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Abstract

Background: Obesity, the excessive accumulation of body fat, is a highly heritable and genetically heterogeneous
disorder. The complex, polygenic basis for the disease consisting of a network of different gene variants is still not

completely known.

Results: In the current study we generated a BAC library of the obese-prone NZO strain to clarify the genomic
alteration within the gene cluster /fi200 on chr.1 including /fi202b, an obesity gene that is in contrast to NZO not
expressed in the lean B6 mouse. With the PacBio sequencing data of NZO BAC clones we identified a deletion
spanning approximately 261.8 kb in the B6 reference genome. The deletion affects different members of the /fi200
gene family which also includes the original first exon and 5"-regulatory parts of the /fi202b gene and suggests to
be the relevant cause of its expression deficiency in Bé. In addition, the generation and characterization of congenic
mice carrying the critical fragment on the B6 background demonstrate its crucial role for obesity and insulin

resistance.

Conclusions: Our data reveal the reconstruction of a complex genomic region on mouse chr.1 resulting from
deletions and duplications of /fi200 genes and suggest to be relevant for the development of obesity. The results
further demonstrate the complexity of the disease and highlight the importance for studying rare genetic variants

as they can be causal for large effects.
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Background

Obesity is the consequence of an imbalance between
food intake and energy expenditure resulting in an
excess accumulation of body fat. Progress and course of
obesity and its associated diseases are dependent on
nutritional conditions and on other lifestyle parameters
(e.g. physical activity). However, its main basis is the
complex, polygenic predisposition consisting of a
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network of variant genes which are still not completely
known and difficult to identify in humans. Genome-wide
association studies (GWAs) are commonly used for the
identification of disease genes. Nevertheless, the identi-
fied loci accounting only for a small proportion of the
heritability of a complex disease like obesity [1]. Gen-
omic structural variants (GSVs) may explain rare vari-
ants with large effects, which are not readily identifiable
via SNP-based methods [2-4].

Genomic linkage studies in rodents are a suitable ap-
proach to identify and to study such chromosomal alter-
ations. In a previous study we reported the identification
of a major obesity QTL (Nob3) on distal mouse chr.1 in
an outcross population of the New Zealand obese
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(NZO) strain, a polygenic mouse model for obesity, and
the lean C57BL/6] (B6) mouse. By generating recombin-
ant congenic lines and expression studies we finally
identified the Ifi202b (Interferon inducible gene 202Db)
gene as the causal variant of the Nob3 locus. The tran-
scriptional regulator Ifi202b is a member of the Ifi200
gene family, which has also been annotated as the
PYHIN family, acknowledging the defining features of
an N-terminal pyrin domain and C-terminal HIN do-
main [5]. The proteins are involved in the defense
against infection through recognition of foreign DNA,
whereas Ifi202b was also shown to be involved in the de-
velopment of obesity [6]. The gene family is arranged as
a cluster on mouse chromosome 1 (1q band H3) be-
tween the Cell adhesion molecule 3 (Cadm3) gene and a
cluster of olfactory receptors. The Ifi202b gene is
expressed in various tissues of the NZO strain but not
transcribed in B6 mice and we hypothesized that this is
due to a deletion of the first exon and the 5’-regulatory
region [6]. The lack of Ifi202b is specific for C57BL mice
(e.g. C57BL/10], C57BL/6], C57BLKS/], and C57BR/sd]J),
whereas most other strains (e.g. SJL/Bm, DBA2/J, BALB/
cJ, C3H/He]J, and FVB/N]J) express this gene [7].

In the current study we clarified the exact genomic
structural variation causing the Ifi202b deficiency and
demonstrated that a rare genomic alteration on mouse
chr.1 is responsible for the development of obesity.
We generated a NZO BAC library and performed a de
novo assembly of the complex Ifi200 region on mouse
chr. 1 by using PacBio long reads, a third generation se-
quencing (TGS) approach and characterized mice with
the affected region in respect to different metabolic
traits.

