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Abstract

Background: Current variant discovery methods often start with the mapping of short reads to a reference
genome; yet, their performance deteriorates in genomic regions where the reads are highly divergent from the
reference sequence. This is particularly problematic for the human leukocyte antigen (HLA) region on chromosome
6p21.3. This region is associated with over 100 diseases, but variant calling is hindered by the extreme divergence
across different haplotypes.

Results: We simulated reads from chromosome 6 exonic regions over a wide range of sequence divergence and
coverage depth. We systematically assessed combinations between five mappers and five callers for their performance
on simulated data and exome-seq data from NA12878, a well-studied individual in which multiple public call sets have
been generated. Among those combinations, the number of known SNPs differed by about 5 % in the non-
HLA regions of chromosome 6 but over 20 % in the HLA region. Notably, GSNAP mapping combined with GATK
UnifiedGenotyper calling identified about 20 % more known SNPs than most existing methods without a noticeable
loss of specificity, with 100 % sensitivity in three highly polymorphic HLA genes examined. Much larger differences
were observed among these combinations in INDEL calling from both non-HLA and HLA regions. We obtained similar
results with our internal exome-seq data from a cohort of chronic lymphocytic leukemia patients.

Conclusions: We have established a workflow enabling variant detection, with high sensitivity and specificity, over the
full spectrum of divergence seen in the human genome. Comparing to public call sets from NA12878 has highlighted
the overall superiority of GATK UnifiedGenotyper, followed by GATK HaplotypeCaller and SAMtools, in SNP calling, and
of GATK HaplotypeCaller and Platypus in INDEL calling, particularly in regions of high sequence divergence such as the
HLA region. GSNAP and Novoalign are the ideal mappers in combination with the above callers. We expect that the
proposed workflow should be applicable to variant discovery in other highly divergent regions.

Keywords: Alignment algorithm, Chronic lymphocytic leukemia, Exome sequencing, Human leukocyte antigen, Variant
calling

Abbreviations: Bp, Base pair; BWA, Burrows-Wheeler aligner; Chr6, Chromosome 6; CLL, Chronic lymphocytic leukemia;
GATK, Genome Analysis Toolkit; HLA, Human leukocyte antigen; INDEL, Insertion and deletion; PCR, Polymerase chain
reaction; SNP, Single nucleotide polymorphism; WES, Whole exome sequencing

Background
Genetic variations in protein-coding genes play signifi-
cant roles in many human diseases [1, 2] and are associ-
ated with the response to drug treatment [3]. Whole
exome sequencing (WES) targets >95 % of the exons or
approximately 1 % of the human genome [2, 4]. It has

been widely used to identify causal variants [5], uncover-
ing about 85 % of the causative mutations identified in
Mendelian diseases [2, 6].
Multiple bioinformatics methods have been developed

to identify variants from whole genome or exome se-
quencing data. The most dominant ones are based on the
mapping of reads to a reference genome [7, 8], which
often follow the GATK (Genome Analysis Tool Kit) Best
Practices [9, 10]. The GATK Best Practices workflows
recommend read mapping by Burrows-Wheeler Aligner
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(BWA), post-alignment processing, and then GATK vari-
ant calling. Compared to the hash-based mappers de-
scribed below, the Burrows-Wheeler transform (BWT)-
based mappers like BWA are faster but tend to be less
sensitive [11–13]. They were developed for mapping reads
to less divergent regions [11, 14].
Divergence level varies markedly across the human

genome [15–17], which has a profound impact on the
outcome of variant calling. While the bulk of the gen-
ome has only about 0.1 % divergence [12, 18], some re-
gions are highly polymorphic [16, 19, 20]. The best
example is the human leukocyte antigen (HLA) region
on chromosome 6p21.3; this ~4-Mb region shows up to
10 % or higher local sequence divergence between hap-
lotypes [18, 21, 22]. Most importantly, the HLA region
is associated with over 100 diseases, predominantly
autoimmune diseases [23], and also with drug response
[24]. At such high divergence, the BWA mapping rate
drops to a few percent [12, 13]. Thus, accurate identifi-
cation of sequence variation in this region is clinically
important but currently hindered by the extreme
polymorphism.
A few mappers have been tailored to aligning reads

to more divergent regions, such as GSNAP [14],
NextGenMap [13], Novoalign (http://www.novocraft.com/)
and Stampy [12]. They use 11- to 15-mer hash tables
generated from the reference sequence. Among them,
Novoalign and Stampy were found to be more accur-
ate than BWA over a wide range of divergence [12, 25].
Stampy performed similarly as NextGenMap at 10 % di-
vergence [13] but was superior to Novoalign at higher
(10–15 %) divergence [12]. GSNAP is capable of mapping
reads with multiple mismatches and/or long insertions
and deletions (INDELs) [14]. The choice of an appropriate
mapper has a big impact on variant calling [9, 26]. How-
ever, previous studies often used simulated data and their
primary goal was to evaluate the overall sensitivity
and accuracy of different mappers. Therefore, for
these ‘variation-tolerant’ mappers, it remains less clear
which one(s) may strongly enhance variant detection
in highly divergent regions.
Several popular software packages are available for

both single- and multi-sample variant calling, such as
SAMtools [27], FreeBayes [28], GATK UnifiedGenotyper
and HaplotypeCaller [9, 29]. Packages like GATK
HaplotypeCaller, Scalpel [30] and Platypus [31] com-
bine mapping and local assembly, which are particu-
larly attractive for INDEL detection.
Numerous studies have compared the performance

of variant callers on WES, without focusing on the
highly divergent regions [32–34]. These studies used
either BWA or ELAND2 as the mapper that has low
sensitivity in mapping divergent reads. Moreover, they
estimated variant detection accuracy by using single

nucleotide polymorphism (SNP) sites genotyped on
SNP arrays that primarily target common variants. A
more recent study compared GATK HaplotypeCaller,
GATK UnifiedGenotyper and SAMtools with Novoalign
as the mapper [35]; however, the estimation of sensitivity
was based on the high-confidence call set [36] that is
known to have poor coverage in the HLA region. Two
analyses revealed low concordance of different analytical
pipelines on WES data, being only 27 % [37] or 37 % [30]
for INDELs among three methods and less than 60 % for
SNPs among five methods [37]. These two studies high-
light the difficulties in obtaining high-quality variant calls
from WES [31]. For the whole-genome sequencing,
variant calling methods generally agree well with one an-
other in about 90 % of the genome but show marked dis-
agreement in the other ~10 % ‘difficult regions’ of low-
complexity and segmental duplications [38]. Obviously, a
better understanding of the factors leading to the low con-
cordance among different approaches is critical for further
optimization of variant discovery. Furthermore, overall
genome-wide performance of a variant detection method
may not reflect the local scenario in highly divergent
regions.
We seek to develop a workflow for more accurate vari-

