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Abstract

Background: Genome-wide association studies have revealed associations between single-nucleotide
polymorphisms (SNPs) and phenotypes such as disease symptoms and drug tolerance. To address the small sample
size for rare variants, association studies tend to group gene or pathway level variants and evaluate the effect on the
set of variants. One of such strategies, known as the sequential kernel association test (SKAT), is a widely used
collapsing method. However, the reported p-values from SKAT tend to be biased because the asymptotic property of
the statistic is used to calculate the p-value. Although this bias can be corrected by applying permutation procedures
for the test statistics, the computational cost of obtaining p-values with high resolution is prohibitive.

Results: To address this problem, we devise an adaptive SKAT procedure termed AP-SKAT that efficiently classifies
significant SNP sets and ranks them according to the permuted p-values. Our procedure adaptively stops the
permutation test when the significance level is outside some confidence interval of the estimated p-value for a
binomial distribution. To evaluate the performance, we first compare the power and sample size calculation and the
type I error rates estimate of SKAT, SKAT-O, and the proposed procedure using genotype data in the SKAT R package
and from 1000 Genome Project. Through computational experiments using whole genome sequencing and SNP array
data, we show that our proposed procedure is highly efficient and has comparable accuracy to the standard procedure.

Conclusions: For several types of genetic data, the developed procedure could achieve competitive power and
sample size under small and large sample size conditions with controlling considerable type I error rates, and estimate
p-values of significant SNP sets that are consistent with those estimated by the standard permutation test within a
realistic time. This demonstrates that the procedure is sufficiently powerful for recent whole genome sequencing and
SNP array data with increasing numbers of phenotypes. Additionally, this procedure can be used in other association
tests by employing alternative methods to calculate the statistics.
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Background
High-throughput sequencing (HTS) technologies enable
the detection of rare and common variants at the genome-
wide scale for thousands of individuals [1, 2]. In addition,
with population-specific reference panels comprised of
detected variants from HTS, low-frequency variants can
be imputed accurately from single-nucleotide polymor-
phism (SNP) array genotype data [3]. Thus far, associa-
tions between SNPs and disease phenotypes have been
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studied for genotype data from HTS and SNP arrays, and
the recent focus has moved to rare and low-frequency
variants. Unlike common variants, the power of rare and
low-frequency variants on single-variant association tests
is low because of the lack of allele counts, even with
thousands of individuals.
To address this issue, rare and low-frequency variants

are often grouped at the gene or pathway level, and the
effects of multiple variants are evaluated. This type of
strategy is called collapsing, and the sequential kernel
association test (SKAT) [4, 5] is one of the most effec-
tive collapsing methods [6, 7]. Because the p-values based
on SKAT are derived from an asymptotic distribution of
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its statistics, the p-values for datasets with an insuffi-
cient number of samples may be inaccurate, which causes
inflation or power loss. To obtain accurate p-values,
resampling methods such as the permutation test can
be implemented in SKAT. However, resampling requires
a huge amount of computation time to obtain high-
resolution p-values for the correction of multiple compar-
isons, and hence a more efficient resampling method is
necessary.
Therefore, we propose an adaptive procedure, termed

AP-SKAT, for the highly efficient calculation of SKAT
statistics. This procedure adaptively stops the permuta-
tion test when the significance level is outside some pre-
determined confidence interval for the estimated p-value.
In this evaluation, we propose the following criteria to
stop the permutation test and obtain a p-value: (i) when all
permutation statistics are greater or less than the original
statistic, the calculation is terminated when the proba-
bility of the event is less than the significance level, and
(ii) the calculation is terminated when the confidence
interval of the estimated p-value does not include a sig-
nificance level. To show the effectiveness of the proposed
procedure, we first evaluate the power and sample size
calculations of SKAT [4], SKAT-O [5], and the proposed
procedure using a genotype dataset in the SKAT R pack-
age [8]. Second, we also evaluate the type I error rate of
SKAT-O and the proposed procedure using real whole
genome sequencing (WGS) data from the 1000 Genomes
Project (1000GP) [9]. Finally, computational experiments
additionally using SNP array data downloaded from the
Wellcome Trust Case Control Consortium (WTCCC)
[10] and the International HapMap Project [11] show
that the proposed procedure can calculate highly accu-
rate p-values within a reasonable time. We conclude that
the proposed procedure is applicable to recent sequenc-
ing and genotype imputed data with large amounts of
phenotype data.

