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Highly diverse nirK genes comprise two
major clades that harbour ammonium-
producing denitrifiers
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Abstract

Background: Copper dependent nitrite reductase, NirK, catalyses the key step in denitrification, i.e. nitrite reduction
to nitric oxide. Distinct structural NirK classes and phylogenetic clades of NirK-type denitrifiers have previously been
observed based on a limited set of NirK sequences, however, their environmental distribution or ecological
strategies are currently unknown. In addition, environmental nirk-type denitrifiers are currently underestimated in
PCR-dependent surveys due to primer coverage limitations that can be attributed to their broad taxonomic
diversity and enormous nirk sequence divergence. Therefore, we revisited reported analyses on partial NirkK
sequences using a taxonomically diverse, full-length NirK sequence dataset.

Results: Division of NirK sequences into two phylogenetically distinct clades was confirmed, with Clade | mainly
comprising Alphaproteobacteria (plus some Gamma- and Betaproteobacteria) and Clade Il harbouring more diverse
taxonomic groups like Archaea, Bacteroidetes, Chloroflexi, Gemmatimonadetes, Nitrospirae, Firmicutes, Actinobacteria,
Planctomycetes and Proteobacteria (mainly Beta and Gamma). Failure of currently available primer sets to target
diverse Nirk-type denitrifiers in environmental surveys could be attributed to mismatches over the whole length of
the primer binding regions including the 3" site, with Clade Il sequences containing higher sequence divergence
than Clade | sequences. Simultaneous presence of both the denitrification and DNRA pathway could be observed
in 67 % of all NirK-type denitrifiers.

Conclusion: The previously reported division of NirK into two distinct phylogenetic clades was confirmed using a
taxonomically diverse set of full-length NirK sequences. Enormous sequence divergence of nirk gene sequences,
probably due to variable nirK evolutionary trajectories, will remain an issue for covering diverse NirK-type denitrifiers
in amplicon-based environmental surveys. The potential of a single organism to partition nitrate to either
denitrification or dissimilatory nitrate reduction to ammonium appeared to be more widespread than originally
anticipated as more than half of all NirK-type denitrifiers were shown to contain both pathways in their genome.
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Background intensely studied, both experimentally and in situ, as

Canonical denitrification is the conversion of fixed
nitrogen to a gaseous end product with concomitant
energy conservation [1, 2]. It is a facultative respira-
tory pathway in which nitrate, nitrite, nitric oxide and
nitrous oxide are sequentially reduced to dinitrogen
gas, each step catalysed by one or more metallo-
enzymes [2]. This important process has been
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it is part of the global nitrogen cycle and contributes
to the loss of fixed nitrogen from the environment as
well as the emission or mitigation of nitrous oxide,
i.e. a greenhouse gas that has a 310x greater global
warming potential than carbon dioxide and is
involved in ozone destruction [3]. Although denitrifi-
cation has long been considered as a modular process
[2], with certain denitrifiers lacking either nitrate
reductase and/or nitrous oxide reductase, whole gen-
ome sequences revealed the existence of extremely
truncated versions of the pathway with only one
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enzyme or discontinuous chains of two or more en-
zymes [4, 5]. This raises the semantic though relevant
question of when an organism should be considered
as denitrifier. We propose that, adhering to the ori-
ginal description of the process, a denitrifier sensu
stricto should be capable of acquiring energy from at
least the one-electron reduction of nitrite to the gas-
eous nitric oxide, meaning it should at least contain a
nitrite reductase.

This key enzyme in the denitrification process exists in
two evolutionary unrelated variants, i.e. copper contain-
ing nitrite reductase NirK and cytochrome cd; nitrite re-
ductase NirS encoded by the nirK and nirS gene
respectively [2, 6]. Some organisms contain more than
one nirK or nirS gene copy [7] and, recently, both types
of Nir were found to not be mutually exclusive [4], al-
though functionality of the two different nitrite reduc-
tase types within one organisms still needs confirmation.
NirS-type denitrifiers are often assumed to be predomin-
ant in the environment, while NirK-type denitrifiers
cover more diverse taxa [2]. It should, however, be noted
that (i) very few studies have attempted to quantify both
NirK and NirS-type denitrifiers in environmental sur-
veys, with most only including #irS [8—10], and (ii) nirkK
gene sequence divergence exceeds that of nirS genes
resulting in constrained applicability of the currently
available nirK primers, leading to an underestimation of
NirK-type denitrifiers [11]. Both types of denitrifiers are
assumed to respond differentially to environmental gra-
dients with NirK-type denitrifiers exhibiting greater
habitat selectivity [12-15]. Co-occurrence patterns of
nirS, nor and nos genes suggested shared regulatory
mechanisms that may constrain loss of nor and nos in
nirS-type denitrifiers [4]. In contrast, no such genomic
linkage patterns were observed for NirK indicating that
NirK-type denitrifiers are more likely to perform incom-
plete denitrification. Taken together with previously re-
ported positive correlations between NirK abundance
and nitrous oxide emissions [16] and the negative rela-
tionship between the ratio nitrous oxide/dinitrogen gas
and NirS-type denitrifiers [17], NirK-type denitrifiers
might contribute significantly more to nitrous oxide
emission than their NirS counterparts.

