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Whole-transcriptome analysis delineates
the human placenta gene network and its
associations with fetal growth
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Abstract

Background: The placenta is the principal organ regulating intrauterine growth and development, performing
critical functions on behalf of the developing fetus. The delineation of functional networks and pathways driving
placental processes has the potential to provide key insight into intrauterine perturbations that result in adverse
birth as well as later life health outcomes.

Results: We generated the transcriptome-wide profile of 200 term human placenta using the Illumina HiSeq 2500
platform and characterized the functional placental gene network using weighted gene coexpression network
analysis (WGCNA). We identified 17 placental coexpression network modules that were dominated by functional
processes including growth, organ development, gas exchange and immune response. Five network modules,
enriched for processes including cellular respiration, amino acid transport, hormone signaling, histone modifications
and gene expression, were associated with birth weight; hub genes of all five modules (CREB3, DDX3X, DNAJC14,
GRHL1 and C21orf91) were significantly associated with fetal growth restriction, and one hub gene (CREB3) was
additionally associated with fetal overgrowth.

Conclusions: In this largest RNA-Seq based transcriptome-wide profiling study of human term placenta conducted
to date, we delineated a placental gene network with functional relevance to fetal growth using a network-based
approach with superior scale reduction capacity. Our study findings not only implicate potential molecular
mechanisms underlying fetal growth but also provide a reference placenta gene network to inform future studies
investigating placental dysfunction as a route to future disease endpoints.
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Background
It is increasingly appreciated that the intrauterine experi-
ence impacts the long-term health of the offspring [1–3].
The placenta is the principal organ regulating the intra-
uterine environment and orchestrating gestational devel-
opment. Situated at the maternal-fetal interface, the
placenta acts as a multi-organ system, performing at times
the functions of the lung, liver, gastrointestinal tract, kid-
ney and endocrine organs on behalf of the developing
fetus [4]. Through this capacity, the placenta plays an

active role in facilitating the transport of nutrients and
waste, exchange of gases, immune protection and gener-
ation of hormones to carefully regulate fetal growth and
organ-specific development throughout gestation [4].
Alterations to the intrauterine environment through the
action of various intrinsic and extrinsic stressors can im-
pact placental function, including vascularization, growth,
transport activity, metabolism and hormone production,
and as a result, impact the physiology of the developing
fetus, with potential health consequences across the life-
span [5, 6]. The placenta, therefore, is the primary regula-
tor through which the developmental trajectory of the
fetus is altered in response to changes in the intrauterine
environment [7]. Despite the centrality of the placenta in
the developmental origins of health and disease, this vital
organ remains poorly characterized.
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Recent developments in high throughput whole-genome
sequencing make it feasible to assess the entire transcrip-
tome with the potential to agnostically uncover biological
processes driving complex phenotypes. Studies assessing
the transcriptome-wide profile of human term placenta are
beginning to emerge [8–11], however, the inferences from
these findings are limited by the small sample size and
the focus on univariate gene expression analyses contrast-
ing normal and adverse phenotypic outcomes. Systems
biology methods that apply a networks-based analysis of
transcriptome-wide data better capture the complexity of
inter-gene relationships and the pathways they participate
in to give rise to disease processes, and, therefore, hold the
opportunity to better define the co-regulatory patterns that
underlie complex phenotypes. Methods such as weighted
gene co-expression network analysis (WGCNA) have
been successfully applied in a number of tissues in rela-
tion to various health outcomes [12–15]. This approach
facilitates systems-level characterization of expression
changes by clustering highly correlated genes into coex-
pression modules of conserved biological function [16,
17]. The utility of this approach was demonstrated in a
recently published study focusing on highly variable
genes (n ~ 3000) in a set of 16 placenta that showcased
both conservation and divergence between human and
mouse placental networks [18].
Abnormal fetal growth, both undergrowth (fetal

growth restriction) and overgrowth (macrosomia), is
among the most commonly reported outcomes linked to

placental dysfunction. Infants clinically defined as
either small (SGA, bottom 10% weight for gestational
age) or large (LGA, above 90% weight for gestational
age) are of particular concern as they are at elevated
risk for postnatal morbidities, including metabolic syn-
drome and impaired neurobehavioral and cognitive
development [19–24], highlighting the public health
impetus to identify the molecular mechanisms under-
lying fetal growth dysregulation. Hence, this outcome
provides an exemplary opportunity to demonstrate the
importance of placenta gene networks by elucidating
fetal-growth related placental processes. In addition,
these findings have the potential to be translated into
novel approaches for disease intervention or even
prevention at an early time-point, when they may be
the most effective.
In this study, we comprehensively profiled the

transcriptome-wide landscape of the largest birth
cohort collection of human placentae to date, imple-
menting a network-based approach to construct a
placental gene coexpression network and to delineate a
fetal-growth gene signature.