Implementation
Sequential kernel association test
Let n and m be the number of individuals and grouped
SNPs, respectively. A SKAT test statistic s is calculated as

s = (y − μ)′GWG′(y − μ), (1)

where y is an n-dimensional vector of observed pheno-
types, μ is an n-dimensional vector of predicted means
under the null hypothesis, i.e., the target phenotype
has no association with the genotypes, using the logis-
tic and the linear models for case/control studies and
quantitative trait analysis, respectively. G is given by
(g1, . . . , gi, . . . , gm)′, where gi is an n-dimensional vector
including the genotypes of n individuals for the ith SNP
and W = diag(w1, . . . ,wj, . . . ,wm) is an m × m diagonal
matrix consisting of weights wj for the jth variant.

In calculating SKAT statistics, we assume

yi = αi + β1G1,i + . . . + βmGm,i + εi, (2)

where yi is the ith element of y,α is a constant that is
unrelated to genotypes, βj is the effect size of the jth
SNP, Gi,j is the ith row and jth column of G, and εi is
a noise term that obeys a Gaussian distribution. A good
property of s is that it corresponds to a mixture of chi-
squared distributions, and we can calculate the p-values
for the obtained statistics when the optimal conditions
are satisfied [4]. However, it has been suggested that the
distribution of s differs from the ideal one when the sam-
ple size n is insufficient and the phenotype data do not
follow a Gaussian distribution. Thus, in case/control or
cohort genome studies with limited samples, it is not valid
to evaluate the test statistics based on a mixture of chi-
squared distributions. In this case, Lee et al. [5] suggested
to use the optimal adjustment technique termed SKAT-
O to combine burden test and the moment adjustment
technique to modify the distribution instead of using the
permutation test, and Wu et al. [12] also proposed an
alternative calculation procedure to efficiently and ana-
lytically calculate the adaptive sum of SKAT-O statistics.
However, even when applying these techniques, the modi-
fied distribution includes residual biases. Additionally, for
the permutation test with more than 20,000 SNP sets,
grouping SNPs into gene level and considering multiple
test is not practical because it requires at least 4.0 ×
105

(
αp = 5.0 × 10−2) or 2.0 × 106

(
αp = 1.0 × 10−2)

tests for each SNP set, where αp is the significance level.
Thus, we focus on obtaining detailed p-values for sets of
rare SNPs associated with phenotypes around the prede-
fined significance level αp through the permutation test,
and efficiently calculate p-values by adaptively stopping
the test for plausible/improbable sets.

Distribution of estimated p-values in permutation test
In the process of a permutation test, let B and r be the
number of permutations completed and the number of
permutation statistics that are greater than the original
statistic s using the observed data, respectively. In this
case, we consider a binary random variable X, which takes
a value of 1 when a permutation statistic is greater than
s and 0 otherwise, according to a previous SNP analysis
[13]. We take the expectation and the variance of X corre-
sponding to each of the permutations considered so far to
be

Exp[X] = p̂ = r/B, (3)
Var[X] = Exp[X2]−Exp[X]2 = p̂(1 − p̂), (4)

where p̂ is the estimated p-value of an SNP set on the Bth
permutation. Thus, the Bienaymé formula for the sum of
variances gives the variance of the mean as
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Var[ p̂]= p̂(1 − p̂)
B

. (5)

According to the central limit theorem, we consider p̂
to correspond to a Gaussian distribution N(0, p̂(1− p̂)/B)

and obtain dα as the distance between the α confidence
interval of the distribution. In this binomial setting, we fix
the number of permutations B and consider the numera-
tor r as a random variable to estimate p̂. Then, we compare
the α confidence interval of p̂ with αp, where αp is a pre-
determined significance level considering multiple com-
parisons, and continue the permutation until either the α

confidence interval does not include αp or B becomes b.
Figure 1 exemplifies this situation. In contrast, Chen et al.
[13] used a negative binomial setting by fixing the total
number of successes r and considering the denominator B
as a random variable to estimate p̂. They chose b and R to
control the standard error of p̂ at some determined values
with αp, and continued the permutation until r became R
or B became b.
However, when r is 0 or B, the variance becomes 0 and

