fold-change q-value Pathway Type of Cancer Expression Change
(vs. NT)

Ref. Other data

CEL 15.08 < 0.001 Chol. Met. Pancreas ↓ (RNA) [25] /

Nasopharynx ↑ (RNA) [24] /

PCSK9 6.28 < 0.001 Chol. Met. Lung ↓ (RNA) [23] PCSK9 deficiency reduces
liver metastasis [64].

INSIG1 3.69 < 0.001 Chol. Met. Breast ↑ (protein) [65] /

DHCR7 3.56 < 0.001 Chol. Met. / / / /

CYP39A1 3.35 < 0.001 Chol. Met. Cholangiosarcoma ↓ (protein) [66] /

APOL1 2.97 < 0.001 Chol. Met. / / / /

CYP51A1 2.95 < 0.001 Chol. Met. / / / /

HMGCS1 2.79 < 0.001 Chol. Met. / / / Non-synonymous mutation associated to
hepatocellular carcinoma [67].

NSDHL 2.61 < 0.001 Chol. Met. / / / /

CYP2B6 2.61 < 0.05 Drug Met. Breast ↑ (RNA) [68] /

Hepatocellular ↑ (RNA) [69]

DHCR24 2.44 < 0.01 Chol. Met. Adrenals ↓ (RNA) [70] /

Prostate ↑ low risk and ↓
advanced (protein)

[71]

FDPS 2.40 < 0.001 Chol. Met. Prostate ↑ (protein, RNA) [72,
73]

/

SRD5A1 2.37 < 0.001 Drug Met. Non-small cell lung
cancer

↑ (RNA) [74] /

Prostate ↑ (RNA, protein) [75] Associated with biological aggressiveness in
prostate cancer [76].

Breast ↑ (RNA) [77] /

IDI1 2.37 < 0.001 Chol. Met. / / / Altered expression in response to paclitaxel
treatment in ovarian carcinoma
(nude mice xenografts) [78].

EPDR1 2.25 < 0.01 Cancer / / / /

CNBP 2.09 < 0.001 Chol. Met. / / / /

FDFT1 2.01 < 0.01 Chol. Met. Gastric ↑ (RNA, protein) [79] The A allele of rs2645429 (promoter) was
significantly associated with prostate cancer
risk in a Japanese familial population
(~increase promoter activity) [80].

Prostate ↑ (RNA) [80]

TM7SF2 1.96 < 0.001 Chol. Met. Adrenocortical
tumors

↓ (RNA) [81] /

Follicular thyroid
carcinoma

↑ aggressive vs.
non-aggressive (RNA)

[82]

RIPK2 1.95 < 0.001 Apoptosis Breast ↑ (RNA) [83] KO of RIPK2 in murine model of
bladder Cancer induces large
tumors and higher incidence of
metastases [84].

Oral squamous cell
carcinoma

↓ (protein) [85]

SREBF1 1.93 < 0.001 Chol. Met. Hepatocellular ↑ (RNA, protein) [86] /

SORL1 1.90 < 0.01 Chol. Met. Astrocytoma ↑ (RNA) [87] /

GSR 1.82 < 0.05 Drug Met. / / / /
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Table 2 Comparison between genes uncovered in this study and other cancers. Literature analysis of the genes not previously
reported as deregulated in CRC, but found deregulated in other cancer types. Different expression data information was listed for
each gene: i) from our study performed by PCR array technology in CRC (n = 95) as compared to NT (n = 19); ii) from literature data
by focusing on expression analysis obtained in other cancers (RNA or protein level) and iii) from other literature data obtained from
genetic association, epigenetic and functional studies in other cancers. Bold lines highlight newly deregulated genes in CRC and not
associated to other cancers (Continued)

Gene Symbol PCR Array Data (CRC vs. NT) Bibliography Data

Fold-change q-value Pathway Type of Cancer Expression Change
(vs. NT)

Ref. Other data

MVK 1.72 < 0.001 Chol. Met. / / / /

GSTM5 −3.92 < 0.001 Drug Met. Barett’s
esophagus

↓ (RNA) [27] Associated to DNA hypermethylation in
Barett’s adenocarcinoma [27], in human
salivary gland adenoid cystic carcinoma
[88], in myelodysplasic syndrome [89],
in glioblastoma [26].

Glioblastoma [26]

COLEC12 −3.32 < 0.001 Chol. Met. Anaplastic thyroid
carcinoma

↓ (RNA) [90] /

GSTM2 −3.10 < 0.001 Drug Met. Barett’s
esophagus

↓ (RNA) [27] Associated to DNA hypermethylation
[27, 91].

Oral squamous
cell carcinoma

[91]

GSTM3 −2.49 < 0.001 Drug Met. Barett’s
esophagus

↓ (RNA) [27] Associated to DNA hypermethylation in
Barett’s adenocarcinoma [27].

Lung [92]

CD27 −2.30 < 0.001 Apoptosis Bladder ↓ (RNA) [93] /

B Cell Lymphoma ↑ (protein) [94]

CLL ↑ (RNA) [95]

TEK −2.30 < 0.001 Cancer Non-small cell lung
cancer

↓ (RNA) [96] /

Angiosarcoma ↑ (RNA) [97]

AML and CML [98]

Thyroid ↑ (RNA, protein) [99]

Breast ↑ (protein) [100]

RHOU −1.78 < 0.001 Wnt Prostate ↓ (RNA) [101] /

WNT2B −2.19 < 0.001 Wnt Pancreas ↑ (protein) [102] /

Stomach ↑ (RNA) [103]

Basal carcinoma
(skin)

↑ (RNA) [104]

ITGA4 −2.13 < 0.001 Cancer CLL ↑ (RNA, protein) [105] /

ITGB3 −2.11 < 0.001 Cancer Liver ↓ (RNA, protein) [106] /

Ovary ↑ (RNA, protein) [107]

CD40LG −2.09 < 0.001 Apoptosis Inflammatory
breast cancer

↑ (RNA) [108] /

CELA3A −2.04 < 0.001 Chol. Met. Mucinous
pancreatic cyst

↑ (protein) vs non
mucinous

[109] /

PRKAA2 −1.96 < 0.001 Chol. Met. Ovary ↑ (RNA) [110] /

CYP2C19 −1.94 < 0.001 Drug Met. Breast ↓ (protein) [68] /

Liver ↑ (RNA) [111]

CYP11A1 −1.85 < 0.001 Chol. Met. Prostate ↓ (RNA) [112] Associated to DNA hypermethylation in
prostate cancer [112].