ant discovery from WES data, especially in highly diver-
gent regions. By simulating reads from chromosome 6
exonic regions, we systematically evaluated five popular
callers together with five mappers over a wide range of
divergence level and coverage depth. Taking advantage
of the existing call sets generated by whole genome and
exome sequencing in NA12878, we verified the findings
on two WES data in this well-studied CEU (Utah resi-
dents with Northern and Western European ancestry)
sample. Our analysis revealed key factors impacting vari-
ant discovery accuracy and sensitivity. We identified the
best mapper-caller combinations for variant detection in
both HLA and non-HLA regions, and further demon-
strated their excellence on WES data from a cohort of
chronic lymphocytic leukemia (CLL) patients. Our strat-
egies are particularly effective for WES and should be
applicable to whole genome sequencing data as well.

Methods
Simulation of exome-seq reads
The variation level in the human genome is typically
~0.1 % [12] but can reach over 10 % in some extremely
divergent loci like those located in the HLA region
[18, 21]. Therefore, in the simulation we defined
seven divergence levels between 0.05 and 15 % and a
control with a zero percent divergence (Fig. 1). Here,
divergence level represents the ratio of the number of
permuted SNPs and INDELs over the total bases of
the regions included in the simulation. We compiled
10,768 non-overlapping exonic regions of chromosome 6,
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from which 100-base paired-end reads were simulated
to an average coverage of 100x using Dwgsim (Additional
file 1: method 1). To investigate the impact of coverage
depth on variant calling, we randomly sampled six subsets
with coverage depth of 80x, 60x, 40x, 20x, 10x and 5x,
respectively.

Mapping simulated reads to the reference sequence
Five mappers were selected to align simulated reads
against the hg19 reference sequence (Additional file 1:
method 2), using the parameter settings in Additional
file 2: Table S1. Specifically, we set the divergence level or
substitution rate at 10 % for Stampy (−−substitutionrate =
0.1, default 0.001) and GSNAP (−−max-mismatches 0.1,
default 0.1 for 100 bp reads and kmer = 13) and at 20 %
for NextGenMap (−−min-identity 0.8, default 0.65). We
used the default (no more than 2 mismatches in the
first 32 bp) for mismatches in the ‘bwa aln’ command.
Novoalign does not have the parameter for specifying
the divergence level. The performance was measured
on the basis of mapping rate and accuracy. The
former was defined as the ratio of mapped reads over
the total number of simulated reads, and the latter as
the ratio of reads mapping back to their original loca-
tions over the total. To simplify both calculations, the
two reads from each pair were treated as single-end
reads without considering the pairing information.
Four of the mappers (except Stampy) use ‘soft-clipping’,
which skips unaligned terminal portion(s) from reads and
only reports partial alignments between reads and the ref-
erence sequence. In estimating mapping accuracy we
counted the number of soft-clipped bases shown in the
CIGAR string and added it back to the reported mapping
location. This adjusted mapping location was then com-
pared to the original location from where a read was

simulated. Mapping accuracy was estimated as the ratio of
reads mapping back to the original start position over the
total simulated reads.

Variant calling from simulated data
To reduce erroneous calls, alignments were subjected to
duplicate marking and local realignment by following
the GATK Best Practices [9, 10], but without base qual-
ity score recalibration (Additional file 1: method 3). Five
callers were selected, including GATK UnifiedGenotyper
and HaplotypeCaller [9, 29], FreeBayes [28], SAMtools
mpileup [27], and Platypus [31]. The command and
parameter settings can be found in Additional file 2:
Table S1. Parameters were selected to ensure comparabil-
ity among different callers. For GATK UnifiedGenotyper
and HaplotypeCaller, we set the minimum phred-scaled
quality score of 20 (default 30) in variant calling and of 10
(default 30) in variant reporting. A minimum base quality
score of 17 was used for four of the callers, except for
GATK HaplotypeCaller that did not provide this param-
eter in GATK v 2.7–2 used in this study. Only variants
with a quality score of at least 20 were used in the com-
parison. BEDTools was used to identify overlap between
permuted and called INDELs [39]. The performance
of individual methods was evaluated on the basis of
sensitivity, precision rate, and overall genotype con-
cordance (Additional file 1: method 3).

Variant calling from NA12878 exome-seq data
To confirm the generality of the findings made from
simulated reads, we tested the same mappers and callers
on WES data from DNA sample NA12878. NA12878 is
the first genome for which the reference genotype calls
(‘high confident call set’) were generated by the Genome
in a Bottle Consortium from 11 whole genome and three

Fig. 1 Mapping status of simulated reads. Eight datasets were simulated to 100x per-base coverage at seven divergence levels (0.05–15 %) or
without introducing sequence variation (control). After mapping, the total reads were first broken into those mapping to chromosome 6, those
mapping to other chromosomes (‘Not on Chr6’) and unmapped reads (‘Unmapped’). The reads mapping to chromosome 6 were then grouped
into five clusters based on the distance (0, 1–2, 3–10, 11–20 and >20 bp) from their original locations to the mapping locations reported by
a mapper
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exome sequencing datasets [36]. The analysis integrates
seven mappers and three callers. This call set covers
‘ordinary’ variants which are more readily to be identi-
fied, while the ‘difficult’ ones are largely excluded, mostly
in regions of low-complexity, segmental duplications
and structural variations [36]. In addition, three other
call sets were generated by GATK HaplotypeCaller
and two de novo assembly-based callers, Cortex and
DISCOVAR, from 250-base paired sequencing of a
PCR-free genomic library [38]. They focused more on
difficult variants in regions of low-complexity and
segmental duplications. The union of these four call
sets (referred to as ‘public call set’) was treated as the
‘true’ variants. Since this public call set is compiled
from variants identified through distinct analytical al-
gorithms, multiple library preparation protocols and
sequencing platforms, systematic bias toward a par-
ticular method should have been minimized in the as-
sessment (Additional file 1: method 4).
Illumina, Inc. generated 12 replicates of 150 base-

pair (bp) paired-end exome data in NA12878 (https://
basespace.illumina.com/home/index). We downloaded
two replicates, each with ~100x coverage on average. Con-
sidering that the simulated reads have a length of 100
bases, pairs with one or both reads shorter than 100 bases
were filtered out, which excluded 5.1 and 5.6 % of the
reads, respectively, from the two replicates. From the re-
mainder the first 100 bases were extracted for mapping
(Additional file 2: Table S1). Post-alignment processing
was performed as described in the simulated reads, except
that the Mills and 1000G gold standard INDELs were
used in local realignment. Variants were identified using
the five callers in single-sample calling mode, quality-
filtered (at least Q20) and those matching dbSNP v138
were classified as known variants. Given that SNP clusters
are prevalent in the HLA region, we did not filter out SNP
clusters in the comparison. We compared the called vari-
ants to the public call set (see above). The sensitivity, pre-
cision rate and overall genotype concordance of known
variants were estimated as described in the simulated
data.