Results
The demographic characteristics of our study popula-
tion, categorized as small (SGA), large (LGA) and
appropriate (AGA) for gestational age infants, are
shown in Table 1. Consistent with the literature, a
greater proportion of LGA infants were male [25] and

Table 1 Demographic characteristics of the study population (n = 200)

Variables SGAa (n = 33) AGAb (n = 112) LGAc (n = 55) p-valued

Mean (SD) Mean (SD) Mean (SD)

Birth weight (g) 2582.3 (277.3) 3436.8 (388.9) 4276.9 (247.2) <0.01

Gestational age (weeks) 38.9 (1.2) 39.1 (0.9) 39.0 (0.8) 0.77

Maternal age (years) 31.9 (5.6) 31.1 (4.6) 30.9 (4.1) 0.59

Maternal BMI (kg/m2) 25.7 (7.0) 25.6 (5.8) 28.4 (6.9) 0.02

N (%) N (%) N (%)

Infant Gender 0.05

Female 22 (66.7) 57 (50.9) 22 (40.0)

Male 11 (33.3) 55 (49.1) 33 (60.0)

Maternal Ethnicity <0.01

Caucasian 18 (54.5) 91 (81.2) 46 (83.6)

African American 6 (18.2) 2 (1.8) 3 (5.5)

Other 7 (21.2) 19 (17.0) 5 (9.1)

Unknown 2 (6.0) 0 (0.0) 1 (1.8)

Delivery Method

Vaginal 19 (57.6) 65 (58.0) 19 (34.5) 0.01

C-Section 14 (42.4) 47 (42.0) 36 (65.5)
asmall for gestational age; bappropriate for gestational age; clarge for gestational age; dp-values based on chi-square test (categorical variables) or ANOVA
(continuous variables)
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born to mothers with elevated pre-pregnancy BMI
[26]. A greater proportion of SGA infants were female
and born to mothers of non-Caucasian descent [27].
Additionally, LGA infants were more likely to be deliv-
ered by cesarean section.
The RNA-Seq dataset averaged 44 million reads per

sample. Of all annotated NCBI Reference Sequence
genes (n = 23,228), 22,518 genes were mapped at least
one count per sample, with 52% genes surpassing ex-
pression levels above 2 in the log2 scale in a minimum
of 30 samples. Among 20 samples run in triplicate, we
observed a median R2 value of 0.97, with a range
between 0.93 and 0.98. Consistent with previous re-
ports [8, 9], the most abundant placental transcripts
observed in our study include placental hormones
(CSH1 [28]), placental development factors (PAPPA
[29], PAPPA2 [30]), steroidogenesis enzymes (CYP19A1
[31]), tissue remodeling genes (TFPI2 [32], FBLN1 [33],
FN1 [11, 34], MALAT1 [35]), ribonucleases (RPPH1
[36]) and signaling molecules (RHOBTB3) [37]. Several
of the most abundant transcripts are putative imprinted
genes, including TFPI2 [38], RHOBTB3 and PAPPA2
[37] (Additional file 1). For technical validation of the
RNAseq results, we additionally examined the agree-
ment between RNASeq and the probe-hybridization
based nCounter (NanoString technologies, Seattle,
Washington) method for a subset of genes with expres-
sion data available on both platforms (n = 80) [39]. A
significant, positive correlation was observed in gene
rankings based on relative gene expression levels
(Spearman rho = 0.76), indicating relative gene expres-
sion levels were comparable across the platforms
(Additional file 2).

Placental gene coexpression network
Network-based analyses provide a means to account for
the coordinated expression among genes, thereby redu-
cing the dimensionality of the data-set and affording
insight into underlying biological processes. Coexpres-
sion network analysis of the placental transcriptome
revealed 17 coexpressed gene modules in human
placenta (Additional file 3). Module size ranged from 37
to 3073 genes (Fig. 1). Approximately 1000 genes did
not load onto any specific module (grey module). To
identify biological functions associated with each
module, we performed gene ontology (GO) analysis.
While there were overlapping processes enriched across
several modules, including processes related to chroma-
tin assembly (purple and light cyan), most processes
were uniquely enriched in specific modules, including
immune response (black module), gas transport (grey60)
and cell adhesion (tan). Modules enriched in similar bio-
logical processes tended to cluster together using un-
supervised hierarchical clustering (Additional file 4). For
example, both brown and greenyellow modules are in-
volved in mRNA processing and black and tan modules
are involved in extracellular signaling. Next, we investi-
gated whether disease signatures are present within the
placental network. For this purpose, we surveyed a cu-
rated list of published GWAS, including 23,086 genes
and spanning 760 phenotypes, for the enrichment of
genes with phenotype-linked variants within our placen-
tal network. Overall, 651 GWAS-linked genes encom-
passing 185 phenotypes were enriched in the placental
network (p < 0.05) (Additional file 5). We observed not-
able trends consistent with the enriched GO-derived
biological processes identified in our network modules.

