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Abstract

Background: Single-probe analyses in epigenome-wide association studies (EWAS) have identified associations
between DNA methylation and many phenotypes, but do not take into account information from neighboring
probes. Methods to detect differentially methylated regions (DMRs) (clusters of neighboring probes associated with
a phenotype) may provide more power to detect associations between DNA methylation and diseases or
phenotypes of interest.

Results: We proposed a novel approach, GlobalP, and perform comparisons with 3 methods—DMRcate, Bumphunter,
and comb-p—to identify DMRs associated with log triglycerides (TGs) in real GAW20 data before and after fenofibrate
treatment. We applied these methods to the summary statistics from an EWAS performed on the methylation data.
Comb-p, DMRcate, and GlobalP detected very similar DMRs near the gene CPT1A on chromosome 11 in both the pre-
and posttreatment data. In addition, GlobalP detected 2 DMRs before fenofibrate treatment in the genes £7V6 and
ABCGI1. Bumphunter identified several DMRs on chromosomes 1 and 20, which did not overlap with DMRs detected by
other methods.

Conclusions: Our novel method detected the same DMR identified by two existing methods and detected two
additional DMRs not identified by any of the existing methods we compared.
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Background

DNA methylation has been implicated in a number
of diseases and is increasingly being used as target
for drug therapies [1]. DNA methylation arrays allow
for affordable epigenome-wide association studies
(EWAS), but there is evidence that the standard
single-probe approach is underpowered [2]. Cancer
studies have found that hypermethylation of many
probes in a gene promoter is associated with gene
silencing, indicating that analyzing methylation by
region may be more powerful [3]. There are several
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existing methods to detect differentially methylated re-
gions (DMRs) by combining EWAS summary statistics
[4—6]. Bumphunter smooths regression coefficients of
neighboring probes to identify regions with higher coeffi-
cients than expected by chance. DMRcate implements a
similar approach, smoothing and combining probe ¢-sta-
tistics to detect regions enriched for associations with a
phenotype. Comb-p uses metaanalysis to combine the
p values of neighboring probes to detect regions enriched
for association.

We compared these 3 existing methods—DMRcate,
Bumphunter, and comb-p—to a new algorithm, GlobalP,
to detect DMRs using the real GAW?20 data from the
Genetics of Lipid Lowering Drugs and Diet Network
(GOLDN) study.
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Methods
Sample
GOLDN study participants were recruited from the
Family Heart Study in Minneapolis, MN, and Salt Lake
City, UT [7]. All participants were self-reported to be
white. Triglycerides (TGs) were measured at 4 visits,
and all participants were treated with 160 mg/day of
fenofibrate after 3 weeks, between visits 2 and 3 [8].
DNA methylation in CD4+ T cells was measured using
the Illumina Infinium Human Methylation 450 K BeadChip
(Ilumina 450 K) array before treatment at the second visit
and after treatment at the fourth visit. The Illumina 450 K
array measures DNA methylation at approximately 480,000
cytosine-phosphate-guanine (CpG) sites [9]. From this
array, we obtain approximately 480,000 beta values between
0 and 1 for every participant, which represent the percent-
age of DNA strands that are methylated at each of these
CpG sites, or probes. Beta values are easily interpretable,
but often have severe heteroskedasticity. Therefore, some
methods use methylation M values instead, defined as

M= logz(%ﬁ) [10]. There were 997 participants from

182 families with methylation data at 1 or 2 exams.

Methylation preprocessing

Analysis of Illumina 450 K array data is susceptible to
several technical challenges. The array uses 2 different
technologies, Infinjum I and Infinium II probes, to
measure DNA methylation. Infinium II probes are not
as accurate as Infinium I probes for beta values close to
0 or 1 [9]. Differences between the 2 probe types must
be corrected to avoid spurious enrichment of associa-
tions in Infinium I probes [11].

Data made available were adjusted for probe type
by fitting a second-order polynomial to all Infinium I
and Infinium II probe pairs within 50 base pairs (bp)
of one another. Because there were remaining sys-
temic differences in the range of Infinium I and Infi-
nium II probe beta values, we further adjusted for
probe type wusing beta-mixture quantile dilation
(BMIQ) to avoid Infinium I probe enrichment bias
[11]. Finally, we removed probes with a polymorphic
C, G, or single-base extension with minor allele fre-
quency greater than 0.05 and cross-reactive probes,
defined as any probe with at least 46 of 50 bp in
common with a sequence elsewhere in the genome
[12]. This left 430,298 probes for analysis.

DMR methods

For each DMR method, we analyze the relationship be-
tween the natural log of TGs and methylation at visits 2
and 4, adjusting for age, sex, study center, and smoking
status (current, former, or never smoker).
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Bumphunter creates regions by combining all probes
within a user-defined pairwise distance. Bumphunter
uses a linear model for each probe to predict methyla-
tion M values from TG, adjusting for covariates, and
smooths the effect size estimates of all probes within a
region, ordered by chromosomal position. Potential
bumps, or DMRs, are defined as the collection of
smoothed effect sizes for any region with an effect size
above a user-defined threshold. The statistical signifi-
cance of the average height and area of each potential
bump is calculated using a bootstrap approach and
adjusted for multiple testing [5]. We perform 100
bootstrap replications using a maximum pairwise dis-
tance of 600 bp and use the 99th percentile of calcu-
lated effect size estimates as the threshold. Because
Bumphunter does not account for family structure, we
limit our analyses to an unrelated subset of 176 indi-
viduals in the pre- and posttreatment analyses for this
method.