The large divergence in NirK sequences from taxo-
nomically distant as well as closely related NirK-type de-
nitrifiers has not yet been well-characterized despite the
need for accurate assessment of abundances and com-
munity structure of these potential nitrous oxide emit-
ters. While there are conserved catalytic domains shared
by all NirK proteins, substantial variation exists in the
primary structure between different members of the
NirK protein family. Copper-containing nitrite reductase
NirK (also sometimes designated as cNirK/CuNIR) is a
periplasmic, homotrimeric enzyme with each monomer
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typically containing two copper centres, T1Cu ligated by
four amino acid residues (two His, Cys and Met) and
T2Cu ligated by three His and a water molecule [18].
The enzyme receives one electron at the T1Cu site from
an electron donor and catalyses the one-electron reduc-
tion of nitrite to nitric oxide at the T2Cu site. Moreover,
an essential hydrogen bond network including Asp and
His around T2Cu functions as proton donor to the sub-
strate [19]. Three different classes of NirK-type nitrite
reductases have been designated previously based on
their structure. (i) Soluble periplasmic Class I NirK
found in some Alphaproteobacteria can be divided into
two subclasses based on their optical absorption
spectrum and sequence identity: green Nir types (de-
scribed for Achromobacter cycloclastes and Alcaligenes
faecalis S6) and blue Nir types (described for Alcaligenes
xylosoxidans) [20]. (ii) Outer-membrane bound Class II
NirK was described for Neisseria gonorrhoeae [21]. (iii)
More divergent NirK sequences found in some Gram-
positive bacteria and the ammonia oxidizing bacterium
Nitrosomonas europaea [22]. Furthermore, the NirK of
Hyphomicrobium denitrificans with an additional cupre-
doxin domain at the N-terminus [20, 23] and those of
Burkholderia, Ralstonia and Bdellovibrio with a C-
terminus extension containing a class I ¢-type heme do-
main [20], do not fit the current classification. In
addition to structural differences, phylogeny has been
used to delineate two NirK clades supported by distinct
amino acid motifs, i.e. TRPHL and SSFHV/I/P, around
the active site His residue [24]. Clade I was found to
harbour Class I NirK sequences, while Clade II NirK
contained more taxonomically diverse NirK-type denitri-
fiers including some belonging to Class II NirK.

It is clear that an unambiguous NirK classification is
lacking. Furthermore, currently available primers only
target Class I nirK sequences [11, 24]. So, although
NirK-type denitrifiers are potential nitrous oxide emit-
ters, the predominance of various NirK classes or clades
in the environment cannot be unequivocally and system-
atically evaluated. This is unfortunate as it could unveil
different ecological strategies or environmental distribu-
tions among denitrifiers harbouring distinct clades or
classes of NirK, as was recently demonstrated for the
two distinct clades of nitrous oxide reductase NosZ [25—
27]. Therefore, we revisited and extended the NirK ana-
lyses of Jones and colleagues [24], by performing detailed
sequence and phylogenetic analyses on NirK sequences
from fifteen different phyla in light of the structurally
different NirK classes described so far. The previously
proposed grouping of NirK in two distinct phylogenetic
clades was confirmed and further underpinned by Clade
II specific indels. The potential to partition nitrate be-
tween denitrification and dissimilatory nitrate reduction
to ammonium appeared common to denitrifiers from
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both clades. Furthermore, evolutionary trajectories
underpinning the extremely high NirK sequence diver-
gence and consequences for nirK primer coverage were
considered.

Results and discussion

Proposed NirK classification in two clades based on
phylogenetic and sequence analysis

Copper dependent nitrite reductase NirK encoded by
the nirK gene catalyses the key step of the denitrification
pathway, ie. the reduction of nitrite to the gas nitric
oxide. In environmental surveys, this gene has been used
as a proxy for denitrification despite previously reported
limitations of conventional nirK primers [11, 28] result-
ing in the underestimation of both the presence and
abundance of NirK-type denitrifiers in different environ-
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denitrifiers as well as the impressive divergence among
NirK sequences both account for the limited coverage of
current primers. A NirK dataset composed of 267 full-
length NirK sequences, extracted from whole genomes,
from fifteen different Bacterial and Archaeal phyla was
used for phylogenetic and sequence analysis. Prior to use
of the dataset, all NirK sequences were verified for the
presence of core Cu-binding sites (His59, His64, His99,
Cys100, His110, Met115 and His298) and the active site
residues Asp62 and His237 required for nitrite reducing
activity (Fig. 1) [19, 29]. Comparison of NirK sequences
with other copper oxidases lacking Nir activity (laccases
and ascorbate oxidases) indicated that the residues
Asp62, His64, Cys100, His110, Met115 and His237 were
not conserved. Based on this observation, we were con-
vinced that all NirK sequences included in this study

ments. Broad taxonomic diversity of NirK-type were indeed nitrite reductases. NirK sequence lengths
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Fig. 1 Trimmed multiple sequence alignment of NirK from Rhodobacter sphaeroides ATCC 17025 (R. spha), Alcaligenes faecalis S-6 (Afaec), Geobacillus.
kaustophilus HTA426 (Gkaus), Bacillus azotoformans LMG 9581 T (B.azot), Jonesia denitrificans DSM 20603 (J.deni), Propionibacter acnes C1 (P.acne),
Flavobacteria johnsoniae UW101 (Fjohn), Halomonas denitrificans ATCC 35960 (H.deni), Burkholderia pseudomallei 668 (B.pseu) and Azospirillum sp. B506
(A.sp). Sequences belonging to Clade | NirK are underlined. Amino acid numbering was based on the full-length NirK sequence of Rhodobacter sphaer-
oides ATCC 17025. The linker, tower and extra loop specific for Bacillus sp. are given in purple, red and orange respectively. Copper binding motives
T1Cu and T2Cu are indicated in green and blue respectively, active site residues Asp and His required for nitrite reducing activity in yellow, conserved
regions are indicated by *, deletions specific to Clade Il Nirk sequences are indicated by ¥ and - and the Bacillus specific insertion by
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varied substantially from 304 to 995 aa, with the major-
ity of NirK sequences ranging between 300 and 560 aa,
and some Actinobacterial sequences around 700-990 aa.

