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Asexual expansion of Toxoplasma gondii
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Abstract

Background: The apicomplexan parasite Toxoplasma gondii is cosmopolitan in nature, largely as a result of its highly
flexible life cycle. Felids are its only definitive hosts and a wide range of mammals and birds serve as intermediate
hosts. The latent bradyzoite stage is orally infectious in all warm-blooded vertebrates and establishes chronic,
transmissible infections. When bradyzoites are ingested by felids, they transform into merozoites in enterocytes and
expand asexually as part of their coccidian life cycle. In all other intermediate hosts, however, bradyzoites differentiate
exclusively to tachyzoites, and disseminate extraintestinally to many cell types. Both merozoites and tachyzoites
undergo rapid asexual population expansion, yet possess different effector fates with respect to the cells and tissues
they develop in and the subsequent stages they differentiate into.

Results: To determine whether merozoites utilize distinct suites of genes to attach, invade, and replicate within feline
enterocytes, we performed comparative transcriptional profiling on purified tachyzoites and merozoites. We used
high-throughput RNA-Seq to compare the merozoite and tachyzoite transcriptomes. 8323 genes were annotated with
sequence reads across the two asexually replicating stages of the parasite life cycle. Metabolism was similar between
the two replicating stages. However, significant stage-specific expression differences were measured, with 312
transcripts exclusive to merozoites versus 453 exclusive to tachyzoites. Genes coding for 177 predicted secreted
proteins and 64 membrane- associated proteins were annotated as merozoite-specific. The vast majority of known
dense-granule (GRA), microneme (MIC), and rhoptry (ROP) genes were not expressed in merozoites. In contrast, a large
set of surface proteins (SRS) was expressed exclusively in merozoites.

Conclusions: The distinct expression profiles of merozoites and tachyzoites reveal significant additional complexity
within the T. gondii life cycle, demonstrating that merozoites are distinct asexual dividing stages which are uniquely
adapted to their niche and biological purpose.
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Background

Toxoplasma gondii is an intracellular zoonotic parasite
that chronically infects 30% of the world’s human popu-
lation [1]. It has a complex life cycle, infecting a wide
range of mammals and birds as intermediate hosts but
with felids as the only definitive hosts. Intermediate
hosts can become infected through ingestion of oocysts
shed into the environment via cat feces or by ingesting
tissue cysts in meat or viscera [2]. During acute infection
of naive intermediate hosts, sporozoites from oocysts or
bradyzoites from tissue cysts differentiate quickly into
tachyzoites, which divide rapidly and disseminate through-
out the host’s body. Tachyzoites are, however, controlled
efficiently by cell mediated immunity and the parasite re-
verts to the slowly replicating or quiescent bradyzoite
form, which resides within tissue cysts that are particularly
abundant in brain and heart muscle but are also present
throughout skeletal muscle [3]. When cats ingest tissue
cysts, bradyzoites can take a different developmental path-
way. They are released from their cysts and invade entero-
cytes of the small intestine, transforming into schizonts
[4,5]. The parasite population that develops in cat entero-
cytes undergoes a classical coccidian cycle involving sev-
eral rounds of asexual division and amplification followed
by differentiation into macro- and microgamonts, the
dimorphic stages of sexual development. Microgametes
fertilize macrogametes, producing diploid zygotes that
subsequently develop into unsporulated oocysts that are
excreted in the feces of the cat. The sexual phase con-
tinues within the oocyst as meiosis ensues, followed by
mitosis to produce infectious sporozoites, encased within
sporocysts inside the oocysts.

The readily culturable, rapidly dividing tachyzoite is
the best studied form of T. gondii by far — there is abun-
dant information about cell cycle, metabolism and host
parasite interactions for this stage [6]. In contrast, the
merozoite, which is the other rapidly dividing asexual
form of T. gondii that ultimately generates hundreds of
millions of gametes, is the least well studied develop-
mental stage. This is largely because merozoites are not
cultivatable in vitro and difficult to access in vivo. Thus,
investigation of the molecular mechanisms governing
initiation of parasite amplification preceding the deve-
lopment of sexual stages in cats has been severely ham-
pered. The need for a more detailed understanding of
the development in the definitive host is underscored by
the fact that infected cats shed hundreds of millions of
oocysts that can remain infectious for over a year to a
wide range of highly susceptible intermediate hosts,
including humans [7]. Here, we developed improved
protocols for cat infection, parasite isolation, and next
generation sequencing to close this knowledge gap by
building a transcription profile for the merozoite stage
of enteroepithelial development. Using genome-wide
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comparative transcriptomics, we show that merozoites
express distinct gene families in a stage-specific fashion,
and fail to express the majority of annotated ROP, GRA
and MIC proteins which are upregulated during tachy-
zoite replication. Among the most highly differentially
regulated parasite proteins were several large gene fa-
milies, including those coding for SRS proteins found on
the parasite cell surface. Other key genes expressed by
tachyzoites whose products are known to facilitate mo-
tility, host seeking, attachment, invasion, and remodeling
of the parasitophorous vacuole (PV) within the para-
sitized host cell were not expressed in merozoites. This
strongly suggests that merozoites are biologically distinct
and utilize a different suite of genes that are necessary
for asexual expansion within feline enterocytes prior to
gamont development.

Results and discussion

Purification of merozoites from feline enterocytes for
RNA-Seq analysis

T. gondii parasite preparations were generated from
enterocytes from an infected cat at onset of patency (5d
post infection). The enterocyte cell layer containing rep-
licating parasites as shown by IFA (Figure 1A) from two
regions of the rinsed and opened small intestine were se-
lectively harvested by mechanical stripping (Figure 1B).
Repeated centrifugation and re-suspension of this mater-
ial with ice-cold 0.05% Tween80 in PBS yielded micro-
scopically pure fractions of extracellular merozoites (two
biological replicates). The released merozoites showed
differential staining with Diff-Quick (Figure 1C); no
gametocyte stages were observed in this fraction by mi-
croscopy. However, even though there is no evidence for
this in the RNA-Seq data (see also in Methods) we can-
not completely exclude minor contributions from sexual
stages (macrogametes, microgametes) to the RNA pool
selected for analysis. Nevertheless, based on the over-
whelming majority of merozoites in the sample at this
early time point of infection we will henceforth refer to
this fraction as “merozoites”. Although further Percoll
gradient purification yielded merozoites that were com-
pletely free of host material, we used the detergent-
washed preparations containing minor contamination
with host RNA (Figure 1D) for sequencing to avoid any
changes to the parasite transcriptome due to additional
manipulations.