Endometrium [113]
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(Fig. 3) [13, 14]. STRING allows recognition of both
demonstrated protein-protein interactions (PPI) or
members of canonical pathways, predicted associations
based on genomic context or co-expression and litera-
ture text mining. Symbols with large lines around pro-
teins (nodes) reflect the genes showing mRNA
deregulation in more than 75% of CRC, as compared to
NT, and the colors indicate the level of up- and down-
regulation by a color gradient (pink to dark red for up--
regulated genes and light to dark green for down-
regulated genes). Thick lines between proteins indicate
interactions (edges) associated with a stronger probability
(confidence score ranging between 0.4 and 1) and blue
lines represent an experimentally validated physical PPI
from the source of evidence for the considered edges.
Taken individually, each network derived from the cor-

responding PCR array showed many functional associa-
tions (Fig. 3). Some proteins showed a prominent
position in each pathway, characterized by a high num-
ber of degrees, i.e. interactions (also named “molecular
hubs”), like BCL2, BCL2L1 and FAS (Apoptosis path-
way), TP53 (Cancer pathway), FDFT1 (Lipoprotein sig-
naling and cholesterol metabolism pathway), GSR (Drug
metabolism pathway) and CTNNB1 (Wnt pathway). The
Cancer and the Wnt pathways showed the highest dens-
ity of interactions (33 nodes and 174 edges, and 18
nodes and 75 edges, respectively), while the apoptosis
pathway showed the least interactions (14 nodes and 45
edges) (Fig. 3). Fusion of these 5 individual networks

associated to each functional category (from each PCR
array) led to a global network (111 nodes and 590 edges)
(Additional file 7: Figure S5A). Thirty-nine percent of in-
teractions included a physical PPI and 33.5% included
components of canonical pathways. All 5 pathways
showed many links with one another, with only very few
proteins (8 out of 111, 7.2%) not apparently involved in
any interaction with the other proteins. The original af-
filiations to each functional group were maintained with
the Wnt pathway group at the top right, the Lipoprotein
signaling and cholesterol metabolism to the bottom left,
the Drug metabolism to the top left and mixed Apop-
tosis and Cancer groups to the center of the network.
However, we also observed an association between these
groups through connecting nodes (NME1, CTNNB1,
CYP51A1, ABCC1, CYP2B6, NOS3, INSIG2, PCSK9,
SREBF1, LDLR, NQO1 …).
To gain some insight into biological processes and

identify key nodes in the global network, we performed
a topological analysis with NetworkAnalyzer, a Cytos-
cape plugin [15]. The top-5 proteins with higher interac-
tions, which are considered as molecular hubs, were
TP53, MYC, CTTNB1, BCL2 and VEGFA (Additional
file 7: Figure S5B) Fifty-two percent of the proteins had
more than 10 interaction partners and 9% had more
than 20 partners. These hub proteins were more import-
ant than poorly connected proteins (less than 11 part-
ners, i.e. the median degree of nodes) and were relevant
for colorectal cancer pathogenesis. To better identify

Table 2 Comparison between genes uncovered in this study and other cancers. Literature analysis of the genes not previously
reported as deregulated in CRC, but found deregulated in other cancer types. Different expression data information was listed for
each gene: i) from our study performed by PCR array technology in CRC (n = 95) as compared to NT (n = 19); ii) from literature data
by focusing on expression analysis obtained in other cancers (RNA or protein level) and iii) from other literature data obtained from
genetic association, epigenetic and functional studies in other cancers. Bold lines highlight newly deregulated genes in CRC and not
associated to other cancers (Continued)

Gene Symbol PCR Array Data (CRC vs. NT) Bibliography Data

Fold-change q-value Pathway Type of Cancer Expression Change
(vs. NT)

Ref. Other data

WNT5B −1.83 < 0.001 Wnt CLL ↑ (RNA) [114,
115]

/

Uterine leiomyoma [116]

FRZB −1.73 < 0.01 Wnt Liver ↓ (RNA) [117] Associated to DNA hypermethylation in
hepatocellular carcinoma [117],
medulloblastoma [118] and bladder cancer
[119].

Melanoma [120]

Medulloblastoma [118]

Bladder [119]

Gastric [121]

Breast [122]

WNT9A −1.68 < 0.001 Wnt CLL ↑ (RNA) [114,
115]

/

STAB2 −1.68 < 0.001 Chol. Met. Liver ↓ (protein) [123] /

Abbreviations: Chol. Met. Lipoprotein signaling and cholesterol metabolism, Drug Met Drug metabolism, Wnt Wnt signaling, Cancer: Cancer pathway; CLL Chronic
lymphocytic leukemia, AML Acute myeloid leukemia, CML Chronic myeloid leukemia
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important nodes, we looked at the clustering coefficient
that refers to the tendency of node’s neighbors to con-
nect to each other (Additional file 8: Figure S6A). Since
many cellular processes are governed by subsets of com-
ponents that form an interaction module, it is expected
that nodes with high clustering coefficients should be
biologically relevant. Interestingly, we could identify a

group of 32 proteins, corresponding in majority to
members of the Cancer pathway but also the Wnt
pathway, which combined a higher degree and a
higher clustering coefficient (Additional file 8: Figure
S6B). To a lesser extent, we could note the presence of
IL8, TIMP1 and MMP1 (Cancer group) that shared
these characteristics.