it is not reasonable to use the criteria for terminating
the permutation test. Thus, we adopt a negative binomial
distribution. Let Y be a positive integer random variable
indicating the number of trials and αe = αp × m, where
m is the number of SNP sets. Assuming that the true p-
value is at most αp (when r is 0) or at least αe (when r is B),
we attempt to obtain the probability of B occurring with
r and finish the permutation test at αp. Hence, when r is
0, if the probability NB(Y = B;B, 1 − αp) is less than αp,
which gives an αp confidence level of p̂ = αp, the permuta-
tion test can be stopped and we obtain p̂ = 1/B. Similarly,
when r is B, if the probability NB(Y = B;B,αe) is less than
αp, the permutation test can be stopped and we obtain
p̂ = 1.
If more precise p-values are needed for significant SNP

sets, we can ignore the stop criterion if p̂ < αp and pro-
ceed with b permutation tests to obtain the minimal p̂ =
1/b.

Adaptive SKAT
Our proposed procedure adaptively stops the permuta-
tion test when the significance level αp is outside the
α confidence interval of the estimated p-value using the
binomial distributions described in the previous subsec-
tion. The proposed procedure is described in Algorithm 1.
The following values are taken as input parameters: the
significance level αe (αp = αe/m), maximum number of
permutation tests b, which must be at least 1/αp, and sig-
nificance interval α for the Gaussian distribution. Note
that, in practice, we should also set the number of tests
performed in the same loop to M for computational effi-
ciency. We recommend to set b = 5/αp,α = αp, and
M = 1000 as those used in the Results section.

Algorithm 1 Proposed adaptive procedure.
1: Set α,αp, b, andM;
2: for i = 1 tom do
3: s ← a SKAT test statistic for the ith SNP set using

the observed data;
4: SB ← NULL;
5: B ← 0;
6: while B < b do
7: ST ← a set of M SKAT statistics through the

permutation test;
8: SB ← {SB, ST };
9: B ← the number of statistics in SB;

10: r ← the number of statistics in SB higher than s;
11: p̂ ← b/B;
12: Calculate dα

13: if p̂ == 0 and NB(Y = B;B, 1 − αp) < αp then
14: break;
15: else if p̂ == 1 and NB(Y = B;B,αe) < αp then
16: break;
17: else if p̂ − dα/2 > αp or p̂ + dα/2 < αp then
18: break;
19: end if
20: end while
21: Output p̂ as an estimated p-value for the ith SNP set
22: end for

In practice, when SNPs are grouped at the gene level,
the number of SNP sets exceeds 20,000. Although our pro-
posed procedure can handle a few phenotypes on a single
processor within a reasonable time, multiple phenotypes
and their combinations will entail a huge computational
cost. As in many association testing procedures, we there-
fore recommend using parallel computation to calculate
the p-value for each SNP set on a different core.

Results and discussion
We first examine the comparison of power and sam-
ple size calculation of SKAT, SKAT-O, and the proposed
procedure. In these experiments, according to the SKAT
R package and previous literatures [4, 5], we adopted
the following settings; we used a numerical matrix of
10,000 haplotypes over a 200,000 Base Pair region, where
each row represents a different haplotype and each col-
umn represents a different SNP marker. The matrix was
generated by the calibration coalescent model (COSI)
base on the LD structure of European ancestry [8]. As
with the SKAT R package, to evaluate the power of the
above methods, we simulated datasets under the alter-
native model; thus, we repeatedly and randomly selected
5 kb regions from a broader region, and then randomly
set causal variants from the rare variants with a minor
allele frequency (MAF) of less than 0.05 in each simu-
lation. For generating phenotypes, we considered 20 %
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Fig. 1 A sample figure exemplifying the distribution of the expectation of the estimated p-value and the stop criteria in the proposed procedure.
The α confidence interval dα of the distribution of the estimated p-value p̂ is colored gray. B and r are the number of permutations completed and
the number of permutation statistics that are greater than the original statistic s using the observed data, respectively. The stop criterion is evaluated
using p ± dα/2 and αp , which is the predefined significance level

of the rare variants were causal variants and 80 % of βj
to be positive and the rest to be negative, and set max
effect size as {0.4, 0.8, 1.2, 1.6, 2.0}. The results of 1,000
simulations at αe = {0.01, 10−3, 10−4} and the sample
size {250, 500, 750, 1, 000, 1, 250, 1, 500} are summarized
in Tables 1, 2, 3, 4 and 5. These results show that the
proposed procedure can perform relatively higher power
than SKAT and SKAT-O even when the sample size and
the effect size are small, and also could retain the com-
petitive power when these are high values, which can
achieve type II error of almost 0.2. Even when the pheno-
type is not according to the idea distribution, the proposed

procedure could control the lower type I error than that of
SKAT-O.
Additionally, we evaluated the type I error rate of SKAT-