Merozoites possess highly significant stage-specific mRNA
expression differences from tachyzoites

Read mapping revealed a significant number of unique
reads for 8323 genes after removal of reads mapping to
tRNA and ribosomal RNA sequences, and normalization.
Calculation of RPKM values (i.e. mapped reads per kilo
base per million reads in dataset) to normalize for dataset
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Figure 1 Experimental infection, parasite isolation, and RNA preparation. A) Immunofluorescence assay using sheep immune serum against
T. gondii revealed numerous infected enterocytes. Nuclei are counterstained with DAPI. Shown in the top panel is a 20x magnification of a
section of the small intestine (bar = 100 uM) where villi are visible. The bottom panel at 100x magnification shows a schizont containing several
merozoites (scale bar=5 pm). B) Enterocytes containing CZ-strain merozoite stages were stripped away selectively, leaving the villus structure
and the cells of the lamina propria intact. Histology section (Hematoxilin & Eosin stained) showing stripped villi at day 5 post infection. C) Microscopic
examination of parasites in the detergent washed preparation showed only merozoite stages. D) Quality control of total RNA extracted from parasite
preparations separated on an Agilent RNA 6000 Pico Chip. The bands generated by host 285/18S ribosomal RNA (arrowheads) and parasite 265/18S
ribosomal RNA (arrows) as well as a size marker are indicated. The samples analyzed were: raw, unprocessed material from scraped intestinal lining;
Tween 80, material that was syringe-passaged and washed twice with PBS/0.05% Tween 80; Percoll, highly enriched parasite fraction after detergent
treatment and Percoll gradient centrifugation; Tachy, RNA prepared from tachyzoites grown in cell culture with human foreskin fibroblasts as host cells.
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size and gene length revealed 7148 genes with threshold
RPKMs >10 in at least one of the two life-cycle stages.
Comparative analysis (tachyzoite versus merozoite mapped
reads per gene) was performed using DESeq [8] to detect
differential gene expression. We used a high threshold
of > 8-fold difference in mRNA levels (measured as nor-
malized averaged mapped sequence reads per gene from
two datasets each for tachyzoites and merozoites) to
identify stage-specifically regulated genes [9]. The rigorous
analytical approach revealed significant stage-specific ex-
pression differences for approximately 10% of genes
annotated in ToxoDB (Figure 2A). Applying the > 8-fold
difference threshold we identified 453 genes with tachyzoite-
specific, versus 312 genes with merozoite-specific ex-
pression. This strategy therefore revealed only the most
strongly stage-specifically regulated genes; maximal dif-
ferences of RNA expression values of 54-fold (ORF

TGME49_295662, merozoite-specific) and 404-fold (ORF
TGME49_215980, tachyzoite-specific) were measured.
RNAs with > 8-fold difference in abundance at each
life cycle stage were parsed, and distributions into eleven
gene product or functional categories are shown as pie
charts (Figure 2B, Additional file 1: Table S1A, B). The
global comparison identified hypothetical genes as the
most abundant set of stage-specific genes (146/47% in
merozoites versus 294/64% in tachyzoites) expressed
between the two developmental stages examined. The
RNA-Seq data will also serve to annotate, and thereby
significantly reduce, the number of hypothetical genes
found in both samples. Genes related to metabolism or
the cytoskeleton were not differentially regulated, with
only a few exceptions. In contrast, the majority of genes
implicated in host parasite interactions, such as secreted
and surface proteins, were regulated in a stage-specific
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Figure 2 Global comparative transcriptome analysis. A) Scatterplot depicting expression levels as mapped read (DESeq values) of 8323
identified genes in CZ tachyzoites (Tz) and merozoites (Mz). The threshold for stage-regulated expression was set at 28-fold difference. B) Pie
charts show parsing of 453 tachyzoite and 312 merozoite stage-regulated genes into functional categories.
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fashion (Figure 3). For example, significantly more sur-
face (SRS) proteins were expressed in merozoites than in
tachyzoites (40 versus 12), and their expression was re-
stricted exclusively to the merozoite developmental
stage. In striking contrast, the majority of microneme-,
rhoptry-, and dense granule-specific secreted proteins
were not expressed in merozoites, suggesting the exist-
ence of an unannotated suite of MIC, ROP and GRA
proteins that promote merozoite asexual replication.

Merozoite specific gene families

Several large, unannotated gene families containing
many predicted secreted and/or membrane-associated
proteins, referred to as the 7. gondii Family A-E proteins
were identified to be largely merozoite stage-regulated
(Additional file 2: Figure S1). Family A is predominantly
merozoite-specific, with 29 of 33 members expressed above
the > 8-fold abundance threshold. Only one Family A gene
was expressed exclusively in tachyzoites (Additional file 2:
Figure S1A and Additional file 1: Table S2). Members of
the remaining four families (with the exception of
Family E) were likewise strongly expressed in merozoites
(>4-fold change to tachyzoites), but just below the thresh-
old (Additional file 2: Figure S1B). The “miscellaneous”
category (Figure 2) also contains members of additional
structural protein families many of whose members are
strongly stage-regulated. One example is the Lysine-
Arginine Rich Unidentified Function (KRUF) family of

proteins [10] (Additional file 1: Table S3). Twelve of the
14 KRUF family members are strongly expressed in tachy-
zoites but not expressed (>8-fold lower) in merozoites.

Genome annotation

RNA-Seq data provides valuable information about the
accuracy of existing gene models in ToxoDB [11]. In this
case the newly generated datasets complement existing
RNA-Seq data, currently from tachyzoite, bradyzoite,
and oocyst stages. To estimate how many gene models
have no associated RNA-Seq data we used ToxoDB
search strategies. While a detailed revision of ToxoDB
gene models based on RNA-Seq data will have to await
additional data from cat-derived gametocytes, we used
simple ToxoDB in-silico search strategies with stringent
criteria to identify merozoite-specific gene models that
are currently without any evidence for expression. Several
examples could be discovered by collating all predicted
gene models for which no or insufficient (<40™ percentile)
evidence for RNA (n=42) or protein expression (n = 38)
exist at any stage of development and comparing them
with the datasets developed in this study. We eliminated
any entries with RPKM values >10 in tachyzoites and <10
in merozoites resulting in 10 genes for which significant
expression is only documented in merozoites. The group
comprises 6 Family A genes (Additional file 2: Figure S1),
three hypothetical genes and SRS15B. Although such
search strategies are difficult to threshold and require
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Figure 3 Differential expression of SRSs and genes coding for secretory organelle (microneme, rhoptry, dense granule) proteins.
Bar graphs indicate —fold difference in mRNA levels (DESeq mapped reads); red (tachyzoite), green (merozoite).
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manual follow-up and verification, they represent exam-
ples of data mining efforts which are well within reach for
experienced ToxoDB users. In addition, fortuitous discov-
ery of large numbers of merozoite-specific RNA-Seq reads
mapping to regions without predicted gene models, e.g. in
a 4 kb region between TGME49_297820 and TGME49_
297830 on chromosome II, indicates that systematic map-
ping of merozoite data will lead to discovery and annota-
tion of many novel protein coding genes.