Fig. 2 Principal Component Analysis of two independent datasets of colorectal carcinoma based on the expression of 47 genes. Principal
component analysis (PCA) were performed based on the expression in normal tissue and colorectal carcinoma of 47 genes selected by the
criteria of deregulation in more than 75% of CRC samples (fold-change >1.7 and q-value <0.05). PCA was performed on our samples dataset
(19 NT and 95 CRC) (panels a and b) and on expression data retrieved from the colorectal cancer cohort from TCGA (gdac.broadinstitute.org)
composed the TCGA tumor dataset. Repartition of grading stage of TCGA colorectal carcinoma was: I: 47, II: 86, III: 54 and IV: 34. Fifty-eight tumors
were APC wild-type and 153 were mutated. One hundred and twenty-six were KRAS wild-type and 85 mutated.Individuals were colored accord-
ing to a category variable in each PCA plot: i) according to histological type (panels a and c); ii) according to grading stage (panels b and d); iii)
and, only for the TCGA PCA plot, according to the mutational status of APC (panel e) and KRAS (panel f). Samples corresponding to NT and tu-
mors that presented no available information about categorical variables were colored in black for panels b, d, e, f
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A second set of proteins (n = 25), characterized by a
high degree and a low clustering coefficient (inferior to
the threshold, i.e. the median), retained our attention
since this group concentrated: i) the hubs of the network
(nodes with degree superior to 20) and ii) the top-10

proteins with highest betweenness centrality (TP53,
CTNNB1, MYC, IGF1, CYP2B6, VEGFA, IL8, BCL2,
LDLR and GSTP1), which measures the number of
shortest paths going through a certain node. Therefore,
nodes with the highest betweenness control most of the

b

d

e

c

a

Fig. 3 Network building from deregulated genes in different types of PCR arrays. Interactions between sets of deregulated genes identified by
transcriptome comparison of CRC and NT were retrieved from the STRING database (version 10.5) for 5 different PCR arrays: a) Apoptosis, b)
Cancer pathway, c) Lipoprotein signaling and cholesterol metabolism, d) Drug metabolism and e) Wnt pathway. The interactions include direct
(physical) and indirect (functional) associations. All interaction sources questioned by STRING were used and the minimum required interaction
score was 0.4 (medium confidence). The blue color of edges indicated a physical interaction between 2 nodes. The thickness of edges was
correlated with score confidence (large for high score). Color intensity of nodes was related to transcriptome deregulation (red for up-regulation
and green for down-regulation in CRC as compared to NT). Genes showing a deregulation in more than 75% of CRC were characterized by a bold
line of shape node. Star symbols indicated the node showing the highest number of interactions in the network
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information flow in the network, representing the crit-
ical points of the network, or “bottlenecks”. Hub-
bottleneck nodes are presumably most important for
network organization, because their elimination leads to
network disruption and, from a biological viewpoint, can
abrogate the flow of information. In addition, many hubs
qualified as hub-bottleneck nodes, like TP53, CTNNB1,
MYC, IGF1, VEGFA, IL8, BCL2, but others, like
CYP2B6, LDLR, GSTP1, should be viewed as hub-non-
bottleneck nodes.
Finally, we selected 57 proteins, out of the 111 proteins

from the global network (Additional file 7: Figure S5A),
with a median degree above 11 (appearing to the right of
the vertical dotted line, Additional file 8: Figure S6B), to
build a new network (Fig. 4a). This network combined the
proteins implicated in formation of topological modules
i.e. with a locally dense neighborhood in the initial net-
work (Fig. 4b). It also included other important proteins,
molecular hubs, behaving or not as “bottlenecks”. Reduc-
tion of the initial network to these particular nodes
highlighted the Wnt signaling, Lipoprotein signaling and
cholesterol metabolism and Drug metabolism modules,
characterized by a high level of interaction between these
members and indirect relations with other components of
the network through hub-bottleneck nodes. They could
offer two angles of attack by therapeutic drugs. In the
same way, targeting central nodes (as IL8, CHECK2,
NME1, SFRP1, FGFR2, NOS3, CYPB6, SREBF1 etc.) could
influence all partners belonging to Wnt signaling, Lipo-
protein signaling and cholesterol metabolism or Drug me-
tabolism modules. Hence, components of reduced
networks (Fig. 4b) could be proposed as future targets by
new chemotherapeutic strategies.

Effect of drugs on selected gene expression
We have previously demonstrated the potential benefi-
cial effects of Lovastatin, a competitive inhibitor of the
3-Hydroxy-Methyl-Glutaryl-CoA reductase (HMG-CoA
reductase), the first enzyme from the cholesterol synthe-
sis pathway, in gastric cancer. Indeed, although Lova-
statin is not an anticancer agent, it triggered a high
degree of apoptosis of the gastric carcinoma HGT-1 cell
line, an effect linked to the shortage of intermediary me-
tabolites from the cholesterol synthesis pathway [28]. In
addition, we showed that a combination of Lovastatin
and Docetaxel had a synergistic effect on induction of
HGT-1 cells’ apoptosis. Here, Lovastatin (5 μM, 72 h)
strongly reduced HCT116 cells’ viability. A stronger ef-
fect was observed for the combination of Lovastatin and
5-Fluorouracile or Camptothecin, even for lower con-
centrations of the drugs (Additional file 9: Figure S7A).
However, the impact of Lovastatin on HT-29 viability
was small (Additional file 9: Figure S7B) but it became

quite clear when a higher concentration was used
(12.5 μM; data not shown).
In order to see if any of the gene deregulations could

be counteracted by these drugs, we looked at their ef-
fects on expression of a subset of genes in HCT116 and/
or HT29 human colon cancer cells, according to their
network behavior: hub-bottleneck genes such as BCL2,
ITGA2, NOS3 and HMGCS1, hubs as VEGFA, high clus-
tering coefficient genes like CHECK2 and IL8 and con-
nector’s nodes i.e. genes showing edges between
functional groups, like NME1, CYP51A1, CYP11A1 and
DHCR7. Gene expression levels were analyzed after 24 h
of treatment, i.e. before appearance of apoptotic features,
by Oxaliplatin, 5-Fluorouracile or Camptothecin, either
alone or combined with Lovastatin (Table 3). We ob-
served that Oxaliplatin amplified the effects seen in CRC
for most genes in both cell lines. 5-FU amplified the
variation seen in CRC (for CHECK2 in HT-29, for NOS3
in HT-29 and HT-116), but opposed it (CHECK2 and
CYP51A1 in HCT-116, VEGFA in HT-29, HMGCS1 in
both cell lines). Camptothecin amplified the effects seen
in cancer (CHECK2, BCL-2 and IL8), but opposed them
for CYP51A1, ITGA2, DHCR7 or HMGCS1. Lovastatin
had either no effect (in HCT116 cells), or opposed the
deregulation of the CHECK2, NME1, ITGA2, IL8, NOS3
or VEGFA (in HT-29 cells). Lovastatin mixed with Oxa-
liplatin opposed the effect seen upon treatment by Oxa-
liplatin alone for the NME1 and ITGA2 genes in HCT-
116 cells. The combination of Lovastatin and 5-
Fluorouracile had a quite distinct effect from 5-
Fluoruracile alone, especially for the NME1, ITGA2 or
HMGCS1 genes that showed opposite regulations. The
association of Lovastatin and Camptothecin essentially
did not modify the response to Camptothecin, except for
the NME1 gene that showed decreased expression in re-
sponse to the combination of treatments.
Finally, we searched for potential associations between