Fig. 1 Placental gene coexpression network. We identified 18 network modules ranging in size from 37 to 3073 genes. A total of 998 genes (grey
module) did not load onto any specified module. Gene ontology enrichment analysis revealed key growth and developmental processes enriched
in each module, including transcriptional activity, cell division and respiration
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For instance, the immune response module (black) was
enriched for immune-related disorders, such as sys-
temic lupus erythematosus, inflammatory bowel dis-
ease and IgA nephopathy; the vasculature development
module (blue) was enriched in vascular endothelial
growth factor levels, platelet aggregation and blood
pressure; the gas transport module (grey60) was
enriched in red blood cell traits, platelet count and
mean corpuscular hemoglobin; and the module in-
volved in the secretion of the metabolic hormones go-
nadotropin/glucagon (salmon) was enriched in low
high density lipoprotein cholesterol levels, LDL choles-
terol and carotid intima media thickness (Fig. 2).
We defined the 1st principal component of each

module, the module eigengene, as a summary measure
of each module [17, 40]. Genes most strongly corre-
lated with the eigengene of each module (hub genes)
are shown in Table 2. In most instances, the identified
hub genes reflect the biological processes enriched in
the modules. For example, complement system genes
are the hub genes of the immune response module
(black), ribosome-coding genes are the hub genes of
the protein translation module (magenta) and histone
modification genes are the hub genes of the DNA con-
formation change module (purple).
Correlations between network module eigengenes and

continuous demographic variables are shown in Fig. 3.
Several interesting patterns are apparent. With increas-
ing gestational age, a negative correlation with drivers of
growth and development (purple, midnightblue and
yellow) and a positive correlation with immune-related
activity (black) was observed. An increase in maternal
age was negatively correlated with processes related to

development (yellow) and cell replication (pink and mid-
night blue), while an increase in maternal BMI was cor-
related with an upregulation of growth-promoting
processes (greenyellow). Differences across categorical
demographic variables were evaluated based on mean
differences in module eigengene values. As seen on Fig.
4, module eigengene values were significantly different
with respect to infant gender, maternal race/ethnicity,
delivery method and birth weight categories. Differences
across infant gender were observed in modules involved

Fig. 2 Enrichment of GWAS-associated phenotypes in network modules. Enrichment odds ratios (OR) and 95% confidence intervals are shown for
a subset of phenotypes observed to be significantly enriched in the black, blue, grey60 and salmon modules

Table 2 Placenta gene coexpression network hub genes

Module Hub gene

Turquoise HELZ, MLL2, YIF1, C12orf5, GHITM

Blue TCF4, PDGFRB, ETS1, COL6A2, SPTBN1

Brown RBM33, ATXN2L, MYSM1, MLL4, CBFA2T2

Yellow ARHGAP23, LAMB1, UTRN, LRP5, MYH10

Green UBE2W, TMED7, ZNF24, SOCS6, RAP2C

Red FAR1, B4GALT3, POR, PIGH, NISCH

Black C1QC, C1QB, CD68, CTSS, C1QA

Pink MPZL1, SKP2, MCM3, BMP7, MCM

Magenta RPL7A, UBA52, RPS5, RPL18, RPS11

Purple HIST1H3F, HIST1H2AH, CDK1, FEN1, CDC20

Greenyellow C21orf91, ZNF721, INO80D, ANKRD12, MBTD1

Tan NOTUM, HN1, REPS2, B3GNT7, PYCR1

Salmon PVRL4, NDRG1, GRHL1, PLIN2, HMHA1

Cyan ZC3H18, UBE2N, PRDX3, CAPZA2, CDK12

Midnight blue TOP2A, TPX2, LMNB1, CENPF, SLC13A3

Light cyan DDX3Y, RPS4Y1, KDM5D, ZFY, TTTY15

Grey60 ALAS2, SLC4A1, HBA1, HBG1, HBA2
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in chromatin assembly-related processes (light cyan and
purple). An upregulation of growth-promoting processes
was observed among white infants compared to non-
white infants (blue and pink). Differences in modules
involved in growth and development related pro-
cesses, including respiration (turquoise), amino acid
transport (red), metabolic hormone secretion (sal-
mon), gene expression (greenyellow) and histone
modification (light cyan), were observed across birth
weight categories. Several modules related to birth
weight overlapped with modules related to gender
(light cyan), maternal BMI (greenyellow) and delivery
method (salmon, red, greenyellow).