O and the proposed procedure when {β1, . . . ,βm are 0 and
ε in Eq. (2) is according to the Student’s t -distribution
with 5 degrees of freedom; thus, the distribution of pheno-
types is a heavier tailed distribution than the ideal normal
one. In this setting, we applied Illumina WGS data for
2,504 samples from 26 populations across Africa, East
and South Asia, Europe, and the Americas in the 1000
Genome Project [9] and performed 50 experiments for
each sample size of {500, 1, 000, 1, 500, 2, 000}, which are

Table 1 The power comparison of SKAT, SKAT-O, and AP-SKAT aimed at testing the association between randomly selected 5 kb
regions and continuous traits under the effect size = 0.4

SKAT SKAT-O AP-SKAT

10−2 10−3 10−4 10−2 10−3 10−4 10−2 10−3 10−4

250 1.47E-2 1.67E-3 1.89E-4 1.48E-2 1.69E-3 1.95E-4 1.51E-2 1.80E-3 2.40E-4

500 2.13E-2 2.90E-3 4.03E-4 2.15E-2 2.92E-3 4.03E-4 2.17E-2 3.07E-3 4.91E-4

750 2.92E-2 4.67E-3 7.35E-4 2.94E-2 4.69E-3 7.38E-4 2.97E-2 4.74E-3 8.37E-4

1000 3.84E-2 6.86E-3 1.24E-3 3.86E-2 6.95E-3 1.25E-3 3.91E-2 7.08E-3 1.33E-3

1250 4.92E-2 9.60E-3 1.92E-3 4.93E-2 9.72E-3 1.92E-3 4.95E-2 9.71E-3 2.05E-3

1500 6.05E-2 1.31E-2 2.81E-3 6.07E-2 1.31E-2 2.82E-3 6.14E-2 1.32E-2 3.05E-3
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Table 2 The power comparison of SKAT, SKAT-O, and AP-SKAT aimed at testing the association between randomly selected 5 kb
regions and continuous traits under the effect size = 0.8

SKAT SKAT-O AP-SKAT

10−2 10−3 10−4 10−2 10−3 10−4 10−2 10−3 10−4

250 3.83E-2 6.96E-3 1.23E-3 3.85E-2 6.96E-3 1.25E-3 3.91E-2 7.02E-3 1.36E-3

500 8.60E-2 2.22E-2 5.41E-3 8.72E-2 2.23E-2 5.47E-3 8.86E-2 2.23E-2 5.66E-3

750 1.52E-1 4.83E-2 1.45E-2 1.52E-1 4.84E-2 1.46E-2 1.55E-1 4.88E-2 1.52E-2

1000 2.21E-1 8.19E-2 2.96E-2 2.24E-1 8.50E-2 2.99E-2 2.26E-1 8.53E-2 3.02E-2

1250 2.98E-1 1.30E-1 5.10E-2 2.99E-1 1.31E-1 5.29E-2 3.01E-1 1.32E-1 5.37E-2

1500 3.70E-1 1.91E-1 8.11E-2 3.74E-1 1.93E-1 8.28E-2 3.75E-1 1.90E-1 8.49E-2

Table 3 The power comparison of SKAT, SKAT-O, and AP-SKAT aimed at testing the association between randomly selected 5 kb
regions and continuous traits under the effect size = 1.2