the four drugs and deregulated gene products in CRC by
interrogating the STITCH database [29]. Interestingly,
many links were identified with genes having a high de-
gree or clustering coefficient, predicting a high impact
on the network in the case of combination of Lovastatin
and anticancer drugs (Additional file 10).

Discussion
In the present study, we analyzed expression of a subset
of protein-encoding genes in human colon cancers, rela-
tive to that of healthy colon tissue. All tissue fragments
were retrieved from surgical pieces from patients not
taking anticancer drugs. Surprisingly, although we found
already described alterations, about 10% of the changes
had occurred in genes with no reported link with colon
cancer. We identified 111 genes (28%), among a total set
of 401 tested genes, which were deregulated in cancer
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samples (FC > 1.7, q-value < 0.05). Although, as ex-
pected, several of these gene deregulations occurring in
CRC had already been reported, 48 (12%) had no known

links with this cancer. All pathways showed clear clus-
tering distinctions between CRC and NT, with the ex-
ception of the Apoptosis pathway, for which the FC and

Fig. 4 Network based on a restricted number of genes after selection of topological parameters. a Network based on 57 genes showing a node
degree superior to 11 (median of node degree of 111 genes-based network). b Network based on 32 genes showing a node degree superior to 11
and a clustering coefficient superior to 0.55 (median of clustering coefficient of 111 genes-based network). Blue color of edges indicated a physical
interaction between 2 nodes. The thickness of edges was correlated with the score confidence (large for a high score). The node shape illustrated the
specific PCR array: Apoptosis: square, Cancer Pathway: hexagon, Lipoprotein signaling and cholesterol metabolism: circles, Drug metabolism: diamond
and Wnt pathway: octagon. The color intensity of nodes was related to transcriptome deregulation (red for up-regulation and green for down-
regulation in CRC as compared to NT). Genes showing a deregulation in more than 75% of CRC were characterized by bold line of shape node
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the number of deregulated genes were lower than for
the other pathways. Although all changes were statisti-
cally significant, the proportion of genes with modified
expression in at least 75% of the CRC samples ranged
from 1/5 (Wnt pathway) up to 1/2 (Lipoprotein signal-
ing and cholesterol metabolism, Drug metabolism path-
ways). Our clustering and PCA could not separate CRC
samples according to stage (from I to IV), neither at the
mRNA, nor at the protein levels, possibly due to the
limited numbers of samples from each pathological cat-
egory, or from the target genes surveyed (Figs. 1b and
2b). However, the same analyses conducted on an inde-
pendent cohort (retrieved to TCGA) containing more
samples for each grading stage (> 30 per category), have
failed to discriminate CRC according to stage (Fig. 2d).
Furthermore, our PCA performed with the TCGA cohort,
based on expression data from different gene sets (all
deregulated genes or subsets of genes from the Qiagen
PCR Arrays) did not allow discriminating colon vs. rectal
tumors or CRC samples according to APC or KRAS mu-
tational status (Fig. 2, Additional file 4). Importantly,
based on a set of 13 genes analyzed in 20 CRC/NT sample
pairs, the same regulation occurred at both the mRNA
and protein levels in at least 17 samples (roughly 90% con-
cordance with mRNA levels), except for the PCSK9

protein, which showed no consistent protein expression
pattern, or the GPI protein that remained essentially un-
changed (Additional file 5: Figure S3C).
In view of the overall good correlation between mRNA

and protein expression changes, we went on to build up
putative protein-protein interaction maps, using the
STRING interaction database. Looking at the individual
PCR-based pathways, it appeared that almost all cancer
proteins were densely connected. The MYC and the IL8
proteins were the most up-regulated proteins and the
IGF1 and FGFR2 proteins the most down-regulated, in
at least 75% of the CRC samples. These observations
agreed with previous reports [30–36] and further em-
phasized the major roles played by these proteins in the
control of CRC development. The SNCG protein was
not interacting with any of the other proteins from the
pathway, yet its down-regulation occurred in more than
75% of the CRC samples. Increased expression of the
SNGG gene was suggested to be a predictor of poor
prognosis in esophageal or endometrial cancer patients
[37, 38], which is distinct from the negative regulation
observed here. SFRP1, from the Wnt pathway, was
strongly down-regulated in all CRC samples of this
study, like most of the genes from the pathway, as op-
posed to the WNT2 and the CCND1 genes, which were

Table 3 Changes in mRNA levels in human CRC cell lines treated by different chemotherapeutic drugs and/or by Lovastatin. After 24 h
of treatment by different chemotherapeutic drugs (Oxaliplatin (10 μM), 5-Fluorouracile (10 μM), Camptothecin (0.1 μM) in combination
or not with Lovastatin (5 μM), total RNA was extracted and submitted to reverse transcription. Real-time PCR for different genes was per-
formed. Three independent experiments were analyzed. Fold-change was indicated when the p-value was significant Student’s-t test)

Gene Symbol Fold-change CRC vs. NT CRC line Oxa 5-FU Cpt Lova Oxa + Lova 5-FU + Lova Cpt + Lova

CHECK2 2.08*** HCT-116 NC 0.69* NC NC 0.56*** 0.44** NC

HT-29 2.74* 2.43 1.40* 0.51* 2.60* 1.84* 2.33**

CYP51A1 2.80*** HCT-116 NC 0.44* 0.31* NC 0.56** 0.22** (0.64)