Neighbour joining phylogenetic analysis resulted in
the distinction of two NirK clades (Fig. 2): (i) Clade I
mainly comprised of Alphaproteobacteria (plus some
Gamma- and Betaproteobacteria) and (ii) Clade II har-
boured more diverse taxonomic groups like Archaea,
Bacteroidetes, Chloroflexi, Gemmatimonadetes, Nitros-
pirae, Firmicutes, Actinobacteria, Planctomycetes and
Proteobacteria (mainly Beta and Gamma). A maximum
likelihood analysis was also performed and resulted in a
similar grouping (data not shown). Using an expanded
dataset of over 250 full-length NirK sequences, we thus
confirm the previously described existence (based on
147 partial nirK sequences) of two distinct NirK clades
[24], and propose the systematic inclusion of both NirK
Clades I and II in further environmental surveys. Clade I
corresponded to the previously described Class I NirK
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nitrite reductases [20, 24], while NirK sequences previ-
ously defined as belonging to Class II or unclassified, all
clustered together in Clade II. Interestingly, this group-
ing into two clades is underpinned by small indels spe-
cific to Clade II (Fig. 3), specifically two deletion regions
(7aa) which coincided with the linker and tower loop
previously observed in Bacillus and Neisseria species
(Figs. 2 and 3) [21, 23, 30]. The extra loop regions
unique to NirK from Bacillaceae (Figs. 1 and 3) [30]
were observed in all Bacillus sp. with exception of the
three Paenibacillus species. Actinobacteria also con-
tained additional insertions although the size, location
and presence/absence of these insertions were variable
(Fig. 3 and Additional file 1). We also found that the
TRPHL and SSFHV/I/P motifs around the active site
His237 (Fig. 2, Additional file 1) thought to be unique to
Clade I and II respectively [24] could not be used as
good distinguishing features, as the corresponding re-
gions within each clade were much more diverse than

Acidobacteria
Alphaproteobacteria
Gammaproteobacteria
Betaproteobacteria
Firmicutes
Chloroflexi
Nitrospirae
Gemmatimonadetes
Verrucomicrobia
Actinobacteria
Planctomycetes
Bacteroidetes
Euryarchaea
Spirochaetes
Deltaproteobacteria

Clade Il

Clade |

Fig. 2 Unrooted bifurcating neighbour joining tree of full-length NirK sequences obtained from whole genomes. NirK Clade | encompassed
Alphaproteobacteria and some Gamma- and Betaproteobacteria, while NirK Clade Il comprised Firmicutes, Actinobacteria, Euryarchaea, Chloroflexi,
Bacteroidetes, Nitrospirae, Gemmatimonadetes, Planctomyces, Verrucomicrobia and Proteobacteria. The same bifurcating tree in cladogram format
with an estimation of reliability based on bootstrap analysis can be found in supplementary information (Additional file 1). Physiologically
characterized denitrifying strains are indicated by V: Bacillus azotoformans LMG 9581, Bacillus bataviensis LMG 21833 [39], Haloferax denitrificans
ATCC 35960 [40], Hyphomicrobium denitrificans ATCC 51888 [771, Shewanella loihica PV-4 [44], Shewanella denitrificans OS217 (78], Rhodobacter
sphaeroides ATCC 17025 [79], Alcaligenes faecalis S-6 [80]. The grey ovals represent the two previously proposed clades of NirK sequences
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P
Rhodobacter sphaeroides ATCC 17025
Thréback et al. 2004/Michotey et al 2000 ATCATGGTSCTGCCGCG GCCICGATCAGRTTGTGGTT
F1aCU R3CU
Brakeretal. 1999  [GGMATGGTKCCSTGGCA GCCICGATCAGRTTRTGG
nirK1F nirK5R
Linker loop Tower loop
Clade Il-specific || Clade ll-specific
deletions deletions
3-7 aa 5-7 a
0 375
HDH HC HM H
395-483 aa 11 aa 12 aa -16 aa 3-8 aa 100-176 aa
Actinobacteria ||N-terminus extensions| Bacillus specific . ; . . C-terminus extensions
with membrane containing insertion ACt{:ZZiF;:rlal Actl_nob?tgtenal containing CX2CHX50M
bound domain CX4HX4M domain or extra loop ! ! insertion domain
Fig. 3 Schematic illustration of sequence length variation, primer target site of two frequently used primer sets F1aCu-R3Cu [33] and nirK1F-
nirk5R [34], and different types of indels and extensions observed in 267 NirK sequences. The 375 aa long sequence of Rhodobacter sphaeroides
ATCC 17025 (pdb accession number 12V2) was used as reference. Size and, if possible, information on taxon or clade defined by these indels or
extensions are represented. Copper binding sites, essential active site residues and conserved regions are indicated in red, blue and green
respectively. The copper binding His included in the reverse primer target sites is underlined. Abbreviations of copper binding and active site
residues are presented due to limited space, with H: His, C: Cys, D:Asp and M:Met

previously described. Approximately 61 % of all Clade I
NirK contained a TRPHL motif, with other previously
undescribed motifs being SRPHL (32 %), SYPHL (3 %),
SRIHL (1 %) and TR/YPHI (3 %). More than half of all
Clade II NirK (61 %) contained a SSFHV/I/P motif while
39 % comprised other and more diverse motifs such as
CH/TFHV (4 %), LSFHV/I (5 %), SNFHV/I/P (5 %),
SSFHL (5 %), with especially Actinobacterial and Ar-
chaeal NirK containing previously undescribed motifs
(Additional file 1). As could be expected from their
interaction to form a hydrogen bound network involved
in proton supply for substrate reduction [21], substantial
variation in AA motifs around the other essential T2Cu
centre residue, Asp 62 (Fig. 2), were also observed
(Additional file 1). Distinction between NirK Clade I and
IT based on signal peptide, as previously observed for the
two clades of NosZ [26], was not found.