Methods

Bacterial artificial chromosome (BAC) library construction

and screening

NZO (NZO/HIBombDife) BAC library was constructed
from high molecular weight (HMW) genomic DNA
processed at Amplicon Express Inc. (Pullman, WA,
USA) from liver tissue. All animal experiments were ap-
proved by the ethics committee of the State Office of
Environment, Health and Consumer Protection (V3-
2347-21-2012, Federal State of Brandenburg, Germany).
With the restriction enzyme HindIIl the HMW DNA
was partially digested (average size 135 kb) and ligated
into the pCC1BAC vector. Ligations were transformed
into DH10B E.coli cells and plated on LB agar. Clones
were picked and arranged onto 384-well plates, repli-
cated and frozen at —80°C. Screening of the BAC library
was also processed by Amplicon Express Inc. by using
nylon filters with arrayed library clones (18,432 clones)
and digoxigenin (DIG)-labeled probes representing pos-
ition 11,239-11,453 in the genomic sequence of [fi202b
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(NC_000067). The DIG-labeled probe was generated
from gDNA by PCR using the primers Ifi202b_for:
TCTTCAGAGTGATGGTGTTCG and  Ifi202b_rev:
TGTTTGCAAGTGAAGATCACAA. The Ifi202b probe
was found to hybridize to 14 BAC clones with a size of
90-196 kb. Two positive clones with a size of 147 kb
and 196 kb were selected for sequencing. Isolation of the
high molecular weight plasmid from the E.coli cultures
was performed with the PhasePrep™™ BAC DNA Kit
(Micro Scale Preparation, Sigma-Aldrich, Steinheim,
Germany) and the BACMAX™ DNA Purification Kit
(Biozym, Hessisch Oldendorf, Germany) according to
the manufacturer’s instructions. The PhasePrep BAC
DNA Kit was wused for cell harvesting, lysis,
neutralization, and nucleic acid precipitation, whereas di-
gestion of the residual RNA, removal of residual impur-
ities and final precipitation was done with the BACMAX
Kit.

BAC sequencing and sequence assembly

Sequencing of the two BAC clones (mixture, ratio 1:1)
and assembling was processed by GATC Biotech AG
(Konstanz, Germany) using the SMRT® Technology Pac-
Bio RS II. De novo assembly of BAC inserts was per-
formed with the standard SMRT Portal Software
including quality filtering of the reads, improvement of
long reads through alignment of short reads, assembly of
long reads, and assembly correction. The assembly of
the reads was based on the hierarchical genome-
assembly process (HGAP).

Comparative genomic hybridization assay

Genomic DNA was prepared from the tail of C57BL/6]
and NZO/HIBomDife mice. Unamplified genomic DNA
was labeled with Cy3 (NZO) or Cy5 (reference strain,
C57BL/6]) and hybridization was performed by ima-
Genes (Berlin, Germany) using the NimbleGen platform.

Animals

Breeding and genotyping

All animal experiments were approved by the ethics
committee of the State Office of Environment, Health
and Consumer Protection (Federal State of Brandenburg,
Germany). NZO mice from our own colony (NZO/
HIBomDife) and C57BL/6] (Charles River, Sulzfeld,
Germany) were used throughout the study. Mice were
kept at a temperature of 20 + 2 °C with a 12:12 h light-
dark cycle and had ad libitum access to drinking water
and to a high-fat diet (HFD) containing 45 kcal% from
fat, 35 kcal% from carbohydrates, and 20 kcal% from
protein (D12451, Research Diets, Inc., New Brunswick,
USA). Congenic mice were generated on a B6 back-
ground and the offspring was selected in each generation
for carrying the fragment 163.5-177.7 Mbp from NZO
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on chr.l (Nob3.14). Phenotypical characterization of fe-
male congenic mice were performed in the FION8 gen-
eration. For genotyping, DNA was prepared from mouse
tails with a DNA isolation kit based on a salt precipita-
tion method (InViTek, Berlin, Germany) and used for
tests with polymorphic microsatellite markers. Microsa-
tellites (D1Mit143 and D1Mit115) were genotyped by
PCR with oligonucleotide primers obtained from MWG
(Ebersberg, Germany), and the microsatellite length was
determined by non-denaturing polyacrylamide gel
electrophoresis.

Body composition and blood glucose

Fat mass of Nob3.14 mice were determined by nuclear
magnetic resonance (EchoMRI™-100H, EchoMRI LCC,
Houston, USA) and blood glucose levels were measured
in the morning (7-10 a.m.) using a CONTOUR® XT
glucometer (Bayer, Leverkusen, Germany).