Placental gene network modules associated with birth
weight
To demonstrate the functional relevance of the placenta
network identified above, we further evaluated module-
based differences in fetal-growth related gene pathways.
Intramodular hub genes are genes with maximal connec-
tions to other genes in their respective modules. Given
the importance of these genes in likely determining the
behavior of the module-associated biological pathway,
we identified the candidate fetal growth-related intra-
modular hub genes within each of the five fetal growth-
related modules, focusing on genes strongly correlated
with both Fenton growth curve percentiles and module

Fig. 3 Spearman correlations between placenta network modules and continuous demographic characteristics. The color gradient indicates the
direction, positive (red) and negative (blue), and strength of the correlation. Significant correlation coefficients (p < 0.05) are indicated on the plot

Fig. 4 Placenta network module differences across categorical demographic characteristics. Significant differences were determined based on
Mann Whitney U tests (2 groups) and Kruskal Wallis tests (>2 groups)
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eigengene values (Additional file 6). Significant associa-
tions with deviations in appropriate fetal growth are
observed among genes with high module membership
(Fig. 5), including CREB3 (turquoise module), DNAJC14
(red module), GRHL1 (salmon module) and C21orf91
(greenyellow module). A log2 unit increase in the expres-
sion of CREB3, DNAJC14, DDX3X and GRHL1 is associ-
ated with increased odds of SGA status, while a log2
unit increase in the expression of C21orf91 is associated
with decreased odds of SGA status. A log2 unit increase
in the expression of CREB3 is additionally observed to
be protective against LGA status. Comparing the candi-
date fetal growth-related intramodular hub genes with
the overall module hub genes listed in in Table 2, an
overlap of two salmon module genes, GRHL1 and
PVRL4 as well as one greenyellow module gene,
C21orf91, was observed.
Conventional univariate analyses across all 12,095

genes indicated 393 genes differentially expressed
across the three birth weight categories, primarily be-
tween SGA and LGA infants. Genes differentially
expressed across the birth weight categories predomin-
ately loaded onto modules differentially coexpressed
across birth weight categories, with a significant enrich-
ment observed in the turquoise, red and greenyellow
modules (Fig. 6).
In addition to the global network, we also constructed

separate networks for each birth weight category. Fewer
modules are observed in the separate networks com-
pared to the global networks, with 15 modules in the
SGA network, 12 modules in the LGA network and 13
modules in the AGA network. Next, we compared the
network density and connectivity patterns of the SGA
and LGA networks to the AGA network to determine

whether the topology of the AGA network is preserved
in the aberrant fetal growth networks. Network density
measures assess whether gene-sets that load onto a com-
mon module in the reference network are also adjacent
to one another in the test networks, while network con-
nectivity measures assess whether the connection
strengths of module gene-pairs in the reference network
are preserved among the same gene-pairs in the test
networks. While no differences in network densitity
measures were observed, as shown in Fig. 7, a significant
loss of network connectivity (Z statistic <10) was
observed in the salmon module for both the SGA (Z
connectivity =7.85) and LGA (Z connectivity = 7.95) net-
works compared to the AGA network. This loss in net-
work connectivity suggests that a subset of gene
interactions in the salmon module are disrupted in the
aberrant fetal growth categories, indicative of a
breakdown in the associated biological pathway.
An example of module connectivity patterns, indicat-

ing both genes differentially expressed across birth
weight categories and module hub genes, is shown for
the salmon module in Fig. 8. With the exception of
INHBA, the differentially expressed genes largely dem-
onstrate weaker connectivity patterns within the module
in relation to the hub genes.

Discussion
In this study, we have taken a systems biology approach
to describe the functional gene networks present in the
human term placenta. Weighted gene coexpression ana-
lysis of the placental transcriptome revealed an enrich-
ment in functional processes related to growth and
development, including cellular respiration, transcrip-
tional activity, and signal transduction. Although few

Fig. 5 Association between candidate module hub genes and birth weight. Genes shown along y-axis are putative fetal growth-related intramodular
hub genes: CREB3 (turquoise), DNAJC14 (red), GRHL1 (salmon), DDX3X (light cyan) and C21orf91 (greenyellow). Each gene’s association with aberrant fetal
growth categories is indicated by the odds ratios (OR) and 95% Confidence Intervals (CI) of SGA and LGA infants referenced against AGA infants for a
log2 unit increase in expression. Multinomial regression models were adjusted for infant gender and maternal BMI
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descriptions of non-pathological tissue-specific coex-
pression networks are available in the literature, a few
general trends are observable. Placental modules
enriched for biological processes involved in transcrip-
tional activity, cellular respiration and immune response
were also common to processes observed in other re-
ported tissue networks, including liver [41], skeletal
muscle [42] and blood [43]. Compared to these
networks, processes uniquely enriched in the placenta
include organ and vasculature development, cell replica-
tion, cell adhesion, gas transport and hormone secretion.
Furthermore, the processes enriched in the placental
gene network reflect known critical functions perfomed
by the placenta for appropriate fetal development, in-
cluding establishing a blood supply (vasculature