Variant calling from chronic lymphocytic leukemia (CLL)
exome data
Finally, we selected four of the mappers (exclude
NextGenMap that had low sensitivity in the HLA region
of NA12878, see the Results section) and three of the
callers and applied them to WES data from 22 CLL pa-
tients. The selected three callers had relatively high sensi-
tivity in SNP calling (GATK UnifiedGenotyper), INDEL
calling (Platypus), or both (GATK HaplotypeCaller) in the
HLA region of NA12878 (see the Results section). Buccal
cell DNA was collected with written consent from the
patients and approval from the institutional review board

at Mayo Clinic. Exome capture was carried out using
Agilent library capture kit V2 or V4. DNA was sequenced
from both ends to 100 bases on a HiSeq2000 machine
through the Mayo Clinic Medical Genome Facility.
Mapping, post-alignment processing, variant calling

and the classification of variants into known versus
novel followed the procedure used for NA12878 WES
data. To assess the performance of individual mapper-
caller combinations in complex genomic regions, we
annotated variants regarding their sequence contexts.
Specifically, variants were labeled with ‘LCR’ if they were
located in low complexity regions (http://figshare.com/
articles/Low_complexity_regions_in_hs37d5/969685) [8]
and with ‘SD’ if located in regions of segmental duplica-
tions (a minimum of 95 % sequence identity over at least
1 kb, http://humanparalogy.gs.washington.edu/build37/
build37.htm). In addition, if three or more SNPs clus-
tered within a window of 20 bp, they were flagged as
‘SnpCluster’.

Results
Mapping of simulated reads
We simulated 100-bp paired reads at eight divergence
levels (0–15 %) and seven coverage depths (5–100x)
from exonic regions of chromosome 6. Five mappers
were selected to align the simulated reads to the refer-
ence sequence hg19 (Additional file 2: Table S1). The
mapping performance was assessed on the 100x cover-
age datasets in terms of the proportion of accurately
mapped reads and that of unmapped reads (Fig. 1;
Additional file 1: Figure S1).
At divergence levels of 1 % or lower, the five mappers

showed highly comparable mapping accuracy (Fig. 1). At
5–15 % divergence, BWA had over 20 % unmapped rate;
of the other four, Stampy and NextGenMap had relative
higher mapping accuracy (Fig. 1). On the other hand,
Novoalign implements more aggressive soft-clipping
than the others, which became most evident at 15 % di-
vergence (Additional file 1: Figure S1).

Impact of coverage depth on variant calling
Coverage is another key factor in variant calling. We
sought to know how coverage might impact different
callers at low versus high divergence. A total of 160
cases per coverage depth were evaluated, representing
combinations among seven divergence levels, five map-
pers and five callers, with BWA included at 5–15 % di-
vergence. Not surprisingly, in 93.8 % (150/160) of the
cases, the full (100x) coverage datasets showed the high-
est sensitivity in both SNP and INDEL calling.
Profiling sensitivity as a function of coverage should

reveal the optimal coverage depth for individual cal-
lers; beyond which there would be much less gains in
sensitivity. At 1 % or lower divergence, increasing
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coverage from 5x to 10x led to the biggest increase in
sensitivity in both SNP (Additional file 1: Figure S2) and
INDEL calling (Additional file 1: Figure S3). In addition,
Platypus in SNP calling and GATK UnifiedGenotyper
in INDEL calling required a higher coverage depth
compared to the others. Overall, at 40x coverage, all
callers (except GATK UnifiedGenotyper in INDEL
calling) reached 98.4–99.2 % of the SNP calling sensi-
tivity at 100x coverage and 97.4–99.1 % of the INDEL
calling sensitivity at 100x coverage, respectively. A
similar trend was observed at 5 and 10 % divergence
(Figs. 2a-b), where the sensitivity at 40x reached 97.3–
100.0 % of that at 100x in SNP calling and 96.5–98.7 %
(only 91.1–96.1 % for GATK UnifiedGenotyper) of that
in INDEL calling. Therefore, 40x coverage seems suffi-
cient for most of the callers across the full range of
divergence.

Performance of the five variant callers
We tried to identify the callers that would perform well
at low and high coverage depths, especially at high diver-
gence. We used 10x to represent low and 40x and 100x
to represent high coverage depth, respectively. Since the
change of sensitivity from 40x to 100x was very similar
among different combinations (Fig. 2; Additional file 1:
Figures S2 and S3), the 60x and 80x datasets were not
analyzed here. We also excluded the datasets with 15 %
divergence since regions with such high divergence
should be rare in the genome.
We analyzed each caller by considering all the mappers

together, separately at low (0.05–1 %) and high (5–10 %)
divergence. In SNP calling, GATK UnifiedGenotyper had
the highest sensitivity across all the divergence levels,
followed by SAMtools and GATK HaplotypeCaller
(Table 1). FreeBayes is known to be less sensitive to highly

Fig. 2 Plotting SNP and INDEL calling sensitivity as a function of coverage depth. X-axis indicates coverage depth in simulation and Y-axis
denotes sensitivity. a-b SNP calling sensitivity at 5 and 10 % divergence. c-d INDEL calling sensitivity at 5 and 10 % divergence. The 20 mapper-caller
combinations are color-coded, using color gradient to differentiate the four mappers combined with the same caller. GATK HC GATK HaplotypeCaller;
GATK UG GATK UnifiedGenotyper
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divergent regions [28]. Indeed, FreeBayes was comparable
to the latter two callers at low but was less sensitive (8–
28 % lower) at high divergence. Finally, Platypus had the
lowest sensitivity in all the datasets. The three highly sen-
sitive callers had similar precision rates (97.8–100.0 %),
which were comparable to that of FreeBayes and higher
than that of Platypus (Additional file 2: Table S2).
In INDEL calling, overall Platypus and GATK

HaplotypeCaller were more sensitive across all the di-
vergence levels. FreeBayes and SAMtools were less
sensitive than the above two callers at high divergence
(Table 1); GATK UnifiedGenotyper, which requires a
higher coverage (Figs. 2c and d), was over 20 % less sensi-
tive than the other callers at 10x coverage (Table 1). In
addition, the five callers had roughly similar precision
rates (98–100 %) at low divergence, though at 5–10 % di-
vergence Platypus and GATK HaplotypeCaller had re-
duced precision rates in some cases (Additional file 2:
Table S2). Below we analyzed these ideal callers individu-
ally to infer the best mapper(s).