Metabolic capacity is similar in merozoites and
tachyzoites

Merozoite populations expand rapidly by asexual division
whilst remaining strictly confined to the enterocyte mono-
layer (Figure 1A, B) and presumably are confronted with
less variability in terms of bioavailability of metabolites
and building blocks than tachyzoites which infect different
cell types. In addition, the parasite is ideally positioned to
intercept the stream of nutrients flowing from the apical
brush border to the basolateral face of the host enterocyte.
In the absence of data on enzyme activity levels, mRNA
expression can be used effectively to model metabolic flux
distributions and stage-specific changes [12,13]. Global
comparative analysis of metabolic gene expression was
done on the subset of genes used for constructing the
iCS382 metabolic model for Toxoplasma [14]. Although

we identified 11 “tachyzoite-specific” and 7 “merozoite-
specific” genes based on >8-fold difference in mRNA ex-
pression within this subset (Additional file 2: Figure S2),
there is little evidence in our data that any of these were
clustered either on chromosomes or in any particular
metabolic pathway. Nevertheless, several genes of the en-
ergy metabolism are strongly regulated, with the glycolytic
enzyme enolase 1 (ENO1, TGME49_268860) showing the
highest difference in expression, albeit with relatively low
RPKM values, and is effectively silenced in merozoites
(RPKM 80 in tachyzoites, vs 1 in merozoites, adjusted p
value: 1.74e-7). ENOI is a bradyzoite marker and thus not
well expressed in tachyzoites to begin with. Indeed, ENO1
appears to be dispensable in tachyzoites: cells with a tar-
geted deletion of the gene grow well in vitro and in vivo,
but cyst numbers in chronically infected mice are signifi-
cantly decreased [15]. Conversely, the ENO2 (a canonical
tachyzoite marker) gene is strongly downregulated in
bradyzoites. In merozoites ENO2 mRNA is detected
at ~2-fold higher levels (RPKM 620) than in tachyzoites,
which points to an adaptive response geared towards a
higher glycolytic throughput compared to tachyzoites. Al-
though a more detailed analysis of energy metabolism
would require RNA-Seq data for these enzymes in all coc-
cidial stages and also bradyzoites integrated into a flux
model such as iCS382 [14], it is tempting to speculate that
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these adaptations in merozoites help sustain rapid growth
in conditions of low oxygen tension in the gut. In addition
to their function in glycolysis, nuclear targeted ENO iso-
enzymes were shown bind to chromosomal DNA and
modulate gene expression [15]. The significance of low
levels of ENOL1 expression in the tachyzoite dataset and
the tight silencing of the gene in merozoites in the context
of their regulatory functions remain to be investigated. The
stage-specific regulation of ENO expression is also consist-
ent with 3.5 fold higher levels of phosphoglycerate kinase
PGKI (TGME49_318230) RNA-Seq reads in merozoites. In
line with this, differential expression of the two glycolytic
lactate dehydrogenase isoenzymes LDH1 and LDH2 [16] in
merozoites is very similar to tachyzoites but even more pro-
nounced: virtual silencing of LDH2 (RPKM 2) but strong
expression of LDH1 (RPKM 962 vs 472 in tachyzoites).
There are also several examples for tachyzoite-specific ex-
pression of metabolic factors: both NADPH-generating
glucose-6-phosphate 1-dehydrogenase (TGME49_294200),
an enzyme of the pentose phosphate pathway, and 8-
amino-7-oxononanoate synthase (TGME49_290970), a key
enzyme in the biotin synthesis pathway, are not expressed
in merozoites (RPKMs 5 and 1, respectively). Biotin pro-
vides the prosthetic group for carboxyl transferases and
has essential functions in many anabolic and catabolic re-
actions. Because biotin is contained in food but also sup-
plied by gut microorganisms, a complete shutdown of its
synthesis in merozoites suggests that developmental stages
in enterocytes rely entirely on scavenging the easily access-
ible protein.

The most strongly regulated metabolic gene in mero-
zoites relative to tachyzoites is glycerol-3-phosphate de-
hydrogenase (NAD") (TGME49_210260), with essentially
no expression in the latter (RPKM 12) but a 20-fold higher
expression in merozoites (adjusted p-value: 2.7e-21)
(Additional file 2: Figure S2). RNA-Seq reads for the
homoserine O-acetyltransferase gene coding for an en-
zyme of the methionine biosynthesis pathway are similarly
increased in merozoites. Interestingly, expression of two
genes involved in purine metabolism, adenylosuccinate
synthetase, (a.k.a., IMP-aspartate ligase, TGME49_279450),
and hypoxanthine-xanthine-guanine phosphoribosyl trans-
ferase (HXGPRT, TGME49_200320) is > 8-fold higher in
merozoites. The latter, a key enzyme in the purine salvage
pathway [17], is expressed at a very high level in merozoites
with an RPKM value of 882 compared to 106 in tachy-
zoites. Another purine metabolism gene, purine nucleoside
phosphorylase (PNP, TGME49_307030), is expressed 6-
fold higher in merozoites (RPKM 88, adjusted p-value:
1.9e-2), suggesting a possible expansion of purine salvage
throughput at least during the asexual phase of parasite
population growth during enteroepithelial development.

Altogether, we conclude that in contrast to the marked
differences in gene expression of secreted proteins in
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tachyzoites and merozoites, the expression of genes
involved in metabolic processes is largely unaffected.
Hence, metabolism is predicted to be broadly similar
between tachyzoites and merozoites, although there may
be some fine-tuning in the latter for optimal growth in
enterocytes. However, no fundamental differences were
detectable that would indicate a radically different envir-
onment or nutrient availability for growth in enterocytes.
A more detailed examination and testing of specific hy-
potheses using for example the recently developed flux
balance analysis models to identify stage-specific meta-
bolic bottlenecks [14] will be required to confirm or
refute this current interpretation as well as identify po-
tential drug targets.