Histological analysis of adipose tissue

Paraffin sections (2 um) of gonadal white adipose tissue
(gonWAT) of 30-week-old Nob3.14 mice were stained
with hematoxylin and eosin. Microscopic images were
captured with the Keyence BZ-9000 fluorescent micro-
scope and the corresponding BZ-II Analyzer software
(Keyence International, Mechelen, Belgium).

Metabolic phenotyping

Oral glucose tolerance tests (OGTT) were performed in
22-week-old mice. Mice were fasted overnight and re-
ceived 2 g/kg body weight of glucose (Glucosteril® 20%,
Fresenius Kabi, Bad Homburg, Germany). Blood glucose
and insulin concentrations were detected up to 120 min.

Plasma analysis

Plasma insulin levels were analyzed using the Mouse
Ultrasensitive Insulin ELISA (ALPCO Diagnostics,
Salem, USA) following the manufacturer’s instructions.

Protein extraction and western blotting

Adipose tissue of Nob3.14 mice were homogenized in
TES buffer (20 mM TrisHCl, 1 mM EDTA, 8.7% su-
crose, pH 7.4, supplemented with protease inhibitor
cocktail). Proteins were separated by SDS-PAGE, trans-
ferred to a PVDF membrane (Immobilon-P Membrane,
Merck Milipore, Darmstadt, Germany) and targeted pro-
teins were detected by ECL Prime Detection Reagent
(GE Healthcare Europe GmbH, Freiburg, Germany)
using the FUSION-SL4 advanced chemiluminescence
system (Peqlab Biotechnologie GmbH, Erlangen,
Germany). Primary antibodies against PPARy (ab41928,
Abcam, Cambridge, UK), pHSL (#4139S, Cell Signaling,
Beverly, MA, USA), tHSL (#4107S, Cell Signaling), -
ACTIN (A3854, Sigma-Aldrich, St. Louis, USA), and
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appropriate horseradish peroxidase-labeled secondary
antibodies (Dianova, Hamburg, Germany) were applied.

Results and discussion

The Ifi200 gene cluster developed as a consequence of
gene duplications and rearrangements resulting in a di-
vergence in the number of genes between various inbred
strains of mice and in repetitive sequences even in
coding regions between the different gene members. In
order to clarify the genomic alteration responsible for
the Ifi202b deficiency in the B6 mouse we used the
PacBio system, single-molecule real-time (SMRT) se-
quencing approach, for de novo assembling of the critical
region in the NZO strain.

For the screening of the NZO BAC clones containing
the relevant [fi202b upstream sequence a probe match-
ing a unique Ifi202b sequence was used. Additionally a
probe specific for the Olfr432 gene was chosen to define
the distal border of the region of interest; in contrast to
the genomic Ifi200 region the OIfr432 gene represents a
unique sequence within the mouse genome. In total,
sequencing of the NZO BAC clones mapped 17,802
PacBio RS reads with a mean read length of 14,357 kb
(maximal read length 30,378 kb) and a mean read qual-
ity of 0.865. De novo assembly of the reads resulted in 4
contigs. However, two of them were not considered for
further analysis (unitig2: 35 kb, mean coverage 24 and
unitig3: 38 kb, mean coverage 26) due to poor sequence
quality. With the two remaining contigs (unitigl: 36.5
kb, mean coverage 365 and unitig0: 300 kb, mean cover-
age 603; Fig. 1a and b) it was possible to assemble a
region covering 6 genes that belongs to the Ifi200 gene
family and the olfactory receptor Olfr433 as the distal
boundary (Fig. 2b, upper panel). As described earlier the
NZO strain carries two copies of the Ifi202b gene which
differ in only 8 bp within the coding region, respectively
7 amino acids [6]. In addition, sequence analysis of the
BAC identified two copies of other family members;
Ifi205 and Ifi203. Interestingly, by comparing the assem-
bled NZO sequence with the B6 reference genome we
identified a 261,797 bp deletion affecting the Ifi200 locus
in respect to gene duplications.