Performance of different mapper-caller combinations
The performance of a caller often varies over alignments
generated by different mappers. Thus, we attempted to
identify the best mapper(s) for each of the ideal callers
identified above, i.e., GATK UnifiedGenotyper, GATK
HaplotypeCaller and SAMtools in SNP calling and
GATK HaplotypeCaller and Platypus in INDEL calling.
At 0.05–1 % divergence, BWA worked the best in

most of the SNP and INDEL calling. The other four
mappers also performed well in some cases, particularly
at high coverage (Additional file 2: Tables S3 and S4).
For example, in SNP calling at 40x or higher coverage,
GSNAP and Novoalign performed similarly as BWA for
GATK HaplotypeCaller; Stampy had roughly the same
sensitivity as BWA for GATK UnifiedGenotyper and
SAMtools. In addition, the five mappers had similar

precision rates, except that Stampy alignment was about
0.5–2.0 % lower in SNP calling.
For SNP calling at 5–10 % divergence, overall the three

callers performed best with GSNAP and with Novoalign
and Stampy as well in some cases (Additional file 2:
Table S3). The precision rate varied slightly, with
GSNAP being 0.4–0.9 % lower than that of Novoalign
(data not shown). For INDEL calling at 5–10 % diver-
gence, GATK HaplotypeCaller also achieved similar sen-
sitivities with three of the mappers but had lower
sensitivity with NextGenMap (Additional file 2: Table S4).
In addition, GATK HaplotypeCaller had roughly the
same precision rate over the four mappers; however,
its precision rate at 10 % divergence was ~5 % lower
than that at 5 % divergence. In contrast, Platypus had
the highest sensitivity with NextGenMap (Additional
file 2: Table S4). For Platypus, GSNAP alignment had
the highest precision rate; however, Stampy alignment
was over 6 % lower than the other mappers at 10 %
divergence. We ranked the performance of individual
combinations based on SNP and INDEL calling sensi-
tivity (Additional file 2: Tables S3 and S4).
Simulated and real exome-seq data are different in

several key aspects. The former has a relative uniform
distribution of coverage and divergence. However, in the
real exome-seq data both features vary widely over dif-
ferent regions, and the types and distribution of variants
are much more complicated. Considering the limitations
in simulation, below we assessed the same combinations
using NA12878 exome-seq data.

Evaluating SNP calling in NA12878 exome data
The mapping results suggested that replicates 1 and 2
had approximately 62- and 70-fold coverage of the
capture regions, respectively, with 85–88 % of the
bases having at least 20x coverage. In the assessment,
both known (in dbSNP v138) and novel variants were

Table 1 Percent of SNP and INDEL calling sensitivity in simulated data

Type Div Cov Caller

(%) GATK UG Platypus SAMtools GATK HC FreeBayes

SNP 0.05–1.00 10 87.3–89.8 (A) 77.6–83.0 (C) 85.9–88.4 (B) 85.4–87.3 (B) 84.1–88.1 (B)

SNP 0.05–1.00 40–100 96.0–98.5 (A) 87.6–96.0 (D) 95.3–98.2 (B) 95.3–97.4 (C) 93.3–98.6 (C)

SNP 5.00–10.00 10 82.2–88.0 (A) 43.7–59.4 (E) 80.7–85.5 (B) 73.6–84.0 (C) 61.3–74.3 (D)

SNP 5.00–10.00 40–100 91.3–97.4 (A) 42.0–64.1 (E) 90.8–95.1 (B) 85.7–95.3 (C) 65.6–81.6 (D)

INDEL 0.05–1.00 10 42.0–53.5 (D) 69.1–74.9 (A) 63.2–73.1 (C) 69.7–74.5 (A) 67.5–75.3 (B)

INDEL 0.05–1.00 40–100 74.2–82.9 (C) 77.8–85.5 (A) 72.6–82.9 (C) 77.9–83.3 (B) 76.0–84.0 (B)

INDEL 5.00–10.00 10 37.4–47.4 (D) 64.1–70.9 (A) 13.3–47.7 (E) 58.4–69.0 (B) 55.5–65.5 (C)

INDEL 5.00–10.00 40–100 70.5–79.7 (B) 72.8–81.7 (A) 23.6–64.1 (D) 70.8–78.6 (B) 62.4–73.7 (C)

Individual datasets are binned into four groups based on coverage (10x or 40–100x) and divergence (0.05–1.00 % or 5–10 %). The values are the range of
sensitivity, calculated per caller from the associated mappers and divergence levels. The five callers within each group are ranked (given in parentheses), with “A”
indicating the caller with the highest overall sensitivity. GATK UG GATK UnifiedGenotyper, GATK HC GATK HaplotypeCaller, Div divergence, Cov coverage
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compared to the public call set, where methods that
showed higher levels of overlap with known variants
in the public call set can be reasonably assumed to
have higher sensitivities [9]. The assessment was done
mainly on replicate 1, and that on replicate 2 or both
replicates was explicitly pointed out. We aimed to
sort out the methods that were effective in both
highly divergent and typical genomic regions. Toward
this, chromosome 6 was split into two entities: the 4-Mb
HLA region (29,500,000–33,500,000 bp) with the most ex-
treme divergence and the non-HLA regions representing
typical genomic regions.
In the non-HLA regions, 91.3–96.1 % of the SNPs

called from Stampy alignments and 96.0–99.4 % from
other alignments matched known SNPs. The vast major-
ity of the known SNPs overlapped the public call set
(Additional file 1: Figure S4A). Apparently, these
methods only varied slightly in the number of known
calls (Table 2; Additional file 1: Figure S4A), generally in
agreement with the assessment made on the simulation
data (1 % or lower divergence and 40–100x coverage,
Table 1). On the other hand, the public call set had only
13–15 novel SNPs. However, SNP calling from Stampy
alignment had 57–131 novel SNPs, suggesting a reduc-
tion of specificity for Stampy. Among the callers,
Platypus was enriched in novel SNPs by about 2-fold.
Analogous to these observations, we indeed found that
Stampy mapping and Platypus calling tend to generate
more false positives in simulation data. First, of the five
mappers, only Stampy alignment gave rise to false posi-
tive calls in the control datasets that have no mis-
matches with the reference (data not shown). Second,
overall Platypus had a slightly lower precision rate in
SNP calling, particularly when combined with Stampy
(Additional file 2: Table S2).
Compared to the non-HLA regions, there was much