SRS proteins are widely expressed in merozoites

The T. gondii genome encodes several distinct, coccidian-
specific surface gene families, including the SRS and SAG-
unrelated surface antigens (SUSA) [18]. Arguably the most
strikingly regulated set of genes in the merozoite dataset
were those coding for the 111 members of the SRS super-
family of proteins annotated in ToxoDB (Version 8.1);
expression of more than 52 members of this family was
present in merozoites, whereas a separate set of 14 SRS
genes were expressed exclusively in tachyzoites (Figure 3).
Nearly half of the merozoite expressed genes coding for
SRS proteins were present in 5 clusters, SRS12, 15, 22, 26
and 55. SRS proteins are involved in attachment to host
cells, but also provoke immune reactions and regulate
parasite virulence, which is thought to promote the forma-
tion of tissue cysts in intermediate hosts in order to estab-
lish persistent, latent infections that facilitate transmission
of infection to the definitive host. Previous work has
showed that tachyzoites differentially express a number of
SRS genes [18], and these expression differences have been
postulated to account for the ability of this stage to invade
a broader range of host cells than other coccidians [10].
However, merozoites, which only infect a single cell type
(the feline enterocyte) co-dominantly expressed a large
repertoire of 52 SRS proteins in a developmental life-cycle
stage-dependent manner (Additional file 2: Figure S3). Al-
ternatively, recent work has established that the SRS fold
is present in the 10 member Pfs-230-related 6-Cys family
of Plasmodium adhesins [19] that facilitate gamete-
gamete recognition and promote gamete recognition
and fertilization. This may suggest that the merozoite-
restricted SRS genes are less relevant for attachment and
invasion within enterocytes, but rather promote gamete
development and fertilization. Given the demonstrated
ability of SRS proteins to promote immune responses, it is
also conceivable that they play a role in stimulating intes-
tinal inflammation and diarrhea, to facilitate the produc-
tion and dispersal of oocysts.
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The striking stage-specificity of expression of SRS
genes in merozoites versus tachyzoites (and as previously
observed for merozoites versus bradyzoites) raises ques-
tions about how their expression is regulated. One clue
to this can be obtained from analysis of chromosomal
distribution of the various SRS genes [10,18]. However, we
find little evidence of concerted clustering of merozoite-
or tachyzoite-specific SRS genes on distinct chromosomes
(Figure 4), which is not a complete surprise since 7. gondii
SRS genes are dispersed across all chromosomes and not
exclusively in a subtelomeric regional distribution pattern
for surface antigen genes that is characteristic for other
protozoa [20-23]. Thus, rather than relying on sequential
expression of a single gene or promoting rapid ectopic
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recombination rates to generate surface antigenic varia-
tion, T. gondii expresses relatively large sets of non-
overlapping, co-dominant SRS transcripts [18,24].

Merozoites express a distinct set of microneme proteins

Micronemes are small organelles clustered at the anter-
ior end of apicomplexan parasites and generally secrete
adhesive proteins that are important for motility and
invasion. Microneme (MIC) proteins contain one or se-
veral adhesive domains such as thrombospondin, von
Willebrand factor A, epidermal growth factor (EGF) or
PAN-domains (reviewed in [25]). Comparative analysis of
RNA-Seq data shows that the majority of the 26 Toxo-
plasma MICs and MIC2 associated protein (MIC2AP)
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Figure 4 Chromosomal distribution and relative expression levels of SRS, GRA, and T. gondii protein A and D families. The chromosomal
position and distribution of SRS (0), GRA (O) and T. gondii protein A and D families (A) that are differentially expressed between merozoites and
tachyzoites is displayed. Tandemly repeated genes are shown as clusters. Uncoloured genes were not expressed in either tachyzoite or merozoite >stage
(RPKM <10). Black coloured genes were not differentially expressed between tachyzoites and merozoites. The shade of red (induced in tachyzoites
relative to merozoites) or green (induced in merozoites relative to tachyzoites) indicated the fold increase in expression relative to the other life cycle
stage. The chromosomal position of SRS pseudogenes is not displayed. The majority of GRA genes were upregulated in tachyzoites. Only GRATT gene
expression was specifically induced in merozoites. The majority of SRSs were upregulated in merozoites. 52 SRS genes were upregulated in merozoites
whereas only 14 were upregulated in tachyzoites. Genes in each cluster tended to be coordinately regulated according to life cycle stage, with

only 4 exceptions: One gene in each of the SRS16, SRS36, T. gondii Family A (Chromosome Xll) and T. gondii Family D (Chromosome XI) clusters was
upregulated in tachyzoites, relative to merozoites.
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accumulate a high number of mapped tachyzoite reads
(Additional file 2: Figure S4). Conversely, the range of
MIC genes that are specifically expressed in merozoites is
considerably reduced and restricted to the highly ex-
pressed genes coding for PAN-domain containing proteins
MIC17A-C (Additional file 2: Figures S4 and S5), MICI12,
a gene annotated as a putative MIC, and a microneme-
like protein. Interestingly, both MIC2 and MIC2AP [26],
as well as MIC6-1-4 [27], which are strongly expressed in
tachyzoites and secreted as functional complexes, are
virtually silenced in merozoites (Figure 5). Similarly, the
RNA-Seq reads for the MIC3 escorter MIC8 [28] are
>100-fold lower in merozoites, whilst MIC3 mRNAs are
only 6-fold less abundant. Since trafficking to the organ-
elles, as well as deployment on the surface, seems to occur
in complexes as a rule [29], we analyzed the predicted
topologies of the six merozoite-specific MIC proteins.
None had the predicted transmembrane domain and cyto-
plasmic tail typical for canonical escorters such as MIC6
[30]. In tachyzoites these adhesin complexes are essential
components of the molecular motor and play a key role in
providing the machinery for gliding motility [31].