With a second-generation sequencing (SGS) approach
it would have been impossible to solve the organization
of the Ifi200 cluster in NZO as sequences are mapped to
the B6 reference genome and gaps within the reference
genome will result in an incorrect alignment [8]. While
the SGS approach is efficient for accurately identifying
SNPs in the genome, it does not enable a thorough
characterization of structural variations such as inser-
tions and deletions [9-11]. The short sequence read data
has complicated the assembly of repetitive structures
leading to the translation into gaps, missing data and
more incomplete assembly [12-14]. In contrast, the
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main advantage of TGS is the long read nature, which
was reported to be as long as 3,000 bp on average, and
some reads are supposed to be 20,000 bp or even longer.
The long read length provides an important benefit for
de novo assemblies, it allows the discovery of large struc-
tural variants, and it provides accurate microsatellite
lengths, detection of sensitive SNPs, and haplotype
blocks [8, 15-18]. TGS has successfully been used for de
novo assembling of hundreds of microbial genomes and
reconstruction of plant and animal genomes [18-23]. It

has also been applied to resequencing analysis, to create
detailed maps of structural variations and phasing vari-
ants across large regions of human chromosomes [23—
25].

The evolutionary analysis revealed a remarkable plasti-
city in the mammalian [fi200 genes, suggesting the exist-
ence of strong evolutionary pressures that have shaped
the Ifi200 sequences and functions throughout the mam-
malian lineage [26]. Here, we report the identification of
structural variations within the Ifi200 (PYHIN) gene
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Fig. 2 Identification of a B6-specific deletion in the /fi200 gene cluster. a Observed depth of coverage across unitig0 and unitig1 after de
novo assembly of the PacBio reads. b Schematic overview of the de novo assembly results representing genes within the /fi200 gene cluster.
A direct comparison of the genomic NZO sequence with the B6 reference genome revealed a 261,797 bp deletion including copies of
the Ifi200-family members, /fi203, 1fi205, the first exon and the 5-regulatory part of the /fi202b gene. As consequence, an intronic sequence
(alternative E1) in NZO is spliced to exon 2 of /fi202b in the B6 genome. P1 and P2: probes used for the screening of NZO BAC clones
containing the /fi202b region on chr.1
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cluster in the obese NZO strain. Cridland and colleagues
presented a map comparing the human, C57BL/6
mouse, and rat Ifi200 gene loci. The mouse contains at
least 14 mouse Ifi200 genes, whereas the human and rat
genome expresses only 4, respectively 5 [5]. It was
already published that the [fi200 gene locus is divergent
between various mouse strains as the number of genes
present at the locus and the sequence is different [5, 6].
The number of predicted mouse genes has increased
with each new update of the mouse genome database
and in the current study with de novo assembling of the
PacBio sequencing reads we can strengthen and expand
this assumption to the obese NZO strain [5]. The NZO
strain carries two copies of Ifi202b (Ifi202a and b) which
was also found in the 129X1/Sv] mouse genome in
addition to a pseudogene (Ifi202c), whereas only one
truncated copy is present in C57BL/6 that is not
expressed in metabolically relevant tissues [6, 27, 28].
Another family member, Ifi203, showed two extra copies
in NZO in comparison to B6. Also the Ifi205 gene was
duplicated as two regions, spanning the coding sequence
of the gene, could be mapped in the NZO BAC clones
(Fig. 2b). To further verify the sequencing results we
performed a comparative genomic hybridization assay
(CGH) of genomic DNA obtained from the B6 and the
NZO strain to detect copy number variations (CNVs)
within the cluster. This analysis further supports that
the NZO strain carries at least two copies of the genes
Ifi202b, Ifi203, and Ifi205 (Fig. 3). Other studies also
show the presence of gene duplications. She and col-
leagues (2008) assessed CNVs between the B6 strain and
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Fig. 3 Identification of copy number variations (CNVs) within the /fi200
cluster. Results obtained from a comparative genomic hybridization
assay (CGH) of genomic DNA from the B6 and NZO strain (NCBI Build
36, mm8). Shown are the positions of the critical Ifi200 cluster. The red
line represents equal copies in B6 and NZO, whereas areas above 0.0
indicates that two or more copies exist in NZO. Regions corresponding
to /203, Ii202b, and Ifi205 are highlighted
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15 mouse strains (including NZO) which were used for
genetic association studies, sequencing, and the Mouse
Phenome Project [29]. The analysis also showed a dupli-
cation of the Ifi203 gene. Similar results were detected
for Ifi205 in the study by Cahan et al., 2009 where CNVs
in 17 mouse strains were analyzed [30]. In conclusion,
de novo assembling of the NZO BAC clone reads and
the analysis of CNVs revealed structural variations be-
tween different inbred strains of mice within a complex
region on chr. 1 caused by duplications and genomic
alterations.