SKAT SKAT-O AP-SKAT

10−2 10−3 10−4 10−2 10−3 10−4 10−2 10−3 10−4

250 1.01E-1 2.72E-2 7.04E-3 1.01E-1 2.75E-2 7.11E-3 1.03E-1 2.73E-2 7.42E-3

500 2.57E-1 1.04E-1 3.90E-2 2.59E-1 1.05E-1 3.94E-2 2.64E-1 1.06E-1 4.13E-2

750 4.16E-1 2.32E-1 1.07E-1 4.19E-1 2.34E-1 1.09E-1 4.21E-1 2.33E-1 1.12E-1

1000 5.06E-1 3.64E-1 2.18E-1 5.07E-1 3.64E-1 2.20E-1 5.11E-1 3.63E-1 2.18E-1

1250 5.79E-1 4.62E-1 3.36E-1 5.81E-1 4.64E-1 3.39E-1 5.83E-1 4.62E-1 3.37E-1

1500 6.68E-1 5.01E-1 4.29E-1 6.66E-1 5.01E-1 4.32E-1 6.72E-1 5.02E-1 4.28E-1

Table 4 The power comparison of SKAT, SKAT-O, and AP-SKAT aimed at testing the association between randomly selected 5 kb
regions and continuous traits under the effect size = 1.6

SKAT SKAT-O AP-SKAT

10−2 10−3 10−4 10−2 10−3 10−4 10−2 10−3 10−4

250 2.19E-1 8.09E-2 2.90E-2 2.21E-1 8.30E-2 2.95E-2 2.24E-1 8.32E-2 2.97E-2

500 4.84E-1 3.05E-1 1.63E-1 4.80E-1 3.04E-1 1.64E-1 4.85E-1 3.01E-1 1.67E-1

750 5.99E-1 4.83E-1 3.69E-1 5.99E-1 4.82E-1 3.71E-1 6.09E-1 4.80E-1 3.66E-1

1000 7.42E-1 5.42E-1 4.88E-1 7.41E-1 5.42E-1 4.89E-1 7.48E-1 5.46E-1 4.87E-1

1250 8.50E-1 6.52E-1 5.14E-1 8.50E-1 6.54E-1 5.13E-1 8.50E-1 6.54E-1 5.16E-1

1500 9.19E-1 7.50E-1 5.93E-1 9.20E-1 7.48E-1 5.90E-1 9.18E-1 7.48E-1 5.94E-1

Table 5 The power comparison of SKAT, SKAT-O, and AP-SKAT aimed at testing the association between randomly selected 5 kb
regions and continuous traits under the effect size = 2.0

SKAT SKAT-O AP-SKAT

10−2 10−3 10−4 10−2 10−3 10−4 10−2 10−3 10−4

250 3.77E-1 2.00E-1 8.70E-2 3.82E-1 2.01E-1 8.84E-2 3.83E-1 1.97E-1 8.88E-2

500 6.14E-1 4.89E-1 3.88E-1 6.14E-1 4.90E-1 3.88E-1 6.24E-1 4.89E-1 3.79E-1

750 8.16E-1 6.12E-1 5.01E-1 8.16E-1 6.07E-1 5.01E-1 8.16E-1 6.14E-1 5.02E-1

1000 9.30E-1 7.68E-1 6.10E-1 9.30E-1 7.66E-1 6.11E-1 9.27E-1 7.69E-1 6.12E-1

1250 9.81E-1 8.96E-1 7.48E-1 9.80E-1 8.94E-1 7.42E-1 9.78E-1 8.78E-1 7.42E-1

1500 9.95E-1 9.61E-1 8.58E-1 9.95E-1 9.60E-1 8.59E-1 9.94E-1 9.48E-1 8.49E-1
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Table 6 Type I errors of SKAT-O and AP-SKAT to evaluate the
inflation of p-values using 1000 Genomes Project data under the
noises according to the Student’s t -distribution with 5 degrees
of freedom

Sample Size 500 1000 1500 2000

SKAT-O 356 178 202 142

AP-SKAT 348 153 189 130

randomly extracted from the data. The results of the num-
ber of false positives in using SKAT-O and the proposed
procedure are concluded in Table 6 and it indicates that
the proposed method can reduce the number of false pos-
itives even when the distribution has heavier tails than the
normal ones.
Finally, to validate the proposed approach, we com-