Strikingly, the overall mean NirK similarity within the
dataset was extremely low (only 10 %), with especially
Clade II being defined by low sequence similarity (16 %
compared to 66 % in Clade I). This even higher than
previously appreciated level of NirK sequence divergence
and above mentioned substantial sequence size variation
may be partly attributed to the high incidence of N- and
C-terminus extensions in approximately 30 % of all NirK
sequences. C-terminus extensions comprising a class I c-
type heme domain CX,CHXs;0M previously only re-
ported in NirKs from Burkholderia, Ralstonia and Bdel-
lovibrio [20], were observed in 39 other NirK sequences
derived from Spirochaetes, Verrucomicrobia, Alpha-,

Beta-, Delta- and Gammaproteobacteria (Fig. 3 and
Additional file 1). Recent NirK analysis of the com-
mensal bacterium Neisseria weaveri revealed high se-
quence similarity between the C-terminus c-type heme
and other Neisserial NirK cytochrome electron carriers,
i.e. Ccop and c¢s cytochromes [31], suggesting it might
function as an alternative electron transport route to
NirK providing an adaptive advantage in nitrite limiting
environments. In contrast, these C-terminus extensions
are not found in pathogenic Neisseria sp., further under-
lining their potential adaptive benefit linked to distinct
lifestyles. The approximately 900 aa long NirK of Propi-
onibacterium acnes was previously found to contain a
N-terminus extension comprising a 400 aa predicted
transmembrane domain of unknown function and an
additional cupredoxin domain, ie. CX,HX,;M (Fig. 3).
All Actinobacterial NirK included in this study, were ob-
served to contain the cupredoxin domain, however, not
all contained a transmembrane domain (Additional file
1), resulting in substantial sequence length variation
within the Actinobacteria (900 aa vs. 500 aa). The cupre-
doxin containing N-terminus extensions were also previ-
ously reported in non-actinobacterial Hyphomicrobium
denitrificans ATCC 51888, Herpetosiphon aurantiacus
DSM 785 and Nitrosospira multiformis ATCC 25196
[20], and were additionally observed here in six other
NirK sequences belonging to Nitrospirae, Alpha- and
Betaproteobacteria (Additional file 1). The function of
the N-terminus cupredoxin domain remains unknown
as it located too far away from the catalytic core for
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effective electron transfer [23] and, moreover, higher
catalytic activity was observed in N-terminus T1Cu mu-
tant compared to the wild type [32]. Nevertheless, its
conservation and wide occurrence does suggest some
adaptive benefits despite its presence being not required
for NirK functioning. NirK sequences were not found to
contain both N- or C-terminus extensions, which cor-
roborates previous observations [20].

High sequence divergence causes nirK primer coverage
issues

Although shotgun sequencing is becoming increasingly
affordable for environmental monitoring of ecosystem
functions, amplification-based gene sequencing and
quantification is still widely performed. Primer coverage
is a well-known but continuing problem for successful
amplification and sequencing of any gene from environ-
mental or mixed samples and especially for the very di-
verse nirK gene. The most frequently used primers
FlaCu-R3Cu [33] and NirK1F-NirK5R [34] bind to sup-
posedly conserved copper binding regions outside the
Clade 1II indels and/or variable Asp or His motifs de-
scribed higher and shown in Fig. 3, yet still they only de-
tect Clade I sequences [11, 24, 28]. Large sequence
divergence seemed to exist throughout the whole nirk
gene, even at supposedly conservative sites used for pri-
mer design (Fig. 4 and Additional file 2). We directly re-
lated failure of current primers as broad range tools to
mismatches over the whole primer binding regions
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including the 3" site. As expected from sequence vari-
ation, this was more explicit for Clade II than Clade I se-
quences (Fig. 4 and Additional file 2).

As the sequence divergence within Clade II was very
high and modification of available primers to increase
coverage is not straightforward [11], we attempted to de-
sign novel Bacteroidetes specific nirK primers using the
current dataset. Bacteroidetes NirK sequence divergence
averaged around 28 %, making this taxon a better test
case for primer design compared to Actinobacteria and
Archaea (sequence divergence of 42 % and 37 % respect-
ively). Although Firmicutes sequence divergence was
found to be the lowest (22 %), the Bacteroidetes group
was chosen as a test group because recently Geobacillus
specific nirK primers [35] were published. The novel
primers (Additional file 3) scored significantly better for
successful amplification in pure cultures than the trad-
itional ones but unfortunately did not render amplicons
from various environmental samples (Additional file 4).
Although it cannot be excluded that nirK-containing
Bacteroidetes were only present under the detection
limit in these samples, it seems more likely that, despite
their high degeneracy, the novel primers were too spe-
cific to capture all diversity present (Additional file 3). A
similar observation was made for primers targeting de-
nitrifying Geobacillus ([35], unpublished data). Wei and
colleagues, however, recently succeeded in designing
multiple new nirK primer sets targeting more diverse
Clade I sequences and numerous subgroups within
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Fig. 4 Sequence logo diagrams (5'-3') depicting the degree of nirk sequence variability of F1aCu-R3Cu primer binding regions [33] in (a) Clade |
+ I nirk; (b) Clade | nirk; and (c) Clade Il nirk. The primer sequence is given at the top and copper binding His included in the reverse primers is
indicated in red. Diagrams for the primers nirK1F-nirk5R [34] can be found in Additional file 2
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Clade 1II [36], though the dataset used for primer design
was limited to 97 nirK sequences and did not contain
Firmicutes. In silico evaluation of these new primers on
the Bacteroidetes dataset indicated that the reverse primer
did not find a match for all Bacteroidetes sequences within
the alignment. It is clear that primer coverage, albeit essen-
tial for proper experimental design of environmental sur-
veys, remains an issue difficult to resolve. Given the large
sequence diversity, universal primers will probably remain
elusive. Nevertheless, new attempts to improve #irK primer
coverage are still needed as quantitative PCR currently rep-
resents the only available quantification technique allowing
absolute quantification of functional genes in environmen-
tal surveys as (shotgun) sequencing techniques are only
semi-quantitative. Therefore, combining algorithm-based
primer design with continuously updating of functional
gene datasets represents the most promising approach for
designing different sets of subclade specific nirK primers
that can be used in combination to optimise coverage.