It is also documented that the corresponding region in
humans is affected by genomic alterations. According to
the 1000 Genomes project several deletions, CNV , and
duplications can be mapped within this locus [31].
Cagliani and colleagues performed an evolutionary ana-
lysis of the human family members (MNDA, PYHINI,
IFI16, and AIM?2) by analyzing inter- and intraspecies di-
versity and revealed that the genes have been repeatedly
targeted by natural selection. Especially the IFI16 gene
region shows a high nucleotide diversity in human popu-
lations and indicates that the region has been a target of
long-standing balancing selection [32].

The main goal of the current study was to analyze the
chromosomal alterations leading to the Ifi202b defi-
ciency in the B6 strain. With the BAC sequencing we
identified a deletion spanning approximately 261.8 kb
within the B6 genome, a sequence present in NZO. The
deletion includes different copies of Ifi200-family mem-
bers, Ifi203, Ifi205, and exon 1 of Ifi202b (Fig. 2b). In
our previous study we identified an alternative first exon
in the B6 reference genome (Vogel et al., 2012). With
the current study we are finally able to define the exact
chromosomal region deleted in B6 and we can explain
how this alternative exon 1 - which is an intronic se-
quence in NZO - is spliced to exon 2 of Ifi202b in the
B6 genome (Fig. 2b, lower panel). The fact that B6 do
not express Ifi202b in the same tissues (e.g. adipose tis-
sue, liver, and skeletal muscle) as NZO indicates that in
addition to the first exon also the promotor or at least
part of it was deleted as well.

It is also reasonable to assume that the deleted region
in B6 contains enhancer motifs/long-range control ele-
ments that drive and regulate the expression of other
genes. In a previous study we reported that the genes
Leftyl, Pcp4ll, and Apoa2, located in the same diabesity
susceptibility locus as Ifi202b (Nob3), are exclusively
present in islets of the diabetes-resistant B6 strain in
contrast to the diabetes-prone NZO mouse. The identi-
fied genes are furthermore involved in the adaptive islet
hyperplasia and prevention from severe diabetes in B6-
ob/ob mice [33]. With the hereby reported data we
hypothesize that the genomic alterations within the clus-
ter may also include enhancer elements that carry the
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potential to regulate the expression of Leftyl, Pcpdll,
and Apoa2. By using the Nsite program, a computer tool
to search for regulatory elements (REs), we found 5
predictive enhancer motifs that are located within the
deleted sequence in the B6 genome which can potently
be responsible for the described expression differences.
A number of longe-range regulatory disruptions af-
fecting the expression of genes have already been
described [34, 35]. One of the oldest examples of a
human gene in which long-range regulations has been
implicated and studied is SOX9, a gene responsible
for autosomal sex reversal and Campomelic Dysplasia
(CD). All rearrangements including deletions are found
from 50 kb to 950 kb upstream of SOX9 suggesting that
a similar mechanism could also account for the expres-
sion differences between the diabetes-prone NZO and
diabetes-resistant B6 strain of genes located within the
Nob3 locus [34, 35].
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Finally, to elucidate whether the genomic alteration
on chr. 1 is also associated with metabolic alterations
we generated and characterized congenic mice carry-
ing 14.2 Mbp (163.5-177.7 Mbp) of the NZO genome
(Nob3.14"'N), including the Ifi200 gene cluster, on B6
background. On HFD, homozygous NZO allele car-
riers developed a higher body weight and fat mass
(Fig. 4a and b), in particular gonadal white adipose
tissue (gonWAT, Fig. 4c), than the corresponding
controls (Nob3.14%%). Histological analysis of the
gonWAT demonstrated that the adipocytes were lar-
ger in the Nob3.14""~ group than those of Nob3.14**
mice (Fig. 4d). As these data points towards a role of
the cluster in adipose tissue biology we tested the ex-
pression of proteins involved in adipocyte differenti-
ation and lipolysis. Western blot analysis indicated an
increased expression of the adipogenic marker PPARy
(Peroxisome proliferator-activated receptor gamma)
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and a decreased activation of the lipolytic enzyme
HSL (Hormone sensitive lipase) in gonWAT of NZO
allele carriers in comparison to controls (Fig. 4e and
f). As obesity and hypertrophy of adipose tissue are
also known to impair insulin sensitivity and glucose
tolerance, we measured the glucose levels of the
congenic lines. Blood glucose levels were measured
randomly and started to differ at the age of 20 weeks
between the two groups with higher concentrations in
NZO allele carriers (Fig. 5a). Glucose clearance
during oral glucose tolerance tests was not different
between the two genotypes (Fig. 5b). However, the
Nob3.14""N mice required higher levels of insulin
than Nob3.14%* mice to clear blood glucose, pointing
towards an insulin resistance (Fig. 5c¢) which is also
indicated by calculating the HOMA-IR (Fig. 5d). In
conclusion, introducing the genomic region of the
Ifi200 gene cluster of the NZO genome into the B6
genome results in the development of obesity and is
associated with insulin resistance which demonstrates
the functional consequences of the alteration on
chr.1.