pared the computation times and estimated the p-values
given by the permutation test (standard procedure) and
the adaptive procedure. For this comparison, we prepared
genotype data on the previous WGS data from 1000
Genome Project, Illumina Infinium 550 SNP BeadChip
for 1,438 samples from the 1958 British Birth Cohort in
the Wellcome Trust Case Control Consortium [10], and
on the Illumina SNP Chip for 1,397 individuals from 11
populations, including 250 of the original 270 phase I and
phase II individuals in the International HapMap Project
[11]. Their quantitative phenotype data were synthetically
generated according to a Gaussian distribution and SNPs
were grouped at the gene level. Note that only those
SNPs annotated as ‘High’ and ‘Moderate’ by the SnpEff
tool [14] were selected as plausible ones for 1000GP,
because WGS data include a lot of less significant SNPs.
All SNPs were grouped at the gene level for the data
from WTCCC and HapMap. In these experiments, we
also consider SNPs with MAF of less than 0.05. The

combination of significance levels α, b, and M were set to{
0.05, 2.5 × 10−6, 2.5 × 10−11} ,

{
100, 1000, . . . , 1.0 × 107

}
,

and min
{
N/10, 104

}
, respectively. All computations were

performed on 800 nodes of an Intel(R) Xeon(R) CPU E5-
2680 v2 @ 2.80 GHz (20 cores each) in our supercomputer
system.
Figure 2 indicates that the computation time for the

standard procedure increases linearly with respect to the
number of permutation tests b. Hence, the setting with
b = 108 tests was infeasible, even using our super-
computer system. However, the computation time of the
adaptive procedure is bounded because the proposed pro-
cedure terminates the evaluation of the SNP sets accord-
ing to a certain criterion. Hence, the computation time of
the adaptive procedure depends on the number of signifi-
cant SNP sets; as only a handful of sets should be selected
as significant SNPs, the computational cost is significantly
lower than that of the standard procedure.When b = 100,
the computational cost of the adaptive procedure is higher
than that of the standard procedure. This is because the
adaptive procedure requires additional computation to
judge the stop criterion for each M loop. However, as b
should be greater than 1/αp considering multiple compar-
isons, the low computational cost when N > 1.0 × 105 is
more significant.
In Fig. 3, the estimated p-values in the adaptive pro-

cedure clearly approach those of the standard procedure
according to the spread of the confidence interval, and
they are almost the same when the confidence interval is
lower than 2.5× 10−6. Even if the confidence interval was
set to around 0.05, the tendency of the p-values could be
observed, enabling us to clarify whether the p-values of
SNP sets exceeded the threshold value. These results indi-
cate that the proposed procedure can be applied at the
whole genome scale to achieve arbitrary confidence levels
within a reasonable time.

Fig. 2 Comparison of computation times between the standard and permutation procedures using 1000 Genomes Project data, WTCCC, and
HapMap. Solid and dotted lines indicate the runtimes of the standard and adaptive procedures, respectively



Hasegawa et al. BMC Genomics  (2016) 17:745 Page 7 of 8

Fig. 3 Comparison plot with several confidential intervals using the 1000 Genomes Project data, WTCCC data, and HapMap data. The comparisons
of estimated p-values for the 1000 Genomes Project data, WTCCC data, and HapMap data by the standard and the adaptive procedures with a
significance interval of 0.05, 2.5 × 10−06 and 2.5 × 10−11. Solid and dotted lines are the base line and the Bonferroni corrected significance level
(p = 0.05), respectively. Circles indicate the estimated p-values of SNP sets by the standard and the adaptive procedures, and the numbers of SNP
sets is 20, 568, 13, 397, 31, 002, respectively. Both the vertical and the horizontal axes in these figures are logarithmic scale
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Conclusions
In this paper, we proposed a novel rare variant associ-
ation procedure that can calculate the p-values for sets
of SNPs within a reasonable time. A comparison exper-
iment showed that the proposed procedure significantly
reduced the computational cost while maintaining the
estimation quality at predefined significance levels, and
can be bounded at a reasonable cost even if we select
the highest significance level. This result demonstrates
that the proposed procedure is capable of calculating p-
values of SNP sets for WGS data that cannot be evaluated
by the standard permutation procedure. In addition, this
procedure can be applied to other common/rare variant
association tests [15, 16]. The R code is available at http://
nagasakilab.csml.org/data/aSKAT.zip, for which input is
either one of PLINK format files or a numeric matrix.

Availability and requirements
Project name: AP-SKAT
Project home page: http://nagasakilab.csml.org/data/
aSKAT.zip
Operating system(s): Platform independent
Programming language: R
Any restrictions to use by non-academics: Please con-
tact authors for commercial use.
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