Evolutionary processes resulting in high sequence
divergence

Phylogenetic analyses of NirK sequences (Fig. 2) showed
clustering of NirK-type denitrifiers according to their
taxonomic origin for Alphaproteobacteria in Clade 1,
and Actinobacteria, Firmicutes and Archaea within
Clade II. Nevertheless, high NirK sequence divergence
between closely related NirK-type denitrifiers is common
and generally known [5, 24, 37], with Beta- and Gamma-
proteobacterial clusters also found in Clade I and Verru-
comicrobia, Spirochaetes, Chloroflexi, Beta-, Delta- and
Gammaproteobacteria sequences spread throughout the
entire Clade II (Fig. 2). Limited taxonomic coherence
was observed in the NirK phylogeny, which corroborates
with previous reports on incongruence between phyloge-
nies of 16S rRNA gene sequences and denitrification
genes [22, 24]. However, some taxonomic coherence
could be observed for Archaeal, Actinobacterial and Fir-
micutes NirK sequences, although even in these phyla
there were exceptions. For example, Sulfobacillus acid-
ophilus TPY did not cluster together with other Firmi-
cutes NirK sequences and was furthermore found to
share only 5 % sequence similarity with the other Firmi-
cutes NirK sequences (Additional file 1). Also, the NirK
from Gammaproteobacterial Cellvibrio gilvus ATCC
13127 grouped within the Actinobacteria cluster while
that of the Bacteroidetes Rhodothermus marinus
SGO0.5]P17-172 was found in the cluster of the Archaea.
Jones and colleagues [24] already elaborately discussed
that the evolutionary process responsible for these in-
congruences might not be as simple as horizontal gene
transfer. They proposed that gene duplication and subse-
quent sequence divergence of the different copies and/or
gene loss as well as lineage sorting could be primarily
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responsible. In that light, it is interesting to note that ap-
proximately 5 % of all NirK-type denitrifiers in our data-
set were found to contain more than one #irK gene copy
in their genome. Although our observations are biased
because of considerable differences in number of ge-
nomes available per phylum (Table 1), Alphaproteobac-
teria were mostly found to contain multiple copies, but
also some representatives of Betaproteobacteria, Firmi-
cutes, Nitrospirae and even Archaea. The majority of
these taxa harboured two copies, with exception of Afi-
pia sp. INLS2 which was previously described to contain
three [5]. As was found for Afipia, the Betaproteobacter-
ium Pusillimonas sp. T7-7 and the Alphaproteobacter-
ium Ochrobactrum anthropi ATCC 49188 each harbored
two NirK sequences belonging to different clades. All
other taxa contained NirK copies belonging to either
Clade I or II, with various degrees of divergence
(Additional file 1). Clearly, multiple nirK copies may
provide adaptive advantages to the denitrifiers in chan-
ging environments, provided that both genes are
expressed as functional nitrite reductases under different
physicochemical conditions [7]. Differential loss and
unequal evolutionary pressures on both copies could ex-
plain the observed incongruent organisms and denitrifi-
cation gene phylogenies.

Compared with NirK, it can be assumed that the over-
all sequence divergence of NirS might be lower as NirS
classes based on structural diversity, phylogenetic groups
or amino acid motifs have not been described. We
hypothesize that the different evolutionary trajectories of
both nitrite reductases might potentially be related to
the differential spread of the encoding genes over pro-
karyotic life, with NirS being limited to mostly Proteo-
bacteria [24, 36]. However, an additional important
feature to consider might be the difference in operon
size between both nir types. NirS maturation requires
the expression of a multiple gene operon consisting of at
least three or four nir genes [22], while NirK maturation
does not require other genes, although sometimes it is
accompanied by a second gene encoding the protein
NirV [38]. NirV was detected in approximately 61 % of
the genomes included in our dataset, mainly in Proteo-
bacteria (Alpha and Beta) and Bacteroidetes, confirming
that the presence of NirV is not mandatory for NirK
maturation [22]. The Firmicutes Bacillus azotoformans
LMG 9581 [39] and the archaeon Haloferax denitrificans
ATCC 35960 [40] have both been physiologically shown
to perform denitrification, however, no NirV could be
detected. Alternatively, it is also possible that NirV was
missed in these organisms due to the limited number
and diversity of reference sequences available (only
Alphaproteobacteria). Therefore, we hypothesize that
evolutionary pressure on nirS is much higher than on
nirK, as mutations are less likely to be retained by



Table 1 Modularity of denitrification and DNRA observed in the 249 NirK containing genomes covering fifteen different phyla. Percentage complete denitrification (Nir + Nor +
Nos), incomplete denitrification (-Nor, —Nos or -Nor/-Nos), DNRA (Nar 4+ NrfA, Nap + NrfA, NrfA, Nar + NirB, Nap + NirB or only NirB), and combined occurrence of both processes
(NirkK+ NrfA and/or NirB) are represented for each phylum separately and over all 249 NirK genomes