CYP11A1 0.32** HCT-116 NC NC NC NC 0.53* 0.78** NC

BCL2 0.31*** HCT-116 0.23*** 0.46* 0.52* NC 0.14*** 0.17*** 0.61**

NME1 4.6*** HCT-116 2.72*** NC NC NC 0.60** 0.30** 0.52*

HT-29 1.81* NC NC 0.52* NC (0.61) NC

ITGA2 3.8*** HCT-116 1.77** NC NC NC 0.68* 0.35* NC

HT-29 NC NC (0.41) 0.38* 0.50** (0.51) 0.47**

IL8 8.1** HCT-116 3.35*** NC NC NC (3.87) 3.37* (3.01)

HT-29 2.92* 4.74* 2.33* 0.64*** 3.24* 3.81* 3.52***

NOS3 2.3*** HCT-116 1.87** 1.63*** NC NC NC 2.13* NC

HT-29 NC 3.42** NC 0.56** NC 1.97* (2.16)

DHCR7 3.6*** HCT-116 NC NC 0.48* NC NC NC 0.49**

HT-29 NC NC NC NC 1.50* 2.29*** NC

HMGCS1 2.46*** HCT-116 0.82* 0.46** 0.23*** NC NC NC 0.32*

HT-29 NC 0.37** 0.42* NC NC NC NC

VEGFA 2.04*** HT-29 NC NC NC 0.43** NC 0.54* NC

Abbreviations: Oxa oxaliplatin, 5-FU 5-Fluorouracile, Cpt Camptothecin, Lova Lovastatin
NC no change; * p < 0.05; ** p < 0.01; *** p < 0.001
Numbers in parentheses were not significant on three independent experiments, although a tendency to variation was recorded in two out of three experiments
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increased in more than 75% of the CRC samples, agree-
ing with previous results [39, 40]. The number of PPI
was also the highest for this network. The ADH1B and
the GPX2 genes, from the Drug metabolism pathway,
were the most down- and up-regulated, respectively, in
more than 75% of the samples. Although the up-
regulation of GPX2 by the Wnt pathway had been re-
ported [41], this is the first instance of a deregulation in
cancer for ADH1B mRNA. Similarly, no report was
available for the regulation of ADH1C mRNA in cancer,
and it showed no integration into our network except a
physical interaction with ADH1B [42]. A recent publica-
tion identified ADH1B and XYLT1 (an enzyme impli-
cated in the biosynthesis of glycosaminoglycan chains)
as interaction partners of ADH1C using high-
throughput affinity purification [42]. Furthermore,
XYLT1 is an interaction partner of MYC [43], the sec-
ond most up-regulated gene in CRC and the second top
molecular hub identified in our network. MYC down-
regulated ADH1B and ADH1C, pointing to a contribu-
tion of these detoxification enzymes in CRC pathogen-
esis. The Lipoprotein signaling and cholesterol
metabolism pathway showed the highest number of pro-
teins not interacting with any other protein. Notably,
two of the most important changes occurred for PCSK9
(up-regulation) and NR1H4 (FXR) (down-regulation)
mRNAs, both linked to the LDLR protein. Again, this is
the first report of a clear link of PCSK9 up-regulation in
colon cancer, while NR1H4 down-regulation has been
reported to result from promoter methylation with this
cancer [44]. Several of the unlinked proteins, including
COLEC12 and STAB1, showed changes in at least 75%
of the CRC samples. No report was available for the
COLEC12 transcript, whereas PRKAA2 was shown to
promote colon cancer [45]. STAB1 was increased in
tumor infiltrating macrophages [46, 47]. Finally, a small
number of affected proteins belonged in the Apoptosis
pathway, with the down-regulation occurring in more
than 75% of the CRC samples, including the CASP7,
CASP5, the BCL2 and the CD27 proteins. Although
CASP7 was decreased in colon cancer as a conse-
quence of gene deletion, no data was available for the
CASP5 or CD27 genes, while BCL2 was over-
expressed in cancer tissue [18].
An expression change in any protein connected to an-

other one, from either the same network or from a sep-
arate network, is expected to alter the functional links
both with the immediate partner and, by association,
with other activities of the network or of associated net-
works. Hence, one way to compensate for alterations oc-
curring in one of these networks altered in CRC, could
be to restore network function by mimicking the effect
of the interactions, by drugs for instance. Despite the
fact that the individual networks were quite identifiable

by their position within the global network, strong links
between the sub-networks - often with a high degree of
confidence - could be readily distinguished. Importantly,
among the main hub genes identified through the whole
transcriptome-based approach [6], the IL8 gene was also
sorted out here, suggesting that this gene is indeed a
master gene strongly deregulated in CRC. None of the
other top 10 hub genes from the global approach was
surveyed in our PCR approach. However, the major hub
genes identified here, such as TP53, MYC or BCL2, were
not picked up by the global approach. However, the au-
thors pointed to an enrichment of drug metabolism
pathway from their down-regulated genes [6], confirm-
ing our results and further stressing the importance of
components of this pathway in CRC pathogenesis.
Unexpected links were identified using different

sources in the STRING database. For example, a physical
interaction, indexed in the BioGRID database [48], was
identified between NME1, which possesses geranyl and
farnesyl pyrophosphate kinase activities, and FDPS, a
key enzyme in isoprenoid biosynthesis, which catalyzes
the formation of farnesyl diphosphate [49]. The up-
regulation of transcript and protein levels in CRC high-
lights the importance of this complex for synthesizing
secondary metabolites (geranyl and farnesyl pyrophos-
phates) in pathogenesis. Acting on the mevalonate path-
way to reduce secondary metabolites and ultimately
counteract the activities of FDPS and NME1 looks
attracting as a novel cancer therapy, in agreement with
several data [50]. Because NME1 transcript levels were
decreased in colon cancer cells upon Lovastatin treat-
ment (Table 3), it is tempting to speculate that acting on
this complex might permit counteracting other members
of the cholesterol metabolism pathway that act
downstream of NME1, together with key cancer nodes
identified by topology network analysis (MYC, CCND1,
BCL2…) linked to NME1. Expectedly, blunting the
mevalonate pathway in cancer cells would lead to
apoptosis [28].
Another example of connection between 2 functional