development), trophoblast adherence to maternal de-
cidua (cell adhesion), gas exchange (gas transport), feto-
maternal immune tolerance (immune response) and
endocrine signaling (hormone secretion). Interestingly,
genes with common GWAS-associated biomedical traits
also loaded onto our network modules. While the mo-
lecular function/process assigned to genes using GO are
based on curated in vitro or in silico evidence of partici-
pation in biological pathways [44], the GWAS catalog
comprises array-based genotyping studies conducted in
human population settings [45, 46]. Hence, our observed
GWAS-enrichments corroborate the functional pro-
cesses assigned to the modules based on GO enrichment
analyses and also suggest the possible priming of later
life health effects during development.

Fig. 6 Enrichment of genes differentially expressed by birth weight in network modules. Twelve modules contained genes differentially expressed by
birth weight category (n = 393). The proportion of differentially expressed genes within each of the modules is indicated in blue in the stacked bar plot.
A significant enrichment of differentially expressed genes based on a fisher’s exact test was observed in the turquoise, red and greenyellow modules

Fig. 7 Loss of network conservation in SGA and LGA networks compared to AGA networks. Relative to the AGA network, the salmon module
demonstrates loss of connectivity in the SGA (Z = 7.85) and LGA (7.95) networks
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Several network modules were observed to be related
to maternal-infant demographic variables, suggesting
that the activity of these modules reflect gestational
characteristics. For example, the observed downregula-
tion in growth-related processes with increasing gesta-
tional age may indicate a shift in placental processes to
ready the fetus for postnatal life. Similarly the gestational
age associated upregulation of immune-related processes
is consistent with the onset of parturition [47, 48]. Given
the narrow range in gestational age in our study popula-
tion, however, our observations, while consistent with
known trajectories in feto-placental development, would
require further in-depth physiologic analysis to establish
biologic relevance. Several modules were associated with
multiple demographic characteristics. For example, an
upregulation of the histone modification (lightcyan)
module was observed both among male infants and
LGA infants, consistent with known trends in gender

differences based on birth size. The upregulation of the
gene expression (greenyellow) module with increasing
maternal BMI and birth weight is also consistent with a
posititve relationship between maternal BMI and birth
size. Similarly, changes in modules by delivery status
tracked closely with patterns of modules distinguishing
LGA and AGA infants, consistent with observations in
our study that LGA infants were more likely to be deliv-
ered by cesarean section.
To evaluate the utility of the derived placental gene

network in elucidating the molecular underpinnings of
placental dysfunction, we examined fetal growth-related
perturbations to the network. The network-based ana-
lysis reduced the dimensionality of the data and
accounted for the interdependent structure among the
transcripts, enabling us to derive functional insight into
the biological processes affected by fetal growth-related
dysregulation of coexpression. In our study, we identified

Fig. 8 Gene connectivity in the salmon module. Black nodes indicate the most highly connected genes in the module (hub genes). Red nodes
indicate genes differentially expressed across birth weight categories
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5 network modules with differential coexpression across
birth weight categories that are functionally enriched for
cellular respiration (turquoise), amino acid transport
(red), gonadotropin/glucagon secretion (salmon), gene
expression (greenyellow) and histone modification (light
cyan). Several of these modules, ones related to cellular
respiration, amino acid transport and gene expression,
were also significantly enriched with genes differentially
expressed across birth weight categories.
A loss in overall network connectivity in SGA and

LGA infants was observed for the gonadotropin/gluca-
gon secretion (salmon) module, highlighting a break-
down in key gene interactions within this module
among the aberrant growth categories. A closer look at
the salmon module highlights the added value gained by
using a networks-based approach. This module includes
differentially expressed genes previously shown to be
relevant to fetal growth and development, i.e., PKM2
[49], SPTLC3 [37] and INHBA [50]. Additionally, this
module includes genes that were not identified as differ-
entially expressed in the current study but have been
previously shown to be relevant to fetal growth and
pregnancy complications in independent studies, primar-
ily LEP [51], as well as the hub genes PVRL4 and PLIN2
[52]. The fact that these genes, which were previously
independently implicated with fetal growth and develop-
ment, load onto a common module in the current study
suggests that the mechanism through which these genes
exert their effect may converge on a common biological
pathway.
While the genes we observed to be differentially