The number of microneme organelles of different
Apicomplexa has been correlated with the requirement
for gliding motility [25], ranging from many in Eimeria
sporozoites and merozoites [32] to none in Theileria
zoites [33]. Toxoplasma tachyzoites, which display vigor-
ous gliding motility and are able to cross cell barriers, have
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many microneme organelles and express a wide range of
MIC proteins. Although T. gondii merozoites have a high
number of microneme organelles [5], the complement of
expressed MIC and other genes (e.g. AMAI [34]) coding
for proteins secreted from micronemes appears to be
significantly restricted, suggesting that the size of the
expressed protein complement is not necessarily corre-
lated to the number of organelles present in the cell. On
the other hand, the finding that prominent tachyzoite
MIC complexes are not expressed in merozoites
(Figures 3 and 5), could be explained by fundamental
differences in their mode of gliding motility and cell
invasion in contrast to the extraintestinal developmen-
tal stages. Because merozoite proliferation is restricted
to enterocytes, the most obvious difference is that ma-
ture merozoites egress into the gut lumen and invade
new host enterocytes from the exposed apical side. This
requires some migration through intestinal contents
and within the mucus layer rather than through inter-
cellular spaces and on cell surfaces. Because freshly iso-
lated extracellular merozoites display vigorous gliding
motility (data not shown) it is unlikely that these stages
are without surface adhesins linked to the glideosome
complex [31,35]. Rather, as yet unknown MIC adhesins
specific for enterocyte surface receptors and containing
non-canonical adhesive domains will likely be discov-
ered among hypothetical proteins that are expressed in
a merozoite stage-specific manner.
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Figure 5 Differential expression of three MIC escorter/adhesin complexes. Expression values are indicated as [RPKM], asterisks: genes coding
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Merozoites only weakly express genes of the tachyzoite
moving junction complex

There is a striking difference in expression of genes
coding for rhoptry neck proteins (RONs) and AMAL1 in
tachyzoites versus merozoites (Figure 6). In particular,
mRNA levels of genes coding for proteins that combine
to form the moving junction as part of the tachyzoite in-
vasion machinery (ie, AMAIL, RON2, RON4, RON 5
and RONS; Figure 6) [36,37] are dramatically lower in
merozoites. This supports the contention, raised above,
that the mechanism of gliding motility and by extension
cell invasion is distinct in merozoites. The dramatically
lower expression of the canonical tachyzoite AMAI1
(TGME49_255260) in merozoites is not compensated by
a significant increase in expression of the sporozoite-
specific AMA1 paralog and the associated sporoRON2
[38] is not expressed. A third Toxoplasma AMAL para-
log (TGME49_300130) is weakly expressed in both
stages, and its functional role in invasion, if any, remains
to be demonstrated. Interestingly, previous claims that
AMAL is essential for tachyzoite invasion [39] has been
revised in light of recent data showing that AMAI1
knockout tachyzoites invade host cells normally in vitro
[40]. On the one hand, gene expression data alone pre-
dicts that invasion via the massively expanded surface of
the enterocyte brush border by merozoites is distinct
from the well described process observed in extrain-
testinal stages. On the other, the exact requirements and
concepts for formation of a tight junction [36,41-44]
which will be moved towards the posterior end of the in-
vading parasite by motor proteins are currently being
revisited [40,45]. While gene expression data indicates
fundamental differences in cell invasion by merozoites,
the question whether merozoites assemble an alternative
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moving junction machinery for invasion or invade en-
terocytes by an entirely different mechanism, e.g. based
on membrane-zippering such as in Theileria [46] or
Neospora [47], requires further investigation.

Merozoites express a distinct set of rhoptry proteins

We also investigated RNA expression for a group of 57
genes coding for rhoptry proteins (ROPs) compiled from
annotated gene models on ToxoDB (Version 8.1) [48]
and expanded by manual annotation (Additional file 1:
Table S4). In total 24 ROP genes were significantly
differentially expressed (=8-fold abundance threshold) bet-
ween tachyzoites and merozoites (Figure 3 and Additional
file 2: Figure S6); 19 genes were considered not expressed
in merozoites (RPKM values were <10 in all cases) whereas
two were expressed at very low levels (RPKM < 40) in mer-
ozoites. Four ROP genes were, however, expressed speci-
fically in merozoites. Interestingly, in a survey of known
functions of ROP proteins, we find that the prominent
murine virulence factors ROP16 and ROP18/5 are not
expressed in merozoites.

ROP16 and 18, which both possess a conserved cata-
lytic triad and phosphoryltransfer activity, have been
identified as secreted, strain-specific virulence factors in
mice. ROP16 phosphorylates the signal transducers and
activators of transcription (STATs) 3 and 6, and re-
gulates interleukin 12 levels [49,50]. The polymorphic
ROP18 kinase phosphorylates and thus inhibits loading
of immunity-related GTPase (IRG) 6 onto the PV mem-
brane, thereby preventing parasite clearance in infected
mice by activated macrophages [51,52]. ROP5, a pseudo-
kinase with an altered catalytic triad, regulates the kinase
activity of ROP18 [53] possibly by an allosteric mecha-
nism. Therefore, the absence of IRGs in cats is the
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Figure 6 Genes coding for components the tachyzoite moving junction invasion machinery are expressed at significantly lower levels
in merozoites. Cartoon depicting the RON and AMA protein assembly at the moving junction complex (left); bar graph showing expression
(RPKM values) of components and paralogs in tachyzoites and merozoites. Mt, microtubules; PM, host cell plasma membrane.
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simplest explanation for the silencing of the ROP18 (and
possibly the ROPS) gene in merozoites rendering expres-
sion and secretion of these ROPs as part of a defense
strategy redundant during enteroepithelial development.

Merozoites express a distinct set of dense granule
proteins

We detected significant differences in expression within
the current set of 25 annotated genes encoding dense
granule (GRA) proteins (Figure 3, Additional file 2:
Figure S7). There was a significant overall bias towards
high expression in tachyzoites. Twelve GRA genes were
not expressed in merozoites (RPKM < 10), whilst only 2
GRA genes (GRAI1l isoforms TGME49 212410 and
TGME49_237800, which have, as yet, undefined func-
tions) are >8-fold higher expressed in cat stages (18- and
13-fold, respectively; Figure 3). The high expression of
GRA22 in tachyzoites is intriguing, since this protein
regulates parasite egress from host cells [54] and the ab-
sence of GRA22 expression in merozoites is therefore
puzzling. This might imply that egress from cat entero-
cytes is less coordinated by the parasite and this may
partially explain why parasite development is asynchron-
ous in the cat intestine. GRA genes expressed in tachy-
zoites fall into two main groups: moderately highly
expressed GRA genes (RPKM values in the range of 100)
code for proteins that are exported across the PV mem-
brane that function to alter host gene expression (ie.,
GRA 15, 16, and 24); versus highly expressed GRA genes
(RPKMs > 10%) some of whose products participate in
the formation of the tubulovesicular network (TVN)
within the PV space. Our RNASeq data shows that
GRA15 is not expressed in merozoites. This tachyzoite
virulence factor has a well-defined role in the activation
of several host cell pathways that trigger potent pro-
inflammatory responses causally associated with tachy-
zoite to bradyzoite conversion [49,55-59]. In mice, parasite
survival is dependent on combined expression of GRA15
with the STAT-activating form of ROP16 [49]. Both
GRA15 and ROPI6 genes are not expressed in merozoites,
strongly suggesting that JAK-STAT3/6 and NF-xB sig-
naling pathways in enterocytes of the definitive host are
not targeted by these secreted factors. GRA24 and 16 are
also not expressed in merozoites. GRA24 was recently
identified as a parasite soluble effector that traffics to the
host cell nucleus, interacts with p38, and is thought to
synergize with GRA15 to promote production of the pro-
inflammatory cytokine, IL12 [60]. Similarly, GRA16 is
exported to the host cell nucleus and affects transcription
of host cell genes involved in metabolism and cell cycle
processes [61]. Whether these host cellular processes are
not targeted by merozoite gene products during their
asexual expansion in cat enterocytes, or if as yet
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unannotated merozoite-specific paralogs exist to perform
this function, remain to be established.