No.of No. of nirk copies per % complete % incomplete % DNRA % denitrification
genomes genome denitrification denitrification and DNRA
(% of phylum) nir + nor + nos -nor -nos -nor/- nap + nar+ nrfA  nap + nar+ nirB  nirk + nrfAand/or

nos nrfA nrfA nirB nirB nirB

Acidobacteria 1 1 (100) 100 0 0 0 0 0 0 0 0 0 0

Actinobacteria 28 1(100) 0 0 50 50 36 7. 179 36 393 0 643

Alphaproteobacteria 82 1(92.7);2 6.1) or 3 (1.2) 415 12 390 183 15.7 0 0 659 1M 6.1 780

Bacteroidetes 21 1 (100) 429 190 286 95 9.5 0 429 95 0 95 66.7

Betaproteobacteria 39 1(923)0r2(7.7) 61.5 0 308 7.7 26 26 0 61.5 61.5 51 744

Verrucomicrobia 2 1 (100) 0 50 0 50 100 0 0 50 0 0 100

Chloroflexi 5 1 (100) 0 20 0 80 0 0 0 0 0 40 40

Deltaproteobacteria 2 1 (100) 0 0 50 50 0 0 5 0 0 50 50

Euryarcheaota 13 1(84.6) or 2 (15.4) 46.2 0 385 153 0 0 0 0 0 77 77

Firmicutes 27 1(96.3) or 2 (3.7) 40.8 74 259 259 1.1 1.1 0 37 37 3.7 556

Gammaproteobacteria 23 1 (100) 19.0 0 333 477 304 43 0 47.8 174 0 739

Gemmatimonadetes 1 1 (100) 0 100 0 0 0 0 0 0 0 0 0

Nitrospirae 2 1 (50) or 2 (50) 0 0 50 50 0 0 0 0 0 0 0

Planctomycetes 1 1 (100) 0 0 0 100 100 100 0 100 100 0 100

Spirochaetae 2 1 (100) 50.0 0 0 50.0 0 0 0 50 0 50 100

Total 249 53 36.0 40 348 252 121 32 6.1 422 23.7 60 66.7
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natural selection because of incompatibility of the
expressed enzyme with accessory proteins. Differential
evolutionary pressures on both zir genes might not only
explain differential mutation rates but also the higher
probability for mobility and gene duplication of nirK.
Furthermore, compared to nirK, occurrence of the nirS
gene appears to be more often linked to other denitrifi-
cation genes [4]. Indeed, NirK can be involved in other
nitrogen processes such as anaerobic ammonium oxida-
tion (Anammox) [41] and nitrifier denitrification [42], as
well as have a function other than anaerobic respiration
of nitrogen oxides [43]. So, distinct taxonomic breadth,
operon structure and metabolic versatility of nirS-and
nirK-type denitrifiers might contribute to distinct evolu-
tionary trajectories resulting in the higher level of se-
quence divergence for NirK.

DNRA is common in both Clade | and Il NirK-type
denitrifiers

Denitrification and dissimilatory nitrate reduction to
ammonium (DNRA), a process also contributing to ni-
trous oxide emission, were long believed to be per-
formed by distinct microbial populations. However,
genome analysis of Shewanella loihica [44], Bacillus azo-
toformans [45] and other bacteria [26] have recently re-
vealed the gene inventory for both nitrate reducing
processes to be present in one organism. Functional cap-
acity to carry out both nitrate reducing processes and
their determining environmental drivers, mainly carbon-
to-nitrogen ratio and nitrite concentrations, have since
been demonstrated for S. loihica [46, 47]. Interestingly,
all organisms containing both processes were NirK-type
denitrifiers. In our dataset, approximately 67 % of NirK-
type denitrifiers were found to harbour both pathways in
their genome (Table 1), with 25.9 % belonging to Clade I
and 40.8 % to Clade II. Unequal distribution over differ-
ent phyla was observed for nrfA and nirB, the genetic
markers for respiratory and fermentative DNRA respect-
ively and the genes coding for the periplasmic penta-
heme cytochrome ¢ and the cytoplasmic NADH-
dependent nitrite reductases respectively (Table 1). How-
ever, inadequate representation of certain phyla due to a
lower number of genomes may have obscured a clear
picture of their occurrence. The metabolic versatility
rendered from the ability to use both processes is a clear
competitive advantage in variable environments, espe-
cially those with changing carbon and/or nitrogen loads
[46, 48, 49]. Looking at both cytoplasmic and periplas-
mic nitrate reductase genes (narG and napA respect-
ively) (Table 1), a weak but significantly negatively
correlated co-occurrence was found between narG and
nrfA (R =-0.23, p <0.05) which agrees with the general
assumption that, if a nitrate reductase is present, nitrate
reduction in DNRA organisms proceeds typically via the
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periplasmic nitrate reductase Nap (Table 1) [50]. This
also nicely fits with the similar preference of Nap and
NrfA for low nitrate concentrations [48, 51]. The differ-
ential preference of Nar and NrfA for high and low ni-
trate concentrations respectively also agrees with this
negative co-occurrence pattern [48, 51]. The inventory
of denitrification genes in all 249 NirK containing ge-
nomes varied enormously (Table 1) and recently re-
ported observations such as the simultaneous presence
of NirK and NirS, the high occurrence of only Nir and
Nor in Actinobacteria and the observation of highly
truncated versions of the denitrification pathway [4]
were confirmed here. Our analyses therefore suggest that
NirK denitrifiers are not only more likely to contribute
more to nitrous oxide emissions due to the higher oc-
currence of truncated denitrification [4] but also because
of their ability to carry out DNRA. Hitherto, the mech-
anism of nitrous oxide production by DNRA bacteria re-
mains unknown, however, some evidence indicates that
nitrous oxide production might mainly result from ni-
trite detoxification during DNRA activity. For example,
it was demonstrated for both E. coli and Salmonella
enterica serovar Typhimurium that the nitrite conversion
to nitric oxide occurred only after nitrate was depleted,
required molybdate—the essential cofactor of NarGHI
nitrate reductase -, continued in #irB~ mutants [52] but
was lacking in narG™ mutants [53, 54]. Later mutagen-
esis experiments in E. coli could, however, not confirm
the involvement of NarGHI in nitric oxide production
[55]. Instead, NirB and NrfA appeared to be involved in
the production of nitric oxide [55] and their relative im-
portance appeared to be dependent on the nitrite con-
centration  [56]. Produced nitric oxide might
subsequently be converted to nitrous oxide to maintain
NO homeostasis through the presence of (i) quinol-
dependent nitric oxide reductase qNor which is known
to be present in both denitrifiers and non-denitrifiers
[45, 57, 58], (ii) NrfA [59], (iii) flavohemoglobin hmp
[60] or (iv) the cytoplasmic flavorubredoxin NorV and
its associated oxidoreductase NorW [61]. Future
mutagenic studies are nevertheless required to further
elucidate and comprehend the different nitrous oxide
producing pathways during DNRA activity.