expressed were enriched in modules where we observed
differential coexpression, it is of interest to note that
none of the differentially expressed genes represent hub
genes of fetal growth related modules. In fact, differen-
tially expressed genes tended to be relatively weakly
connected within network modules. This highlights a
key distinction between differential expression and
network-based coexpression analyses. Coexpression net-
works follow a small world architecture, whereby the
presence of highly connected hub genes facilitates infor-
mation flow through the network in relatively few hops
[53]. Due to this small world structure of coexpression
networks, there is redundancy in the network, allowing
for tolerance in perturbations among the majority of
nodes. Large-scale perturbations among the handful of
highly connected nodes, however, would result in net-
work failure [53, 54]. As differential expression analysis
identifies genes with the largest fold changes, these
genes are likely situated at the periphery of the network,
whereas genes central to fetal growth-related biological
processes may be missed. Additionally, the fact that the
majority of genes in modules observed to be relevant to
fetal growth were not observed to be differentially

expressed also highlights that disrupted coexpression in
a module can occur in the absence of net differential
expression among the individual genes within the mod-
ule. This suggests that network-based methods may be
more robust at uncovering key determinants of affected
biological processes and potentially more relevant inter-
ventional targets than differential expression analysis.
Several limitations in our study design warrant further

discussion. The placenta is a complex organ, consisting
of various cell sub-types with transcriptional profiles that
likely vary. Nevertheless, our placental samples were col-
lected from four quadrants exclusively on the fetal mem-
brane side and within 2 cm from the cord insertion site,
a region identified as the least variable in the placenta
[55]. Furthermore, as our study represents a single
assessment at term, a causal link between gene expres-
sion and birth weight cannot be drawn. As such, follow
up studies are warranted to determine whether placental
gene signatures bear relevance on postnatal health,
extending into childhood as well as adulthood. Such
studies also have the potential to additionally provide
further mechanistic insight into the roots and
consequences of abnormal fetal growth.

Conclusions
The current study is the largest comprehensive human
placental profiling study to date. The generated profile
stems from non-pathological, term placenta, providing a
characterization of the baseline placental transcriptional
landscape and the role that normal variation might play
in defining patterns of intrauterine development in the
general population. Importantly, we implemented a sys-
tems biology-based approach to characterize the placen-
tal gene networks, and we demonstrated the utility of
this approach by delineating a fetal growth-related pla-
cental gene signature. This signature highlights the po-
tential for leveraging the generated placental gene
network to uncover novel insight into the molecular un-
derpinnings of placental dysfunction. This includes the
identification of both established and novel genes related
to fetal growth, and importantly, the interrelationship
among these genes in common deregulated biological
pathways. As such, these findings highlight the placenta,
a temporal organ that is commonly discarded, as a valu-
able resource for identifying biomarkers relevant to fetal
development and postnatal health effects.

Methods
Placenta collection
Placenta tissues were collected as part of the Rhode
Island Child Health Study (RICHS), a birth cohort repre-
senting the populations of Rhode Island and Southeast-
ern Massachusetts, USA [56]. This population consists
of singleton, term infants (≥37 weeks gestation) born
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without congenital or chromosomal abnormalities and
born to women without life-threatening pregnancy com-
plications. The cohort includes large for gestational age
(LGA, >90% 2013 Fenton Growth Curve), small for ges-
tational age (SGA, <10% 2013 Fenton Growth Curve)
and adequate for gestational age (AGA) infants. Given
an a priori interest to study fetal growth, this population
was oversampled for both LGA and SGA infants. Of the
entire RICHS cohort (n = 841), a subset of 200 subjects,
representative of the full cohort (Table 1), were selected
for RNA sequencing and subsequent analyses. All sub-
jects provided written informed consent approved by the
Institutional Review Boards at Women and Infants
Hospital and Emory University.
Placental biopsies free of maternal decidua were ex-

cised from four quadrants within 2 cm of the cord inser-
tion site, placed in RNALater at 4 °C within 2 h of
delivery and at least 72 h later were removed from RNA-
Later, pooled, snap-frozen, homogenized to powder, and
stored at −80 °C.

RNA sequencing
Total RNA was isolated from homogenized placental tis-
sue using the RNeasy Mini Kit (Qiagen, Valencia, CA)
and stored in RNAse-free water at −80 °C. The yield was
quantified using a Quibit Fluorometer (Thermo Scien-
tific, Waltham, MA) and the integrity was assessed using
an Agilent Bioanalyzer (Agilent, Santa Clara, CA). Ribo-
somal RNA was removed using a Ribo-Zero Kit [57].
RNA was converted to cDNA using random hexamers
(Thermo Scientific, Waltham, MA). Transcriptome-wide
50 bp single-end RNA sequencing was conducted using
the HiSeq 2500 platform (Illumina, San Diego, CA) [58].
Samples were run in three sequencing batches, with 10%
of the samples run in triplicate within each batch.