groups is the association, retrieved by text mining, be-
tween MYC and SREBF1 (Cancer and Lipid signaling
and cholesterol metabolism, respectively). The authors
showed that the SREBP-1 protein interacted with c-myc
and facilitated its binding to downstream targets. This
promoted mouse somatic cell reprogramming by expres-
sion of pluripotent genes [51]. In addition, we also iden-
tified the CASP7 (Apoptosis) gene as a positive target of
the SREBP-1 protein [52].
NQO1, an NADPH dehydrogenase implicated in the

detoxification system, has been shown to directly inter-
act with NME1 and TP53 (Cancer Pathway) in studies
retrieved from the BioGrid database [48]. Furthermore,
NQO1 stabilized TP53 and partially inhibited its
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degradation under conditions of oxidative stress, making
it a possible contributor to tumor development [53].
Putative homologs of CHECK2 and INSIG1 from Sac-

charomyces cerevisiae, of DHCR7 and CYP51A1 and of
CYP2B6 and NSDHL were found to have physical inter-
actions in Intact and BioGRID databases, which may ex-
plain the relations observed in our network [48, 54].
Putative homologs of CYP2B6 and NR1H4 in Caenor-
habditis elegans were also found in these databases. Fur-
ther studies will be required to understand this relation.
Visualization of our 113 genes-network, on the basis of

two topological parameters, the degree and the clustering
coefficient, highlighted 4 modules related to functional gene
groups characterized by different levels of clustering coeffi-
cient and node degree (Additional file 8: Figure S6A). Be-
cause chemotherapy is commonly used to treat colon
cancer patients, we looked at the activity of prototypic anti-
cancer drugs and/or Lovastatin on expression of deregu-
lated genes occupying central places within the networks.
At first sight, a drug or drug combination that would op-
pose the observed deregulation of such “major genes”
would be useful, provided these genes are central to normal
tissue homeostasis. Conversely, drugs that would enhance
the deregulation effects might be inappropriate, if the given
genes are important for cancer initiation or progression, ac-
cording to their expression level at baseline. The IL8 gene,
which was clearly over-expressed in CRC, was further up-
regulated in HT29 cells in response to all drugs or drug
combinations, except in response to Lovastatin that de-
creased its expression. In the case of this important inflam-
matory mediator, it would appear that none of the
common anticancer drugs used would contribute to inflam-
mation reduction, at least at the colon cell level. Similarly,
CHECK2 was always induced (HT29 cells), except in re-
sponse to Lovastatin that decreased it. In this case, however,
it might be beneficial to treat CRC patients bearing tumors
addicted to CHECK2 for growth with common CRC anti-
cancer drugs and CHECK2 inhibitors [55].
Several actions could be taken to reestablish normal

transcript levels through using selected drugs: i) targeting
proteins with high numbers of interactions (hubs proteins:
large size on Additional file 8: Figure S6) or ii) targeting
one protein in an interacting module (with a high cluster-
ing coefficient (yellow/orange color on Additional file 8:
Figure S6) (for example the Wnt or the Lipoprotein sig-
naling and cholesterol metabolism module). Interrogation
of the STITCH database (Search Tools for Interactions of
Chemicals) [29] for associations between deregulated
genes in CRC and the 3 chemotherapeutic drugs tested in
our study showed that these two types of genes could be
targeted (Additional file 10). On the other hand, none of
the drugs targeted members from the Wnt signaling path-
way, except CCND1 that could be affected by Oxaliplatin
and 5-Fluorouracile [56–58]. Anticancer agents targeting

Wnt/β-catenin signaling have been developed in recent
years and their use could be proposed in combination with
classical colon cancer therapies. As expected, in light of our
network analysis, the use of Lovastatin seems to be very in-
teresting to target members of the Lipoprotein signaling
and cholesterol metabolism pathway. Nevertheless, in ab-
sence of a comprehensive analysis of the effects of the drugs
on several additional endpoints (apoptosis, gene/protein ex-
pression profiling, etc.), it is not possible to conclude on a
direct role of the genes analyzed in the control of cell death
and, specifically, to ascertain that the observed cytotoxicity
after 72 h is directly linked to the deregulation of gene ex-
pression after 24 h of treatment. It should also be kept in
mind that our data were obtained in a single cell model,
and cannot be taken as fully conclusive, as this study did
not address the point in the target population, i.e. human
subjects. One possibility to approach this goal could be to
conduct similar analyses in several other CRC cell lines
and/or animals bearing human CRC (Additional file 11).
In addition, although our cohort of CRC subjects fitted

well with the French population in terms of age at CRC
diagnosis and sex ratio, several potentially confounding
factors were not taken into account, as the data were not
available to us. We should mention that we could not fig-
ure out if the RNAseq reported data on CRC patients
from TCGA have taken any of these concerns into ac-
count. These included obesity (BMI above 30), which af-
fects roughly 18.7% of the population over 65 in France,
or concomitant drug absorption that occurs in virtually all
subjects of 65 and above. Obesity and drugs (antidiuretics,
cholesterol-lowering drugs, anti-diabetic drugs, or any
combination of these) are known to modulate gene ex-
pression, at least in experimental models [59–62], but
probably less so than the chemotherapeutic drugs used in
our study, which act genome-wide. Although it would cer-
tainly be a major challenge to constitute homogenous
groups of CRC patients on a given drug, at a given dose,
for a given time, smoking or not, having alcohol drinking
habits, etc., with or without a BMI above 30, this would in
principle be attainable. One way to approach such com-
posite situations could possibly be to use model systems,
as CRC cells in culture or laboratory animals bearing hu-
man tumors. Further prospective recruitment of CRC pa-
tients could readily compare lean vs. obese patients using
the methodology used in this manuscript.