larger between-method variability in the HLA region
(Figs. 3a and b; Additional file 1: Figure S4B). Sixteen
methods had relatively lower SNP calling sensitivity
(Table 2), involving BWA or NextGenMap as the map-
per or FreeBayes or Platypus as the caller. Of the other
nine methods, GSNAP + GATK UnifiedGenotyper was
about 2–5 % higher in sensitivity than the others
(Table 2). In fact, GSNAP +GATK UnifiedGenotyper
covered up to 94.8–99.4 % of the known SNPs identified
by each of the other methods.
In HLA-DRB1, the most polymorphic gene out of

the five (HLA-A, −B, −C, −DQB1, and -DRB1) in
NA12878, the SNP calling sensitivity was strikingly
variable, ranging from 38.2 % to 100.0 % (GSNAP +GATK
UnifiedGenotyper) (Table 2). For example, GSNAP and
BWA together with GATK UnifiedGenotyper identified
102 known SNPs in HLA-DRB1; nevertheless, 32 of them
were unique to GSNAP but only 2 unique to BWA

(Fig. 3a). Notably, the performance of the five callers on
HLA-DRB1 is highly comparable with that on the simu-
lated data (5–10 % divergence and 40–100x coverage,
Table 1). A similar pattern was also observed in another
highly polymorphic gene, HLA-DQB1 (Fig. 3b). In both
genes, exon 2 is excessively divergent, containing >40 % of
the known SNPs identified in the capture regions (Figs. 3a
and b). However, BWA missed 19 (out of 34) and 12 (out
of 41) known SNPs in this exon from HLA-DQB1 and
HLA-DRB1, respectively, arguing for the deployment of
more sensitive methods.

Method-specific SNP calls in NA12878
We next examined the known SNPs that were identified
by GSNAP +GATK UnifiedGenotyper but missed in the
public call set (Table 3), and those that were only
present in the public call set (Table 4). GSNAP +GATK

Table 2 Percent of SNP and INDEL calling sensitivity in NA12878

Mapper Caller SNP INDEL

Non-HLA HLA HLA-DRB1 Non-HLA HLA

BWA FreeBayes 95.8 76.0 49.3 72.9 50.0

BWA GATK HC 94.9 76.9 58.0 83.3 61.3

BWA GATK UG 96.0 80.5 78.3 74.4 46.7

BWA Platypus 94.0 71.9 50.7 86.1 60.0

BWA SAMtools 95.7 75.3 58.2 51.7 48.4

GSNAP FreeBayes 95.6 80.3 59.4 75.2 46.7

GSNAP GATK HC 96.1 90.0 72.5 85.7 77.4

GSNAP GATK UG 97.0 91.7 100.0 76.3 51.6

GSNAP Platypus 95.2 77.8 42.6 87.7 70.0

GSNAP SAMtools 96.3 88.3 87.9 55.6 51.6

NextGenMap FreeBayes 95.5 79.2 48.5 68.6 46.7

NextGenMap GATK HC 94.1 79.0 62.3 81.5 67.7

NextGenMap GATK UG 94.5 83.2 76.5 66.9 41.9

NextGenMap Platypus 92.8 72.8 38.2 76.5 50.0

NextGenMap SAMtools 94.8 78.6 60.6 47.1 32.3

Novoalign FreeBayes 94.9 80.1 59.4 76.1 50.0

Novoalign GATK HC 95.4 89.3 75.4 84.0 67.7

Novoalign GATK UG 95.6 89.7 85.5 78.2 54.8

Novoalign Platypus 93.8 79.3 53.6 88.6 73.3

Novoalign SAMtools 94.7 87.4 83.8 60.2 54.8

Stampy FreeBayes 96.0 82.7 65.2 81.4 53.3

Stampy GATK HC 94.9 87.1 72.5 86.4 83.9

Stampy GATK UG 95.4 87.4 82.6 63.9 51.6

Stampy Platypus 93.5 78.8 53.7 91.2 73.3

Stampy SAMtools 95.1 86.6 79.4 68.5 51.7

HLA 29,500,000–33,500,000 bp on Chr6; non-HLA other capture regions on
Chr6; GATK HC GATK HaplotypeCaller; GATK UG GATK UnifiedGenotyper
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UnifiedGenotyper identified 128 unique SNPs from the
two replicates (Table 3), with 94 shared between both
replicates (29 in HLA-DRB1). By blast search of repre-
sentative reads spanning the 29 SNPs in HLA-DRB1
against the National Center for Biotechnology Information

nucleotide collection (nt) database, we found that 16 of
them showed 100 % and another 11 showed 99 % identity
with existing HLA-DRB1 sequences.
The SNPs unique to GSNAP +GATK UnifiedGenotyper

were enriched in SNP cluster. About three-fourths

Fig. 3 Known SNPs in HLA-DRB1 and HLA-DQB1 from NA12878. The HLA-DRB1 (a) and HLA-DQB1 (b) structures are shown at the top, with filled
boxes representing the exons (E1 to E6 in HLA-DRB1 and E1 to E5 in HLA-DQB1) and arrow indicating transcription direction. The exome-seq
reads from NA12878 were mapped by BWA and GSNAP, respectively, and SNPs were called by GATK UnifiedGenotyper (GATK UG). Known SNPs
matching dbSNP v138 are showed as ‘circles’ and clustered into three groups. Number in parentheses indicates the number of known SNPs in
each group. The two coverage plots depict BWA and GSNAP mapping coverage at base-pair resolution

Table 3 GSNAP + GATK UnifiedGenotyper specific SNP calls

Type Rep Mapper No. SNP

GSNAP BWA NextGenMap Novoalign Stampy

Known 1 only 13 3 7 3 4 13 (9,1)

Known 2 only 21 2 8 5 4 21 (10,0)

Known 1 & 2 94 32 70 60 51 94 (75,0)

Novel 1 only 10 1 1 1 3 10 (5,3)

Novel 2 only 11 5 3 4 4 11 (2,0)

Novel 1 & 2 18 5 10 8 11 18 (12,1)