The RPKM values for GRA2, 4, and 6 genes, coding
for three proteins which are directly associated with the
TVN in the PV [62,63], are >8-fold lower in merozoites
compared to tachyzoites (Additional file 2: Figure S7).
The silencing of these GRAs (RPKMs <10 and log [2]-
fold change > 8) in merozoites is consistent with electron
microscopy data [5] showing that type C-E schizonts in
cat enterocytes do not elaborate the extensive TVN
which is typical of vacuolar spaces of tachyzoites, brady-
zoites and type A and B schizonts. This suggests that
later stage schizonts dispense with the TVN because of
their different mode of cell division [5]; parasites in type
C-E schizonts multiply by endopolygeny rather than by
endodyogeny as early stage merozoites, tachyzoites and
bradyzoites. Magno et al. [64] suggested that an im-
portant structural function of the TVN might be
organization of daughter cells within the PV during
multiplication. Involution of the TVN and repression of
genes coding for factors associated with these mem-
branes in merozoites is consistent with endopolygeny
and attachment of parasites to residual bodies [5]. Con-
versely, the GRA7 gene, whose 36 kDa product is involved
in nutrient acquisition by trapping host endosomal-
lysosomal vesicles in the PV [65], is expressed at ~4-fold
lower levels in merozoites (Additional file 2: Figure S7)
but is still relatively abundant with an RPKM value of 351
(1837 in tachyzoites). Thus, although not always asso-
ciated with the PV membrane, GRA7 appears to be uni-
versally expressed throughout the life cycle [66].

Additional factors secreted by dense granules include
Kazal-type protease inhibitors PI1, PI2 (TgME49_217430,
TgME49_208450) [67-69] (Table S5), which are secreted
into the PV and appear to be differentially regulated, des-
pite strong conservation on the structural and sequence
level. Whilst read numbers for the PII gene, the most
abundantly expressed protease inhibitor in tachyzoites
[69], are >2-fold higher in merozoites, PI2 is not expressed
in merozoites (RPKMs 50-fold lower). Three of five ad-
ditional genes annotated as Kazal-type family protease in-
hibitors (Table S5) show significantly higher expression in
merozoites. However, whether the four predicted secreted
members of this group also traffic via dense granules is
unknown.

Trans and cis regulators of merozoite and tachyzoite
biology

Both trans and cis regulators are known to play crucial
roles in the transcription of stage specific genes in 7. gondii.
The trans-acting ApiAP2 transcription factors were dis-
covered in the Apicomplexa almost 10 years ago [70] and
regulate various developmental processes in 7. gondii, in-
cluding bradyzoite conversion, with TgAP2XI-4 [71], and
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TgAP2IX-9 [72] promoting and restricting tissue cyst
formation, respectively, as well as the tachyzoite cell cycle,
with TgAP2XI-5 potentially regulating hundreds of cell
cycle-dependent genes [73]. Using stringent criteria we
identified three significantly merozoite- or tachyzoite-
specifically expressed ApiAP2-coding genes in our study
(Additional file 2: Figure S8). One merozoite-specific gene
T1gAP2VIia-I, and two tachyzoite-specific genes, TgAP2-
XII-I and TgAP2VIia-II showed >8-fold difference in their
expression levels, suggesting that these transcription fac-
tors may play a role in regulating a suite of stage-specific
genes. Relaxing the criterion to include genes differing >4-
fold in mRNA abundance identified 8 additional
tachyzoite-, and 2 additional merozoite-specific genes (a
total of 13 regulated stage-specific TgAP2s). Interestingly,
several other TgAP2 genes were expressed at very low
levels, and in the case of TgAP2XII-3, can be considered si-
lenced in both stages. Overall, differential expression of
TgAP2 is not extensive between tachyzoite and merozoites,
and this may reflect their similar life cycle fate as rapidly
amplifying asexual stages. However, the evenly graded dis-
tribution of RPKM values (Additional file 2: Figure S8B)
suggests that some differences may become more pro-
nounced when merozoites differentiate to gametocytes.
Moreover, the two datasets compared here do not repre-
sent synchronized populations, which would average out
any dynamics occurring during the merogony cell cycle
specifically during development from stage A through
stage E schizonts. By contrast, 24 of the 67 predicted
TgAP2-coding genes were found to be differentially
expressed at different check-points of the tachyzoite cell
cycle in a microarray analysis of synchronized parasites
[74]. In addition, ApiAP2s have been shown to bind other
transcriptional regulators such as histone lysine acetyl-
transferases [75], histone deacetlyase [76] and even other
ApiAP2s [77], producing interactions that may confound
correlations between transcription factor activities and
their cognate gene transcript levels.