Conclusion
In conclusion to this work, we have obtained selected
transcriptome data through a dedicated PCR array ap-
proach comparing colon cancer samples with normal
colon mucosae. Although the majority of deregulations
were already reported in CRC, about 10% of those events
were not known to occur in colon cancer or in cancer in
general. The genes most important to the structures of
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the networks indeed were known to play important regu-
latory roles in the tumors, but some were new, most sig-
nificantly from the Lipoprotein signaling and cholesterol
metabolism pathway. Use of this array also revealed that
eight genes from this pathway were not engaged in any
interaction within the corresponding sub-network or with
other networks. This observation, which likely reflects the
smaller number of investigations on those genes, also
opens the path to uncover novel targets to treat colon
cancer, potentially through the use of lipid-lowering drugs
such as statins whose potential in combination with anti-
cancer drugs is under scrutiny through clinical trials, as
recorded at the National Cancer Institute.

Additional files

Additional file 1: Table S1. List of genes from the five different RT²
Profiler™ PCR Array Human Systems used in this study, classified in
functional groups. See manufacturer’s information website (http://
www.sabiosciences.com/PCRArrayPlate.php): A, Apoptosis (PAHS-012A); B,
Cancer Pathway Finder (PAHS-033A); C, Lipoprotein Signaling &
Cholesterol Metabolism (PAHS-080Z); D, Drug Metabolism (PAHS-002A); E,
Wnt Signaling Pathway (PAHS-043A). Gene expression level deregulations
uncovered in this study were indicated by red or green color for an up-
regulation or a down-regulation, respectively, in CRC as compared to NT.
(DOCX 25 kb)

Additional file 2: Figure S1. Hierarchical clustering of colorectal
carcinoma (CRC) and normal colon tissue (NT) based on gene expression
profiling obtained from each type of PCR array. Log2-transformed fold-
change values from genes fulfilling the criteria of PCR Data Analysis (Qia-
gen) obtained for each specific PCR array (fold-change > 1.7 and q <
0.05) were analyzed with Cluster and Treeview, using centered correlation
and average linkage [63]. Red and green colors indicate transcript levels
above and below the median values, respectively. NT, normal colon tissue
(n=19) and CRC, colorectal carcinoma (n=95). Tumor samples were identi-
fied by a number followed by the Tumor Bank running number (S0, S1,
S2, S3, S4) corresponding to the grading stage according to the patho-
logical classification. Genes identified by their gene symbol appear on
the right side of each panel. Each column gives the gene expression pro-
file of a sample, and each line indicates the variations in the level of ex-
pression of a given gene among tissue samples. The length of the
branches of the trees forming the dendrograms on the top of each panel
reflects the degree of similarity between samples; the longer the branch,
the larger the difference in gene expression. A, Hierarchical clustering
based on 14 deregulated genes from the “Apoptosis” PCR array; B, Hier-
archical clustering based on 33 deregulated genes from the “Cancer Path-
way” PCR array; C, Hierarchical clustering based on 29 deregulated genes
from the “Lipoprotein signaling and cholesterol metabolism” PCR array; D,
Hierarchical clustering based on 23 deregulated genes from the “Drug
metabolism” PCR array; E, Hierarchical clustering based on 18 deregulated
genes from the “Wnt pathway” PCR array. (ZIP 2488 kb)

Additional file 3: Table S2. Comparative differential expression data
focused on genes identified on RT² Profiler™ PCR Array analysis and
previously published data. Comparative expression data of selected
genes deregulated in CRC as compared to NT in RT² Profiler™ PCR Array
analysis, related to Apoptosis (2A, n=14), Cancer Pathway (2B, n= 33),
Lipoprotein signaling and Cholesterol metabolism (2C, n=29), Drug
metabolism (2D, n=23) and Wnt signaling pathway (2E, n=218).
Differential expression data information was listed for each gene: i) from
our study performed by PCR array technology in CRC (n=95) as
compared to NT (n=19); ii) from our previous study performed with
whole-genome microarray technology in CRC (n=25), CRA (n=55) and NT
paired to CRA or CRC (n=27) [16]; iii) from microarray expression data of
COADREAD cohort of TCGA consortium (153 colon and 69 rectal carcin-
omas as compared to 22 NT) ([17], gdac.broadinstitute.org) iv) from

literature data by focusing on expression analysis obtained in CRC (RNA
or protein level) and v) from other literature data obtained from genetic
association, epigenetic and functional studies. Underlined gene names in-
dicated that the genes were largely referenced in PubMed in association
with colorectal cancer. (DOCX 299 kb)

Additional file 4: Figure S2. Principal component analysis of colorectal
dataset of TCGA based on the expression of genes identified in our
study. Principal component analysis (PCA) was performed on expression
data retrieved from colorectal cohort from TCGA ([17],
gdac.broadinstitute.org) composed of 22 NT, 153 colon carcinoma and 69
rectal carcinoma. PCA were performed on different sets of deregulated
genes according to functional group: Panel A) Apoptosis (14 genes);
Panel B) Cancer pathway (33 genes); Panel C) Lipoprotein signaling and
cholesterol metabolism (29 genes); Panel D) Drug metabolism (23 genes);
Panel E) Wnt signaling pathway (18 genes); Panel F) all genes identified
in our study (111 genes). Individuals are colored according to a
categorical variable in each PCA plot: i) according to histological type
(NT: green, colon carcinoma: red, rectal carcinoma: blue); ii) according to
grading stage (I: red, II: green, III: blue, IV: light blue); iii) according to
mutational status of APC and KRAS (wild type: red, mutated: green).
Samples corresponding to NT and tumors that present no available
information about stage and mutational status are colored in black.
(PDF 494 kb)

Additional file 5: Figure S3. Western blot analysis of protein level in
paired colorectal carcinoma (CRC) and normal colon mucosae (NT). Forty
μg of protein extracts from 20 CRC and paired NT samples were
subjected to Western blot analysis using selected antibodies and a
monoclonal HSC70 antibody (for normalization). Tumor and normal tissue
were analyzed simultaneously. Quantification of protein levels was
performed by measuring the fluorescence intensity (Odyssey Li-Cor). A.
Western blot analysis of 9 protein-coding genes previously identified as
up-regulated in CRC as compared to NT by PCR array: BCL2L1, NME1,
PKM2, GSTP1, GPI, FDPS, HMGCS1, CYP39A1 and PCSK9. B. Western blot
analysis of 4 protein-coding genes previously identified as down-
regulated in CRC as compared to NT by PCR array: BCL2, CASP7, IGF1 and
ADH1C. The numbers on the left identified the samples; the numbers at
the bottom indicate the number of samples that showed a similar regula-
tion at both the mRNA and the protein levels. C. Comparison of average
fold-changes between CRC and paired NT (n=20) obtained from tran-
scriptome (PCR array) and proteomic (Western blot) analyses. Error bars
represent the Standard Error of the Mean (SEM). The upper panel repre-
sents data from 8 up-regulated genes and the lower panel represents
data from 4 down-regulated genes in CRC as compared to NT.
(PDF 223 kb)