Conclusions

This study confirms the existence of the two phylogen-
etic distinct clades of NirK based on a taxonomically di-
verse set of full-length NirK sequences, with Clade I
harbouring Class I NirK and, Clade II containing a more
diverse set of structurally different NirK. We propose a
systematic usage of Clade I and Clade II designation in
NirK sequence analyses of environmental surveys to as-
certain potential ecophysiological differences between
NirK-type denitrifiers from each clade. In amplicon-
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based surveys, enormous 7nirK sequence divergence, due
to variable nirK evolutionary trajectories, will remain the
major cause of limited primer coverage. The simultan-
eous presence of both the denitrification and DNRA
pathway appears to be more widespread than originally
anticipated, as more than half of all NirK-type denitri-
fiers were shown to contain both pathways in their
genome.

Methods

Acquisition, processing and analysis of NirK sequences for
database building

In total, a set of 267 NirK sequences, representing 249
microbial genome sequences across 15 phyla, were
downloaded from the microbial genome (complete and
DRAFT) database of GenBank. A two-step search was
performed to acquire full-length NirK sequences as
many genes are often misannotated or annotated in dif-
ferent ways. First, protein BLASTs were performed using
NirK sequences with known crystal structure (Alcali-
genes faecalis [62], Rhodobacter sphaeroides [63], Neis-
seria gonorrhoeae [21], Achromobacter xyloxidans [64],
Geobacillus kaustophilus [30]), with additionally the
NirK sequence of Bacillus azotoformans LMG 9581F
[45] to increase matches with NirK sequences of Gram-
positive bacteria. Then, search terms such as nitrite re-
ductase copper, NirK and copper containing nitrite re-
ductase were used to find additional NirK sequences via
the gene search module of the integrated microbial gen-
ome (IMG) database [65] with following settings: Filters-
Gene product Name (inexact), Sequencing status-All fin-
ished, Permanent Draft and Draft, Domain-Bacteria.

Sequence and phylogenetic analyses

All NirK sequences were aligned using the MUSCLE al-
gorithm (Settings gap penalties: -2.9 Gap Open, 0 Gap
extend, 1.2 Hydrophobicity multiplier) [66] and the
alignment was manually refined in Mega 6.06 [67]. Se-
quences were checked for the presence of the copper-
binding sites of T1Cu and T2Cu, the active site residues
and previously described conserved regions. Redundancy
of the dataset was reduced by calculating the pairwise
differences between all sequences using the number of
differences method in Mega 6.06 [67] and eliminating
different strains of the same species with identical NirK
sequences. Manual inspection of the NirK alignment
was performed to check for N- and/or C-terminus ex-
tensions and to identify differences in insertions, dele-
tions and conserved regions between the different
taxonomic groups included. The alignment was trimmed
to cover the maximum region shared by all NirK se-
quences before neighbour joining phylogenetic analysis
in Mega 6.06 [67], resulting in the exclusion of N- and
C-terminus extension from further analysis. Following
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settings were applied during phylogenetic analysis: Phyl-
ogeny test—Bootstrap (1000 replicates), Substitution
model—number of differences method based on amino
acids and Gaps/Missing data treatment—Complete dele-
tion. In addition, a maximum likelihood analysis was
performed using the FastTree tree building software [68]
with the Whelan and Goldman evolutionary model,
bootstrap testing (1000 replicates) and the discrete
gamma model with 20 rate categories.

Signal peptide prediction was done as described by
Emanuelsson et al. [69]: SignalP 4.1 was used for predic-
tion of secretory signal proteins [70], TatP 1.0 for twin-
arginine translocation signal proteins [71], LipoP 1.0 for
lipoprotein signal proteins [72], and SecretomeP 2.0 for
non-classical protein secretion [73]. When both Tat and
Sec signal peptides were predicted for a single sequence,
the one with the highest D-value was retained. Predic-
tion servers did not cover archaeal sequences.

Co-occurrence patterns of NirK, NrfA, Nar and Nap

To query NirK-encoding genomes to detect the presence
of either (in)complete denitrification and/or DNRA, a
diverse set of homologous amino acid sequences of
functionally characterized NapA, NarG, NirS, NrfA, Nor
and NosZ (Additional file 5) was used to build a pBlast
database for each gene in CLC genomics Wb 7.5. NirB
sequences were directly downloaded from the RAST ser-
ver [74] and checked for the presence of essential metal
binding motifs using Escherichia coli K12 (P08201) and
Bacillus subtilis 162 (P42435) as reference sequences. A
NirV database was built to assess the occurrence of NirV
in taxonomically diverse NirK-type denitrifiers. A pBlast
search was performed using the genome of a NirK-type
denitrifier as a query against the different BLAST data-
bases in CLC genomics Wb 7.5 (Expect value of
0.00001, Existence 11- Extensions 1 as Gap cost and
BLOSUM®62 as matrix). In case of a hit, the obtained
functional AA sequence from the genome of a NirK-type
denitrifier was also blasted against the NCBI database to
obtain information on the domains present which was
used as an extra confirmation of its functional gene iden-
tity. This way a presence/absence table was constructed
containing information on the presence/absence of all
functional genes tested in all 249 microbial genomes in-
cluded in this study. This table served as a starting point
for co-occurrence and Pearson correlation analyses that
were performed in default settings using the co-occur and
Hmisc package in R 3.1.2 [75, 76].