Statistical analysis
QC filtering and normalization
The raw RNA sequencing data (fastq files) were
assessed for quality control, including read length and
GC content, using the FastQC software. Reads that
passed the quality control metrics were mapped to the
human reference genome (hg19) in a splice-aware
manner using the Spliced Transcripts Alignment to a
Reference (STAR) aligner [59], with common SNPs in
the reference genome masked prior to alignment.
Genes with counts per million <1 in greater than 30
samples (the sample size of the smallest phenotypic
group in this study) were considered unexpressed and
removed. Read counts were adjusted for GC content
using the EDASeq R package [60], followed by TMM
correction for library size differences across samples
using the calcNormFactors function in edgeR R pack-
age [61]. The data was then transformed into logCPM

values accounting for the mean-variance relationship
in the data using the voom function of the limma R
package [62]. Following assessements of Pearson corre-
lations in gene expression among the triplicate sam-
ples, duplicated repeat samples were removed from the
analysis. Finally, the normalized log2 counts per mil-
lion (logCPM) reads were filtered to genes with expres-
sion levels above 2 in the log2 scale in a minimum of
30 samples. The final filtered, normalized data-set in-
cluded 12,135 genes. Eight percent of the variability in
our data-set was attributable to batch as determined
by the implementation of the pvca R package [63, 64].
Expression level differences based on demographic
characteristics were assessed based on Mann Whitney
U test for variables with two categories, Kruskal-Wallis
test for variables with >2 categories, and Spearman
correlations for continuous variables.

Weighted gene coexpression network
Prior to constructing the co-expression network, the
gene expression data was adjusted to remove potential
confounding due to batch effect using the ComBat
function in the R package sva [65]. The gene co-
expression network was generated using the WCGNA
R package [17]. Briefly, a similarity matrix was gener-
ated from the normalized RNA-Seq data using absolute
values of Pearson correlation coefficients among all
gene pairs {sij = |cor(xi,xj)|}. The similarity matrix was
transformed into an adjacency matrix using an
adjacency function based on a weighted soft threshold
(β =6) {aij = sij

β}. The selected β parameter value satis-
fied the minimum value required to generate a scale-
free topology network (linear regression R2 ≥ 0.8). The
components of the resulting adjacency matrix indicate
connection strengths among gene pairs, with connec-
tions among strongly correlated genes emphasized and
weakly correlated genes suppressed.
To delineate modules, the relative interconnected-

ness between each node pair was calculated as a topo-
logical overlap similarity measure. Here, the
topological overlap for each node pair was defined as
the proportion of node connections that are shared be-
tween the two nodes out of the total number of node
connections of the node with fewer connections,
thereby, capturing the similarity in the coexpression
relationship with all other genes in the network. The
reciprocal topological dissimilarity matrix was used as
input for hierarchical clustering, and gene modules
were defined based on hierarchical clustering guided
by topological overlap, using a dynamic tree cut algo-
rithm to establish modules [66]. Finally, highly corre-
lated modules were merged based on a merging
threshold set at a height cut-off of 0.25. In the result-
ing network, as neighbors in a cluster share high
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topological overlap, the resulting modules likely indi-
cate a common functional class. As a summary meas-
ure of the gene modules, each module was defined by
the first principal component of each module (module
eigengene) to represent the weighted average gene ex-
pression profile of the module. Module membership
of genes within each module was determined based
on the correlation between individual gene expression
values and the module eigengene value. Top five
genes based on module membership (correlation with
module eigengene) were classified as hub genes. Net-
work modules were further assessed for enrichment
of biological processes across Gene Ontology (GO)
categories based on Fisher’s exact test. Similarly,
Fisher’s exact test was applied to assess network mod-
ule enrichment of genes linked to specific phenotypes
(diseases/traits) based on a curated catalog of genome
wide association studies (GWAS) [46, 67]. Phenotypes
included in the analysis were restricted to those
associated with a minimum of 10 reported gene
variants. Fisher’s exact test was applied to trait/mod-
ule gene membership contingency tables with non-
zero cell counts. Spearman correlations were
calculated between module eigengenes and continuous
mother-infant demographic and gestational variables.
Significant differences (p < 0.05) in module eigengene
values across categorical mother-infant demographic
and gestational variables were determined using a
Mann-Whitney U test (2 categories) or a Kruskal
Wallis test (>2 categories).