Shown is the number of SNPs in the HLA region of NA12878 that were called by GSNAP + GATK UnifiedGenotyper but missed in the public call set. The GSNAP +
GATK UnifiedGenotyper specific SNPs included those only identified from replicate 1 (“1 only”), from replicate 2 (“2 only”), and from both (“1 & 2”). The number of
SNPs identified by GATK UnifiedGenotyper together with the other four mappers was also shown here. The last column is the total number of SNPs, and those in
SNP cluster and segmental duplications were shown in parentheses. Known SNP matching dbSNP v138; novel SNP not matching dbSNP v138, Rep replicate; HLA
Chr6:29,500,000–33,500,000 bp
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(94/128) were in SNP cluster, compared to only 2 % of the
total SNPs in the non-HLA regions and 38 % in the HLA
region. Misalignments around INDELs (within 10-bp) can
lead to high false positives [9, 26]. However, 85.2 % (109/
128) of the unique SNPs was at least 50 bp away from
known INDELs, ruling out misalignments as being a
major source of these unique calls. Also, 64.1 % (82/128)
was identified by at least another two mappers with GATK
UnifiedGenotyper. Finally, we manually checked GSNAP
alignments in regions surrounding the 94 SNPs shared by
both replicates. Two of them were low-confident calls in
both replicates (two out of four to five supporting reads
were soft-clipped) and another two were each supported
by only two reads (out of two in total) in replicate 1; all
the others were fully supported by the alignments. We
reason that the vast majority of the known SNPs called by
GSNAP +GATK UnifiedGenotyper but missed in the
public call set represent true variants.
On the other hand, in GATK UnifiedGenotyper call-

ing, GSNAP missed a total of 89 known SNPs present in
the public call set (Table 4), including 66 missed by all
the five and 13 by four of the mappers (except Stampy
that had reduced specificity in simulated data). Over half
of the missed SNPs were in SNP cluster. Of the five
HLA genes, only HLA-DQB1 showed an obvious loss of
SNP calls (12 SNPs, see below for manual inspection).
We traced the 89 public call set specific SNPs back to
the methods identifying them. While all of them were
identified from the 250-bp genomic sequencing data
[38], only 12 were in the high-confident call set [36].
We manually checked GSNAP alignments for reads

spanning the 57 SNPs that GATK UnifiedGenotyper
failed to call in both replicates. Two of them appeared to
be false negatives, with one overlapping a 3-bp INDEL
in HLA-DQB1. Twenty-eight miscalls were due to ex-
tremely low coverage (0–2 reads) or insufficient support-
ing reads (0–2 out of 9–29 mapped reads). Another 11
SNPs were at sites with high coverage (87–226x) in both
replicates, but only 2–10 % of the reads supported the
alternative calls. Of the remaining 16 SNPs (57–2–
28–11 = 16), five had 31–75x and 11 had 142–178x

coverage; nevertheless, only 0–4 reads supported the
SNPs, raising the possibility that they are platform-specific
calls or simply false positives in the public call set. Twelve
of the 57 missed SNPs were in HLA-DQB1; 11 of them
had two or fewer supporting reads. We argue that a sig-
nificant proportion of the known SNPs unique to the pub-
lic call set is likely identifiable only through whole
genomic sequencing, longer reads and/or by de novo
assembly-based calling methods. Collectively, these results
strongly support the findings from the simulated data (5–
10 % divergence, Table 1; Additional file 2: Table S3).
With GATK UnifiedGenotyper, GSNAP identified 39

novel SNPs that were not in the public call set (Table 3)
but missed 13 in the public call set (Table 4). Fifteen of
the 39 SNPs were identified by at least three mappers,
supporting the reliability of these calls. However, none
of the 13 SNPs were detected by any of the mappers;
they were all absent from the high-confident call set
[36]. Thus, these public specific novel SNPs more likely
represent platform-specific calls.

Evaluating INDEL calling in NA12878 exome data
As expected, it is more difficult to detect INDELs from
the HLA regions than from the non-HLA region
(Table 2). GATK HaplotypeCaller and Platypus [31] im-
plement local de novo assembly, a feature that should
contribute to INDEL detection. Indeed, the two callers
had higher sensitivity in both HLA and non-HLA re-
gions (Table 2; Additional file 1: Figures S4C and S4D;
Additional file 2: Table S5). In the non-HLA regions,
FreeBayes and GATK UnifiedGenotyper had similar sen-
sitivities, with SAMtools being least sensitive (Table 2);
in the HLA region, these three callers had comparable
sensitivity. The results largely agree with the findings
from simulated data summarized in Table 1.
As for the novel INDELs, we focused on those that were

identified by four of the mappers (exclude NextGenMap
that had the lowest sensitivity) in combination with
Platypus and GATK HaplotypeCaller. Overall, the number
of public call set- (26–31) and method-specific INDELs
(22–44) was not markedly different in the non-HLA re-
gions. In the HLA region, however, there were two to ten
times more novel INDELs unique to the public call set
than unique to each of the methods (Additional file 2:
Table S6). GATK HaplotypeCaller identified much more
novel INDELs than Platypus in the HLA region. About
80 % of the GATK HaplotypeCaller novel calls were sup-
ported by at least two mappers and also overlapped the
public call set, supporting their authenticity.

Variant calling at different mapping parameter settings in
NA12878
Divergence level between reads and the reference gen-
ome is a critical factor in variant discovery. Of the five

Table 4 Public call set specific SNPs

Type Rep Public call set No. SNP

Cortex DISCOVAR GATK HC Conf

Known 1 only 6 13 17 2 21 (11,0)

Known 2 only 3 5 11 4 11 (3,2)

Known 1 & 2 4 18 48 6 57 (33,10)

Novel 1 & 2 1 10 4 0 13 (2,5)

Shown is the number of SNPs in the HLA region of NA12878 that were present in
the public call set but missed by GSNAP + GATK UnifiedGenotyper. Cortex,
DISCOVAR and GATK HaplotypeCaller (GATK HC) calls were from 250-bp paired
sequencing of a PCR-free genomic library [38]. The high-confident call set (“Conf”)
was from [36]. See Table 3 footnote for additional information
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mappers, GSNAP, NextGenMap and Stampy provide the
parameter to specify the level of divergence (or identity).
To understand how this parameter impacts variant call-
ing efficiency, we tested three different divergence levels,
1, 5 and 10 % (GSNAP v2013–10–25 allows no more
than 10 % divergence) for these three mappers. In the
non-HLA regions, SNP calling from NextGenMap align-
ments at the divergence settings of 5 % and 10 % was
11–14 % higher in sensitivity compared to that from
NextGenMap using 1 % divergence (Fig. 4a); in the HLA
region, the differences in sensitivity were increased by
about 3-fold (Fig. 4b). For GSNAP, the SNP calling sensi-
tivity was highly comparable across the three settings in
the non-HLA regions; while in the HLA region, GSNAP
alignments at the setting of 10 % divergence showed the
highest sensitivity (Figs. 4a and b). Finally, for Stampy,
nearly no difference was observed in both HLA and
non-HLA regions (Figs. 4a and b). Therefore, for
GSNAP, which overall performs the best in terms of
SNP calling sensitivity and specificity, the 10 % diver-
gence we used throughout the analysis represents the

ideal setting. The same trend was observed in INDEL
detection from non-HLA and HLA regions (Figs. 4c
and d), where the highest sensitivity was achieved
with the parameter of 10 % divergence for both
GSNAP and NextGenMap.