In different reports it was already published that rare
GSVs are associated with obesity [36]. A rare (0.7%), 593
kb deletion on chromosome 16p11.2 (at 29.5-30.1 Mbp)
was shown to be significantly (p = 6.4 x 107°) enriched
in obese patients compared to controls, whereas a
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duplication of the same locus has the opposite effect, be-
ing associated with underweight [1, 37, 38]. Another
study by Wang et al. [39] also showed large and rare
CNVs that are associated with a higher risk to de-
velop obesity. They reported several CNVs that affect
known candidate genes for obesity, such as a 3.3-Mbp
deletion disrupting NAPILS and a 2.1-Mbp deletion
disrupting UCPI and IL15. One prominent example
for chromosomal syndromes with obesity is the
Prader-Willi syndrome (PWS) in which a 5-7 Mb de-
letion of the paternally inherited chromosomal
15q11.2-q13 region is responsible for a neurobehav-
ioral disorder manifested by infantile hypotonia and
feeding difficulties in infancy, followed by morbid
obesity secondary to hyperphagia [40].

Conclusions

In summary, by using TGS it was possible to assemble a
complex genomic region on mouse chr. 1 containing dif-
ferent genes of the Ifi200 cluster. This approach further
leads to the identification of a vast chromosomal dele-
tion including the regulatory part of the obesity-
associated gene Ifi202b, as well as one copy of [fi203 and
one of Ifi205 in the B6 strain which finally leads to an al-
tered expression and consequently affecting the suscepti-
bility to develop obesity.

a b AUC
~ 12 = 4000 -
= O~ Nob3.145/8 s 20
€ 111 & nob3 14" e =
o 104 15 3000+
[0 [0
n 7]
8 9 8 2000-
S | S0
5} =)
7 71 3 5 1000
9 6 k=]
m m
S5t—7F—FT——T———— 0+ T T T T 0-
6 8 10 12 14 16 18 20 0 30 60 90 120
Age (weeks) Time (min)
c d
AUC HOMA-IR
7 600+ 1
ok O Nob3.14%8 *k
5004 54
= 2 ® Nob3. 14N *k
2 400- 4
z 4 300 3
S 3
g 2 2004 24
1 100+ 14
Ok, T T T T 0 0-
0 30 60 90 120
Time (min)
Fig. 5 Impaired insulin sensitivity in animals carrying the NZO /fi200 gene cluster. a Blood glucose levels in Nob3.14%% and Nob3.14"" female
mice under HFD conditions. b Female congenic mice (Nob3.74%% (n = 8) and Nob3.74"™(n = 10)) were fasted overnight and received an oral bolus
of 2 g/kg body weight of glucose and blood glucose (b) and insulin levels (c) were measured at the indicated time points. d Calculation of the
HOMA-IR of congenic mice (Nob3.14%%, n = 6; Nob3.14"™ n=9). Data are presented as mean + SEM. **p < 0.01, **p < 0.001 by t-test
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