Next, we used the Regulatory Sequence Analysis Tools
on-line computational resource (http://www.rsat.eu/) to
perform a global analysis of upstream flanking sequences
of stage-specifically expressed genes. The analysis returned
several enriched six-base DNA motifs within the predicted
promoters, ie. 500 bp genomic regions upstream of
the transcriptional start site of either merozoite- or
tachyzoite-specific genes. Listed in Figure 7A are the five
most significantly enriched 6 bp motifs found. Pattern
matching between these enriched motifs produced an
amalgamated seven-base DNA muotif in both merozoite-
and tachyzoite-specific gene promoters, representing
putative cis-regulatory elements (Figure 7B and C, re-
spectively). The GAAGAAA motif, present in 21.5% of
merozoite promoters, was also present in 19.2% of tachy-
zoite promoters, indicating that this motif is unlikely to
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represent a merozoite-specific cis-regulatory element
(Figure 7D). However, the GAGACGC motif is clearly
enriched in the promoters of tachyzoite-specific genes
(present in 20.4% of promoters) over merozoite-specific
genes (6.5%). The distribution of this putative cis-regula-
tory element in the predicted promoters of the 15 most
tachyzoite-specific genes is illustrated in Figure 7E. This
motif is nearly identical to a motif (A/TGAGACG) pre-
viously identified as a functional cis-element in the pro-
moters of dense granule genes, such as TgGRAI, TgGRA2,
TgGRAS and TgGRAG6, as well as the tachyzoite marker,
TgSRS29B (aka TgSAGI) [78]. A sequence-specific tran-
scription factor capable of activating gene transcription
via this cis element has yet to be identified; however, it
may play a significant role in promoting and/or maintain-
ing a tachyzoite developmental state.

Conclusions

Taken together, our data support a correlation between
promiscuity of invasion and dissemination of the 7. gon-
dii parasite in a variety of host cells and tissues. In
addition, the data presented here underscore the phe-
nomenon of non-overlapping stage-specific expression
of gene sets throughout development (e.g. SRS, ROP,
GRA, MIC) as previously proposed [79] within the Toxo-
plasma life cycle [18]. Hence, the differentiation of bra-
dyzoites into merozoites, which occurs only in the feline
intestine, entails the shut down or downregulation of
suites of tachyzoite-specific genes that would normally
be activated to support Toxoplama’s promiscuous ability
to invade and reproduce asexually in virtually any nucle-
ated cell from essentially any warm-blooded animal. This
study provides compelling datasets to begin to explore
the suites of genes activated to support merozoite inva-
sion, differentiation, and expansion in cat enterocytes
and establishes T. gondii as an excellent genetically-
amenable model system to study schizont asexual ampli-
fication prior to gamete development, the hallmark of
coccidian development in the definitive hosts these
coccidian parasites infect. Our data suggest that gliding
motility and the formation of a moving junction (or an
alternative invasion apparatus) requires machinery that
is specifically adapted to breaching the enterocyte sur-
face barrier for every cycle of replication, egress and inva-
sion. Studies of the SRS proteins exclusively expressed
during coccidian development will determine if these
proteins promote attachment and invasion of feline enter-
ocytes, or whether they participate in gamete-gamete
recognition to promote fertilization, analogous to the
orthologous role performed by related 6-Cys family pro-
teins during Plasmodium development [80]. Understan-
ding the governance of gene expression and regulation
within these families, e.g. via interactions with the TgAP2
family of transcriptional regulators, may prove key to
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GAAGAA* 177 122.89
AAGAAA* 192 137.81
merozoite-specific GAGGCA 115 77.95
GCATGC 66 40.87
AGAAAA* 216 168.58
GAGACG* 236 126.5
AGACGC* 196 123.79
tachyzoite-specific ~ ATATAT 58 24.08
CGGTAG 114 62.75
CGTCGC 180 113.59
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Figure 7 Identification of cis regulatory elements in the predicted promoters of merozoite- and tachyzoite-specific genes. (A) Enriched
six-base motifs were identified within the predicted promoters of merozoite- and tachyzoite-specific genes. Listed for both stages are the five
most significantly enriched motifs, their occurrence, expected occurrence, and occurrence significance. Asterisks indicate motifs overlapping with
the putative cis regulatory elements for promoters of merozoite- and tachyzoite-specific genes, shown in (B) and (C), respectively. (D) Percentage
of promoters from merozoite- or tachyzoite-specific genes that contain either the GAAGAAA or GAGACGC putative cis elements. (E) Distribution
of the GAGACGC cis element (blue) within the promoters of the fifteen most tachyzoite-specific genes. The predicted promoters correspond to
the 500 bp genomic region directly upstream of the transcriptional start site, indicated by an arrow.
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dissecting the full panorama of pathways that regulate the
definitive coccidian lifecycle and aid in the complete and
accurate annotation of the T. gondii genome database.

Methods

Isolation of enteroepithelial parasite stages from a cat
infected with bradyzoites from sheep

Oocysts of the CZ T. gondii isolate (type II) were origi-
nally isolated from the feces of a captive Siberian tiger
(Panthera tigris altaica) at the Dvir Kralové Zoo (Czech
Republic). The strain isolation was performed in 2005 by
Dr. B. Koudela, and the strain was maintained by passages
between mice and cats [81,82]. After obtaining the strain
from Dr. Koudela the parasites were passed once through
mice and cats to generate ~50 million CZ oocysts, which
were used to infect four sheep (10* oocysts per sheep).
Equal amounts of brain tissue containing bradyzoites in
tissue cysts from three chronically infected sheep was
homogenized and fed to cats (55 g per cat). A semi-

quantitative analysis of parasite burden in sheep brain
tissue was done by magnetic capture real time PCR, to
confirm that equal quantities of parasites were inoculated
into each cat but no definitive count of cysts was per-
formed. Pilot experiments had established that this proto-
col results in strong and reproducible infections of cats.
All feces from experimentally infected cats were collected
and oocysts were enumerated by microscopy every day.
For isolation of enteroepithelial stages of 7. gondii a cat
that was experimentally infected with brain cysts from a
sheep was euthanized after onset of patency (day 5 post in-
fection). The small intestine was clamped, removed, and
immediately cooled to 0°C. All subsequent procedures for
parasite isolation and purification were performed in a
cold room (4°C) and on ice. The small intestine (~70 cm)
was carefully rinsed with PBS, divided into four sections of
equal length, and opened. Enterocytes were selectively re-
moved from villi by gentle scraping with a rubber police-
man (Figure 1B). Tissue samples for histology were taken
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before and after removal of enterocytes. The cells contain-
ing numerous parasites were washed off with ice cold PBS
and collected by centrifugation (10 min, 900 x g, 2°C). En-
terocyte preparations were evaluated microscopically after
fixation and staining to identify parasite stages. The two
enterocyte samples collected from two different sections
of the small intestine were washed with buffer containing
Tween80 and syringe-passaged The samples appeared to
consist exclusively of free merozoites as no other stages
(i.e. gamonts) could be identified by microscopy (Figure 1C).