Variant discovery from CLL exome-seq data
Finally, in order to ascertain the broad application of the
selected variant calling methods (see below), we gener-
ated 100-bp WES data from a cohort of 22 CLL patient
samples. Reads mapping (exclude NextGenMap due to
its low sensitivity) and variant calling followed the pro-
cedure used in NA12878. The average per-base coverage
varied between 67x and 113x, with 82.4–94.9 % of the
bases having at least 20x coverage. As demonstrated in
both simulated (Table 1) and NA12878 WES data
(Table 2), GATK UnifiedGenotyper and Platypus are ef-
fective for SNP and INDEL calling, respectively, while
GATK HaplotypeCaller are ideal for both. Focusing on
known variants, we asked whether these three callers
also outperformed the others on the CLL WES data,

Fig. 4 Variant calling sensitivity in NA12878 at three divergence settings. a SNP calling in non-HLA regions. b SNP calling in HLA region. c INDEL
calling in non-HLA regions. d INDEL calling in HLA region. The three divergence levels in mapper parameter settings are 1, 5 and 10 %. Reads
were aligned to the hg19 reference sequence by the three mappers at each of the divergence settings. GATK HC GATK HaplotypeCaller; GATK UG
GATK UnifiedGenotyper
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particularly in the HLA region that contains CLL sus-
ceptibility loci [40, 41].
Indeed, in the non-HLA regions, the number of

known SNPs per sample differed by 35–123 (2.4–8.8 %
of the total) among the 12 methods (Additional file 1:
Figure S5A; Additional file 2: Table S7). Overall GATK
UnifiedGenotyper with Stampy, GSNAP and BWA iden-
tified slightly more known SNPs. In contrast, there were
much larger differences (146–467 known SNPs or 19.3–
70.3 % of the total known) in the HLA region, with
GSNAP + GATK UnifiedGenotyper detecting the most
and BWA + Platypus detecting the least or near the least
number of known SNPs (Additional file 1: Figure S5B;
Additional file 2: Table S7). Of the five highly poly-
morphic HLA genes, GSNAP + GATK UnifiedGenotyper
performed the best in HLA-A, −B, −C and -DRB1, and
equally well with Stampy + GATK UnifiedGenotyper in
HLA-DQB1 (Additional file 1: Figures S6A-S6E). GATK
UnifiedGenotyper, which had a high specificity (Table 3;
Additional file 2: Table S2), showed the highest sensitiv-
ity, followed by GATK HaplotypeCaller and Platypus,
consistent with the inference made from both simulated
(Table 1) and NA12878 data (Table 2).
For INDEL calling in the non-HLA regions, Platypus

was more sensitive than GATK HaplotypeCaller and
GATK UnifiedGenotyper (Additional file 2: Table S8).
Four of the mappers made nearly no difference, with the
exception of Stampy that identified about 10 % less
INDELs in GATK UnifiedGenotyper calling. Reversely in
the HLA region, with BWA excluded, GATK Haplotype-
Caller identified more known INDELs than the other
two callers (Additional file 2: Table S8). Together with
GATK HaplotypeCaller, GSNAP identified the most
known INDELs in the HLA region from 19 of the 22
samples, followed by Novoalign and Stampy. GATK
HaplotypeCaller was also more sensitive to novel
INDELs (Additional file 2: Table S8), as revealed in
NA12878 (Additional file 2: Table S6).
In summary, for SNP calling, GATK UnifiedGenotyper

is generally more powerful than GATK HaplotypeCaller
in the HLA region, especially with GSNAP; in the non-
HLA regions, these two callers are roughly comparable
and both are better than Platypus. For INDEL calling,
GATK HaplotypeCaller and Platypus are the two best
callers. In the non-HLA region, Platypus is superior to
GATK HaplotypeCaller; while in the HLA region, GATK
HaplotypeCaller is often better than Platypus. GSNAP
and Novoalign are ideal mappers for both SNP and
INDEL calling. One limitation with GSNAP (also
Novoalign) is that it is over four times slower than BWA
(data not shown). A possible solution would be to first
map reads using BWA, extract pairs with unmapped
read(s), and then re-map those using GSNAP. We tested
its feasibility on the NA12878 WES data. Remarkably, in

GATK UnifiedGenotyper and HaplotypeCaller calling,
this two-step mapping approach recovered >99.5 % of
the known SNPs previously identified from chromosome
6 using GSNAP alone. On the other hand, Stampy is
oversensitive, which results in more false positive calls.
We next focused on one of the five CLL samples

(ID 612703) with an average per-base coverage ex-
ceeding 100x (103–105x, depending on the mapper
used), using four mappers (exclude NextGenMap) and
three callers (exclude SAMtools and FreeBayes). For
known SNPs, the 12 methods showed 95–99 % over-
lap between each other in the non-HLA regions
(Additional file 1: Figure S7A), versus 62–98 % in the
HLA region (Fig. 5a). As observed in NA12878 (Table 2),
GATK UnifiedGenotyper performed better than GATK
HaplotypeCaller and Platypus in the HLA region, with
GSNAP +GATK UnifiedGenotyper being most sensitive
(Fig. 5a; Additional file 1: Figures S7B and S7C). It covered
over 90 % of the known SNPs identified by five of the
methods together in HLA and HLA-DRB1 (Additional
file 1: Figures S8A and S8B).
For INDEL discovery, Platypus performed the best in

the non-HLA regions (Additional file 1: Figure S9) and
GATK HaplotypeCaller in the HLA region (Fig. 5b), as
previously revealed across the CLL cohort (Additional
file 2: Table S8). GATK HaplotypeCaller together with
Novoalign or GSNAP was ideal for INDEL detection in
the HLA region, Platypus and GATK HaplotypeCaller
together allowed more complete INDEL discovery in
both non-HLA and HLA regions (Additional file 1:
Figures S10A and S10B).