Additional file 6: Figure S4. Representative immunostaining pattern
obtained for NT and CRC paired tissues. A. Strong cytoplasmic NME1-
staining of the adenocarcinomatous glands (right) compared to the nor-
mal adjacent colonic glands (left) (x50, NME1 immunohistochemistry,
hematoxylin counter coloration). B. Strong cytoplasmic FDPS-staining of
the adenocarcinomatous glands (right) compared with the normal adja-
cent colonic glands (left) (x50, FDPS immunohistochemistry, hematoxylin
counter coloration). C. Strong cytoplasmic and nuclear CCND1-staining
(known to be over-expressed in CRC) of the adenocarcinomatous glands
(left) compared with the normal adjacent colonic glands (right) (x50,
CCND1 immunohistochemistry, hematoxylin counter coloration).
(PDF 252 kb)

Additional file 7: Figure S5. Network building from all deregulated
genes.A. Interactions between 111 deregulated genes identified by
transcriptome comparison of CRC and NT were retrieved from the
STRING database (version 10.5). The interactions include direct (physical)
and indirect (functional) associations. All interaction sources questioned
by STRING were used and the minimum required interaction score was
0.4 (medium confidence). The blue color of edges indicated a physical
interaction in the source of evidence between 2 nodes. The thickness of
edges was correlated with the score confidence (large for high score).
The node shape illustrates the specific PCR array: Apoptosis: square,
Cancer Pathway: hexagon, Lipoprotein signaling and cholesterol
metabolism: circle, Drug metabolism: diamond and Wnt pathway:
octagon. The color intensity of nodes was related to transcriptome
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deregulation (red for up-regulation and green for down-regulation in
CRC as compared to NT). Genes showing a deregulation in more than
75% of CRC were characterized by a bold line of shape node.B. Node de-
gree distribution of 111 genes-based network. The X axis shows the de-
gree of a node, while the Y axis shows the number of nodes for each
degree in the network. This scatter plot highlights the molecular hubs of
the network. Molecular hubs showing a deregulation in more than 75%
of CRC were indicated by a black symbol. (PDF 234 kb)

Additional file 8: Figure S6. Topological parameters analysis on global
network building from the functional association between 111 genes
deregulated in CRC vs. NT. A. Network visualization of node degree and
clustering coefficient parameters. The node degree, i.e. the number of
edges linked to a node, was visually mapped by the node size: nodes
with a low degree were smaller, in contrast to nodes with a high degree.
The clustering coefficient, another computed topological parameter
reflecting the tendency of neighbors of each node to interact together,
was mapped by node gradient color: nodes with lowest clustering
coefficient are blue and nodes with highest clustering coefficient are
orange (medium clustering coefficient are yellow). As mentioned in
Additional file 7: Figure S5, the thickness of edges was correlated with
score confidence (large for high score), the blue line indicated physical
interaction experimentally demonstrated in the source of evidence and
the node shape illustrated the specific PCR array: Apoptosis: square,
Cancer Pathway: hexagon, Lipoprotein signaling and cholesterol
metabolism: circle, Drug metabolism: diamond and Wnt pathway:
octagon. B. Scatter plot displaying the correlation between node degrees
and clustering coefficients in the global network composed of 111 nodes
showing transcriptome deregulation in CRC as compared to NT. Dotted
lines indicated the median of node degree (value of 11) and the median
of clustering coefficient (value of 0.54). Genes showing a deregulation in
more than 75% of CRC were indicated by a black symbol. (PDF 300 kb)

Additional file 9: Figure S7. Viability assay of colorectal cell lines
treated by chemotherapeutic drugs combined or not with Lovastatin.
The viability of two colorectal cell lines (A: HCT-116, B: HT-29) was evalu-
ated by MTT assays after 72h of treatment by different chemotherapeutic
drugs combined (black bars) or not (white bars) with Lovastatin (5 μM).
Control cells were treated by DMSO (less than 0.1% final concentration).
Two different concentrations were used for the chemotherapeutic drugs:
1 μM and 10 μM for Oxaliplatin and 5-Fluorouracile, 0.01 μM and 0.1 μM
for Camptothecin. The results are from three independent experiments.
Error bars represent the SEM. (PDF 576 kb)

Additional file 10: Figure S8. Gene-Drug interaction network. Interac-
tions were retrieved in STITCH v5 (Search Tools for Interactions of Chemi-
cals) between deregulated genes in CRC and 4 drugs: 3
chemotherapeutic drugs used in CRC treatment (5-Fluorouracile (5-FU),
Oxaliplatin (OXA) and Camptothecin (CPT), and Lovastatin (LOVA). To fa-
cilitate network visualization, we have hidden edges between genes.
Node size and node color reflect the interaction degree and the cluster-
ing coefficient characterizing nodes in 111 genes based-network pre-
sented in Additional file 8. The thickness of edges was correlated with
score confidence (large for high score) retrieved in STITCH database (ver-
sion 5) and the blue color of edges indicated a physical interaction in the
source database. The bold line of shape node characterizes genes
deregulated in more than 75% of CRC. (PDF 93 kb)

Additional file 11: Table S3. Raw quantitative-PCR data for each PCR
array used in this study. Clinical data associated to CRC samples were in-
dicated in the excel file. (XLSX 412 kb)
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CRC: Colorectal carcinoma; FC: Fold-change; NT: Normal Tissue;
STITCH: Search Tools for Interactions of Chemicals; STRING: Search Tool for
the Retrieval of Interacting Genes/Proteins
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