Histological and fluorescence microscopy examination
of small intestinal tissue sections revealed numerous
parasite stages that were readily identified as merozoites,
schizonts (Figure 1A) and also occasional gamonts due
to their very distinctive morphologies. However, the final
preparation was clearly highly enriched for merozoites
allowing us to focus on interrogating RNA expression
datasets specifically for differences between asexually de-
veloping merozoites and tachyzoites. The enrichment for
merozoites or, more precisely, the paucity of gameto-
cytes in the two biological replicates used for RNA-Seq,
was indeed borne out by a lack of known gametocyte
markers (e.g. genes coding for flagellar or oocyst wall
proteins) in the RNA-Seq datasets. This is in contrast
with a preliminary gene expression analysis of stages iso-
lated at or past peak patency (Ramakrishnan et al. un-
published). CZ strain tachyzoites were grown in vitro;
confluent human foreskin fibroblast (HFF) cells were in-
fected at an MOI (>5) and harvested from synchronized
cultures when 1/3 of the vacuoles had spontaneously
lysed.

Ethics statement

Experiments involving animals were performed under
the direct supervision of a veterinary specialist, and ac-
cording to Swiss law and guidelines on Animal Welfare
and the specific regulations of the Canton of Zurich.
Permit number 108/2010 covers all animal experiments
presented in this paper and was approved by the Veter-
inary Office and the Ethics Committee of the Canton of
Zurich (Kantonales Veterindramt Ziirich, Zollstrasse 20,
8090 Ziirich, Switzerland).

RNA isolation and quality control

Infected tissue and parasite samples were resuspended
in 600 pl buffer RLT (QIAGEN) containing 10 pl/ml
[-mercaptoethanol. Cell suspensions were then passed
through a QIAshredder (QIAGEN) column by centrifu-
gation at > 8000 g for 1 min. The RNA was then purified
using the RNeasy Mini Kit (QIAGEN) according to the
manufacturer’s protocol (including an on-column DNA
digest), and eluted in RNase-free water. The quality of the
RNA was analysed using the Agilent RNA 6000 Pico Kit
(Agilent) and a Bioanalyzer 2100 (Agilent) (Figure 1D).
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RNA concentration was determined using a Qubit
fluorometer (Invitrogen) together with the RNA assay
(Invitrogen).

The genome-wide transcriptome library, was produced
using the MicroPolyA Purist Kit (Ambion) and the
SOLiD Total RNA-Seq kit (Applied Biosystems). Briefly,
approximately 300-500 ng of mRNA were enriched
starting from 15-20 pg of total RNA, using MicroPolyA
Purist Kit (two rounds of purification to receive only
minor ribosomal RNA contamination). The quality and
the quantity of the extracted polyA RNA was assessed
using a Bioanalyzer (Agilent) Picochip and a Qubit
fluorometer (Invitrogen), respectively. The mRNA was
then fragmented using RNase III. Ligation of the adaptor
mix and reverse transcription were performed following
the manufacturer’s protocol. ¢cDNA libraries were se-
lected for fragment sizes between 150 and 250 bp, amp-
lified for 15-18 cycles of PCR using barcoded adaptor
primers and purified using the PureLink PCR micro kit
(Invitrogen). Library size and concentration were assessed
using a Bioanalyzer (Agilent) and a Qubit fluorometer
(Invitrogen), respectively.

The poly-A transcriptome libraries were used for
emulsion PCR (e-PCR) using a concentration of 0.5 pM.
The barcoded libraries were pooled before e-PCR and
the resultant beads were loaded on a full SOLID 5 slide
(Applied Biosystems), according to manufacturer’s in-
structions. SOLIiD ToP Sequencing chemistry was used
to produce paired-end (50 bp + 35 bp) sequencing reads.

Comparative transcriptomics of merozoites and
tachyzoites

We generated RNA-Seq datasets from CZ strain enter-
oepithelial parasites isolated from mechanically stripped
enterocytes and from tachyzoites cultured in human
foreskin fibroblasts on a SOLiD5 platform (Applied Bio-
systems). Two biological samples were sequenced for each
stage (two separate parasite and RNA preparations from
different sections of the small intestine as well as two dif-
ferent tachyzoite cultures). The samples contained diffe-
rent proportions of parasite and host RNA (Figure 1D).
Adjustments to account for these differences were: i) re-
moval of all reads mapping to tRNAs, and ribosomal
RNAs prior to DESeq analysis, and ii) normalization
and weighting by using transcripts lengths to calculate
RPKMs. The reads in colorspace were aligned to the T.
gondii ME49 genome from ToxoDB v8.1 using SHRiMP2
mapper [83,84].The count table of reads fitting the gene
coordinates have been processed by Bioconductor library
DESeq [8,85] to produce the table that includes the mean
read number for each gene together with a p-value and
fold change. We have applied an 8-fold (log2 > [3]) change
as a cut-off for differential expression.
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Immunofluorescence assay and microscopy

Samples from the small intestine of infected cats were em-
bedded in paraffin. Sections of 3 pm were placed on slides
with a positively charged coat. After drying over night at
37°C, slides were deparaffinized 3 times 2 min in xylene
and then washed twice 1 min in 100% ethanol. Slides were
then washed 1 min each in 96%, 70% ethanol, and water.
Slides were then submerged in alkaline Target Retrieval
Solution pH 9 (Dako), boiled for 20 min in a pressure
cooker at 96°C and transferred to water. Permeabilization
was done in PBS/0.3% Triton X-100 (permeabilization
buffer, PB) for 5 min. Blocking was performed in rabbit
serum for at least 1 h at RT. After two washes in PB for
5 min, sheep immune serum against 7. gondii diluted in
20% rabbit serum/PB was used to label the parasites by
overnight incubation at 4°C. Slides were washed three
times with PB for 5 min and samples were incubated with
rabbit anti-sheep FITC in 20% rabbit serum/PB for 1 h at
RT. Slides were then washed once in PB and the nuclei
were counter stained with 1 pg/ml DAPI in PB for
15 min. Slides were washed again twice with PB for 5 min
and the samples were mounted using Vectashield (Vector
Laboratories). Imaging was performed using a Leica DMI
6000 B microscope and the Leica LAS AF software. Im-
ages were processed using Image]J version 1.47.

Availability of supporting data

The raw sequence data and a complete description of the
study are available at the European Nucleotide Archive
(Study accession no. PRJEB7935). The data are also avail-
able via Toxoplasma Genomics Resource, ToxoDB, [http://
www.toxodb.org/toxo/]. All other data sets supporting the
results of this article are included within the article and its
additional files.

Additional files

Additional file 1: Table S1A. Significantly higher expressed genes in
merozoites (see also Figure 2). Table S1B. Significantly higher expressed
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