Discussion
Accurate variant discovery is crucial for pinpointing the
causal mutations underlying human diseases. Current
computational methods are generally effective in detect-
ing ordinary variants but less so for variants located in
difficult regions [38]. One of those regions is the HLA
region, which is clinically important but extremely diver-
gent. Focusing on chromosome 6 we comprehensively
assessed five popular mappers together with five callers
on both simulated and real WES data from NA12878.
We have developed an analytical workflow that allows
more accurate variant discovery in the HLA region and
across the genome.
Our analysis revealed marked difference among the

five callers at high divergence. GATK UnifiedGenotyper
performed the best in single-sample SNP calling, espe-
cially with GSNAP, on simulated data at 5–10 % diver-
gence. All but Platypus had similarly high precision
rates. GATK UnifiedGenotyper was also about 1–6 %
higher in sensitivity than the other callers in vast majority
of the cases with low divergence. For INDEL calling in
simulated high divergence data, GATK HaplotypeCaller
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and Platypus were generally more sensitive, but at the cost
of reduced specificity. We revealed a similar trend of per-
formance for these methods in the HLA and non-HLA re-
gions in NA12878. In summary, GATK UnifiedGenotyper,
SAMtools and GATK HaplotypeCaller are ideal for SNP
calling while GATK HaplotypeCaller and Platypus are
more effective for INDEL calling.
The mapping accuracy is often calculated by consider-

ing only the alignment start position, which does not al-
ways reflect the true alignment status of individual
bases. In addition, optimal pairwise alignments between

individually mapped reads and the reference sequence
may not guarantee high confidence in multiple align-
ments. Therefore, different mappers and callers need to
be assessed together in order to identify the best combi-
nation(s). The five mappers are known to vary in map-
ping highly divergent reads [12–14], which we also
revealed in our simulated data. Even with a similar map-
ping rate, two mappers can perform quite differently in
the context of variant calling. For example, GSNAP [14]
and NextGenMap [13] are both designed to map highly
divergent reads and we observed roughly comparable

Fig. 5 Overlap of known variants in the HLA region of the CLL sample 612703. a Overlap of known SNPs. b Overlap of known INDELs. The 12 call
sets were generated by three callers together with four mappers. Number of known variants is shown in parentheses. Each non-triangle box is
pseudo-colored to signify the proportion of the call set on the left that is overlapped by the call set showed on the top. HC GATK HaplotypeCaller; PY
Platypus; UG GATK UnifiedGenotyper
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mapping accuracy at 5–10 % divergence. However, for the
three sensitive callers in SNP detection, NextGenMap is
obviously less suitable than GSNAP, evident by a loss of
8.5–11.0 % sensitivity in the HLA region of NA12878.
To further support this, we found that, of the five
GSNAP-mapped read pairs that contained six known
SNPs in a 50-bp region within HLA-DRB5 (32,489,626–
32,489,675 bp), NextGenMap mapped only one of the
ends correctly (to this 50-bp region) but the other
end to regions of 36–63 kb away. On the other hand,
there is also obvious difference across different callers
given the same mapper. Using GSNAP as the mapper,
GATK UnifiedGenotyper was 2.0–4.4 % more sensi-
tive than GATK HaplotypeCaller and SAMtools and
12–14 % more sensitive than the other two in SNP
calling from the HLA region. We analyzed two additional
NA12878 WES datasets generated using Illumina Nextera
Rapid Capture Exomes capture kit (SRR1919605) and
Roche Life Science SeqCap EZ Human Exome Library
v3.0 (SRR1611181). GSNAP +GATK UnifiedGenotyper
also showed the highest sensitivity in SNP calling in the
HLA region (data not shown). Our analysis has identified
GSNAP +GATK UnifiedGenotyper as the most sensitive
method for SNP detection in both HLA and non-HLA
regions.
Strikingly, GSNAP +GATK UnifiedGenotyper achieved

100 % sensitivity in HLA-DRB1, HLA-A and HLA-C,
three highly polymorphic genes in NA12878. In HLA-
DRB1, for example, this method identified all the 70
known SNPs annotated in the public call set [36, 38], plus
an additional 30 unique known calls. In contrast, the
widely used BWA+GATK UnifiedGenotyper missed
>30 % of the known SNPs in this gene. Comparable
results were obtained for GATK HaplotypeCaller and
Platypus in INDEL calling.
Besides the HLA region, there are many other regions

in the human genome that are also highly divergent [20].
For example, the 1000 Genomes Project identified large
regions on chromosomes 8 (about 15 Mb) [42] and 16
and subtelomeric regions on autosomal chromosomes
that have high SNP density [43]. We have identified a few
ideal mapper-caller combinations that are sensitive to
both highly divergent regions and regions with low muta-
tion rates, such as GSNAP +GATK UnifiedGenotyper in
SNP calling and GSNAP+GATK HaplotypeCaller and
GSNAP + Platypus in INDEL calling. For INDEL calling,
GSNAP +GATK HaplotypeCaller is more sensitive to the
HLA region while GSNAP+ Platypus is more sensitive to
the non-HLA regions. A joint calling with both methods
should be the appropriate approach for genome-wide
INDEL detection.
Traditionally, genotyping in the HLA region often re-

lies on microarray hybridization [24] or sequencing PCR
amplicons that targeted selected exons [23, 44] or entire

genes [45], which are costly, time-consuming and low
throughput. In addition, current studies often focus on
known variants in the international ImMunoGeneTics
project (IMGT)/HLA Database without considering
novel variants [46, 47]. Lastly, though WES was used for
HLA genotyping and variant discovery, the standard
mapping-based approaches did not work well [48]. Our
approach represents a more generalized methodology,
which is effective for genome-wide variant detection but
particularly sensitive in highly divergent regions like
HLA. Though only tested on WES, it should be applic-
able to whole genome sequencing data as well.

Conclusions
We aimed to develop a strategy enabling more accurate
variant discovery in highly divergent regions. Focusing
on the HLA region that shows extreme divergence
across different haplotypes, we revealed marked differ-
ences among the methods in SNP and INDEL calling
from NA12878 WES data. We captured a similar trend
on WES data from a cohort of CLL patients. Specifically,
GSNAP and Novoalign achieve high sensitivity in map-
ping divergent reads without losing the specificity. Their
limitation in speed could be overcome through a two-
step mapping approach, in which reads are first mapped
by BWA and unmapped ones are then re-mapped by
GSNAP or Novoalign. Together with these two mappers,
GATK UnifiedGenotyper demonstrates its excellence in
SNP calling, followed by GATK HaplotypeCaller and
SAMtools; in INDEL calling, GATK HaplotypeCaller
and Platypus outperform the others and their joint call-
ing clearly enhances the outcome. Given that highly
polymorphic regions are distributed over many chromo-
somes and are often associated with human disease, our
study brings additional options into the current variant
calling practice.
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