Network-based differential gene coexpression analysis
Module hub genes related to fetal growth were identified
as genes highly correlated with the Fenton growth curve
percentile r > |0.2| and the module eigengene (r > |0.8|).
To assess the association between the expression of
these candidate hub genes and fetal growth, we con-
ducted multinomial regression models using the nnet R
package [68], setting SGA and LGA status as the out-
comes referenced against AGA status. Models were ad-
justed for infant gender, delivery method and maternal
prepregnancy body mass index (BMI). These variables
were selected based on observed differences in eigen-
gene values of modules related to fetal growth (infant
gender and lightcyan module; delivery method and sal-
mon, red and greenyellow modules; maternal prepreg-
nancy BMI and greenyellow module).
To assess whether module topology patterns are al-

tered among the adverse growth phenotypes, separate
networks were generated for each birth weight category
as described for the global network. Module conserva-
tion between the reference AGA network and the SGA
and LGA networks was evaluated based on four network
connectivity and four network density measurements.

Network density measurements assess whether genes
that are highly connected in the reference network
(assigned to a common module) are also highly con-
nected in test networks. Density preservation was
assessed based on the correlations between module
genes in the reference network and the corresponding
genes in the test network on measures of mean correl-
ation, mean adjacency, mean module membership, and
proportion of variance explained by the module eigen-
gene. Network connectivity measurements assess
whether connection strengths among module gene-
pairs are conserved in reference and test networks.
Connectivity preservation was assessed based on the
correlations between module genes in the reference
network and the corresponding genes in the test net-
work on measures of intramodular connectivity
(conservation of hubs; rowsum of adjacency), adja-
cency matrix, correlation between each gene and the
module eigengene (module membership), and correl-
ation among pairwise gene expression correlations.
The significance of the observed preservation statistics
was determined using 200 permutation tests where
gene labels are randomly assigned in the test network
to estimate the mean and standard deviation under the
null hypothesis of no preservation. The resulting Z-
scores provide a measure of the whether the observed
gene connectivity pattern of the test network is signifi-
cantly more conserved than random. The median of
the four Connectivity Z-scores and the median of the
four density Z-scores are averaged to generate a
summary Z-score [69].

Differential gene expression analysis
Differential gene expression across the three birth
weight categories was assessed using the limma R pack-
age [62]. Briefly, limma implements an empirical Bayes
method to generate gene-wise moderated t-statistics
across contrasts of interests. Observed associations
were considered significant at FDR < 0.05. Enrichment
for differentially expressed genes in network modules
was determined using Fisher’s exact test.
Figures depicting enrichment of GO terms and differ-

entially expressed genes in network modules, differential
expression of modules across birth weight categories
and the forest plot of the association between hub gene
expression and aberrant fetal growth were generated
using the ggplot2 R package [70]. The figure highlighting
differentially expressed genes and hub genes in the sal-
mon module was generated using visANT 5.0 [71, 72].
Figures showing hierarchical clustering of network mod-
ules and network preservation measures were generated
using the WGCNA R package [17]. The remaining
figures were generated using R base plotting functions.
All analysis was conducted using R 3.3.1 [73].
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Additional files

Additional file 1: Distribution in expression level (logCPM) among top
expressed genes in placenta. Shown in grey is the distribution in
expression level across all genes (n = 12,135). (TIFF 1487 kb)

Additional file 2: Agreement in gene expression rankings between
RNAseq and NanoString (n = 197). Gene expression across 80 genes was
assessed by both the RNAseq and NanoString platforms. Genes were
ranked by expression level (lowest rank signifies highest expression
across samples). Gene ranks across the platforms were significantly
correlated (Spearman rho = 0.76, p < 0.01). (TIFF 1666 kb)

Additional file 3: Gene loadings in placental gene coexpression network.
Genes loading into separate modules are listed. Additionally the correlation
between genes and module eigengenes are indicated. (CSV 2815 kb)

Additional file 4: Hierarchical clustering of network modules. (TIFF 1474 kb)

Additional file 5: Mapping of GWAS-linked genes in placental gene
coexpression network. Genes linked to GWAS-associated traits that are
enriched in the placental gene coexpression network are listed alongside
assigned modules and GWAS-linked traits. (CSV 58 kb)

Additional file 6: Candidate module hub genes relevant to birth
weight. Plots indicate the correlation between gene expression and
module eigengene values (x-axis) and the correlation between gene
expression and birth weight category (y-axis). Genes that demonstrate
both module importance and birth weight relevance are indicated for
each module. Genes of interest include MKL2, PSMD4, ADRM1, AC3H15
and CREB3 in the turquoise module, LAD1, KAT5, DNAJC14 and BECN1 in
the red module, GRHL1, INHBA, PVRL4, LEP and C8orf58 in the salmon
module, DDX3X in the lightcyan module, and ZNF460, C21orf91 and PAN3
in the greenyellow module. (TIFF 169 kb)
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