Availability of supporting data

All the supporting data are included as additional files.
The alignment used for the construction of the phylo-
genetic trees was deposited in Dryad (http://dx.doi.org/
10.5061/dryad.n918j).
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Additional files

Additional file 1: Bifurcating neighbour joining tree of 267 NirK
sequences representing 249 genomes. Bootstrap values < 70 % after
performing 1000 replications are not shown. NirK Clade | encompassed
Alphaproteobacteria and some Gamma- and Betaproteobacteria, while Nirk
Clade Il comprised of Firmicutes, Actinobacteria, Euryarchaea, Chloroflexi,
Bacteroidetes, Nitrospirae, Gemmatimonadetes, Planctomyces, Verrucomicrobia
and Proteobacteria. Additional information is added to the cladogram in the
following order: taxonomic position, signal peptide prediction, observed
amino acid motif around the essential T2Cu His and Asp amino acids
(previously undescribed His motifs are in bold), the presence of DNRA
(based on presence of NrfA and/or NirB), the presence of denitrification
(DNF indicates presence of NirS), characteristic insertions or deletions and

N- or C-terminus extensions. Specifically for Actinobacteria, an * was added if
no corresponding transmembrane domain was present in the N-terminus
extension. Full terms of abbreviations included are DNRA: dissimilatory
nitrate/nitrite reduction to ammonium, DNF: denitrification, NCS: non-
classical secretion, Del.: deletion, Ins. insertion, Und.: undefined, Tat: twin-
arginine signal peptide, Sec: secretory signal peptide, Lipo: lipoprotein signal.
Physiologically characterized denitrifying strains are indicated by ¥ Bacillus
azotoformans LMG 9581, Bacillus bataviensis LMG 21833 [39], Haloferax
denitrificans ATCC 35960 [40], Hyphomicrobium denitrificans ATCC 51888 [77],
Shewanella loihica PV-4 [44], Shewanella denitrificans OS217 [78], Rhodobacter
sphaeroides ATCC 17025 [79], Alcaligenes faecalis S-6 [80]. (EPS 5314 kb)

Additional file 2: Sequence logo diagrams (5'-3') depicting the
degree of nirK sequence variability of nirK1F-nirK5R primer binding
regions [34] in (a) Clade | + 11 nirK, (b) Clade I nirK, and (c) Clade II
nirK. The primer sequence is given at the top and copper binding His
included in the reverse primers is indicated in red. An indel in the
forward primer binding region of Clade Il is present. (EPS 1078 kb)

Additional file 3: Comparison of qualitative performance of
traditional and novel nirK primers on Bacteroidetes and non-
Bacteroidetes strains. @ +, PCR product of expected size, —, no PCR
amplification, n/d, not determined. Expected size of PCR product is
shown in parentheses. Total genomic DNA from a subset of eight strains
was extracted according to the guanidium-thiocyanate-EDTA-sarkosy!
method (Pitcher et al. 1989) and amplification was performed under
following conditions: 25 pl reactions containing 2.5 pl PCR buffer (10x),
2.5 pl dNTPs (2 mM), 2 pl primer (10 uM), 0.5 pl Taq polymerase (1u/pl)
and 25 ng DNA extract. Temperature-time profiles were as follows: initial
denaturation at 95 °C for 2 min, followed by 35 cycli of 95 °C for 30 s,
variable T, depending on primer set for 1 min and 72 °C for 1 min. Final
extension was performed at 72 °C for 10 min. ® nirk primer pairs previously
described by Hallin and Lindgren [33] © nirK primer pairs previously

described by Braker et al. [34] ¢ negative control, organisms known to contain
nirS © positive control used in nirk gene amplification with traditional primers
" Environmental samples included are soil, estuarine sediments and activated
sludge. Identical temperature-time profiles and PCR mixes were used, with
exception of the addition of BSA (1.26 pl of 2 mM concentration). (XLS 28 kb)

Additional file 4: Bacteroidetes specific nirK primers designed in
this study and their degree of degeneracy. * New Bacteroidetes
primers designed using the 20 Bacteroidetes nirk gene sequences
included in this study. In silico assessment of the six primer sets (forward
primer Bact4Fa or Bact4F with reverse primer Bact4R, Bact3R or Bact1R)
on our dataset, using the ‘Find motif sequence’ option in Mega 6.06 [67],
indicated that the use of Bact4Fa compared to Bact4F as forward primers
covered more Bacteroidetes nirK sequences. The level of matches with
non-Bacteroidetes nirk sequences was very low (1.5-3.8 %) for all newly
designed primer sets. (XLS 27 kb)

Additional file 5: Overview of sequences used for Nap, Nar, NirS,
Nor, Nos and NirV database building in CLC genomics Wb 7.5 to
screen NirK genomes for the presence of these nitrogen cycling
genes. Unique identifiers were included for each sequence and refer to
the accession number of the protein database (pdb), UniProtKB/SwissProt
or Genbank. NirB sequences were automatically obtained from the RAST
server, and are therefore not included in this table. Multiple copies of
certain genes of Bacillus azotoformans and Bacillus bataviensis were
included. (XLS 34 kb)
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