DMRcate, comb-p, and GlobalP use precomputed sum-
mary statistics as input. We perform an EWAS using a lin-
ear mixed-effects model, implemented with the lmekin
function from the coxme R package, accounting for re-
latedness using a kinship matrix computed from known
pedigree relationships. There are 993 individuals included
in the pretreatment association analysis and 499 in the
posttreatment analysis.

DMRcate applies Gaussian kernel weights to
smooth EWAS z-statistics of all probes in a seed re-
gion and computes a region p value for the sum of
weighted squared t-statistics using a Satterthwaite
approximation [4]. We use the recommended band-
width for this analysis, which collapses any 2 probes
or regions within 1000 bp of one another into 1 re-
gion [4]. We also use the recommended definition of
a seed region (at least 1 probe with a false discovery
rate [FDR] <0.05) and scaling factor, C =2, to calcu-
late the Gaussian kernel.

Using p values from any test of association between
methylation and a phenotype, comb-p calculates autocor-
relation between probes and uses this autocorrelation and
neighboring p values to calculate Stouffer-Liptak-Kechris
(SLK)-corrected p values for each probe. A peak-finding
algorithm is used to identify regions with enriched
SLK-corrected p values. The significance of each region is
then determined by applying a Stouffer-Liptak correction
to the original p values of all probes in the region. To cor-
rect for multiple testing, a Sidak correction, based on the
number of possible regions of the same size, is applied to
the Stouffer-Liptak p values [6]. Following the authors’
recommendation, we define regions in this analysis as all
probes within 200 bp of another probe and only test for
significant DMRs in regions with at least 1 unadjusted
probe p value < 107>,
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Finally, we develop our own algorithm, GlobalP. We
g
Imekin analysis. It can be shown that under the null hy-
pothesis of no association between methylation and TG
and assuming that there are no covariates in the model,
the vector of probe z-scores in a region with m probes,
Zm, follows a multivariate normal distribution with mean 0
and covariance X, where X is the m x m correlation matrix
between probes in the study sample [13]. It follows from
the properties of the multivariate normal distribution that

calculate a z-score for each probe, z = from the

zL¥ 7'z, ~x2 . In the presence of covariates, T is the
partial correlation matrix between probes [13].

Rather than grouping probes by a set distance, we group
probes by annotation. We map probes to subcategories of
genes and CpG islands, which are areas in the epigenome
with more CpG sites than expected by chance [14]. We
map probes using the UCSC definitions of gene annotation
boundaries and CpG islands provided in the IlluminaHu-
manMethylation450kanno.ilmnl2.hgl9 R package. There
are 5 possible annotation categories within each CpG is-
land: south shelf, south shore, island, north shelf, and north
shore. CpG island shores are regions within 2 kb of a CpG
island, and CpG island shelves are regions within 2 kb of a
CpG island shore. For each gene, there are 6 “functional”
annotations: the gene body; first exon; 5" untranslated re-
gion (UTR); 3" UTR; the region from the transcription start
site (TSS) to 200 bp upstream; and the region from 200 bp
to 1500 bp upstream of the TSS [9]. Of the probes we ana-
lyzed, 375,805 (87.3%) fall within at least one of these
178,015 annotations. For each annotation within a gene or
CpG island, we calculate a y* statistic using the z-scores
and partial correlation between probes. Because these an-
notations are not mutually exclusive, a Bonferroni correc-
tion is too conservative. We use an FDR cutoff of 0.05.

Results

Tables 1 and 2 show the boundaries and significance of
each DMR by method for TG levels before and after
treatment, respectively. GlobalP, comb-p, and DMRcate
identified at least 1 shared region. Comb-p identified
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only 1 DMR associated with both pre- and posttreat-
ment TG in the 5" UTR region of the gene CPTIA on
chromosome 11. DMRcate identified this same region
on chromosome 11 before treatment but not after. Al-
though GlobalP identified 2 regions on chromosome 11,
the 5" UTR region of CPT1A and the north shore of a
CpG island near CPT1A, both region signals were driven
by the 2 probes they share in common, cg00574958 and
cg17058475. In addition, GlobalP identified 2 DMRSs, the
body of the gene ABCGI and the body of the gene
ETV6, not found using other methods.

Figure 1 shows the DMRs identified in the CPTIA re-
gion compared to the single-probe EWAS results in this
region. At both time points, comb-p found a weaker as-
sociation than the single-probe analysis found. However,
in the pretreatment data, the aggregate signal in the re-
gion was stronger for DMRcate and GlobalP than the in-
dividual probe associations.

Bumphunter identified 2 regions in the pretreatment
analysis, one on chromosome 1 and one on chromo-
some 20, and 3 regions in the posttreatment analysis,
all on chromosome 1. The regions detected by Bumphunter
did not overlap with regions identified by other methods.

To evaluate the Type I error of GlobalP, we ana-
lyzed the 200 simulated posttreatment GAW20 data
sets (N=717) using a 0.05 significance level, exclud-
ing the 5 simulated CpG sites associated with TGs.
The average Type I error of both /mekin (mean error
rate = 0.066) and GlobalP (mean error rate=0.077)
were slightly inflated.

Discussion

One advantage to GlobalP is that by using predefined,
fixed annotations, it is not sensitive to user input and
can give meaningful probe categorizations. DMRcate
and comb-p are flexible, but user choices may affect the
validity of results. There is previous evidence that the 2
genes identified solely by GlobalP, ABCG1 and ETV6,
are associated with TGs and obesity, suggesting that
these known biologic annotations can help identify bio-
logically relevant associations [15, 16].

Table 1 Genomic position (hg19) and significance of DMRs identified to be associated with TGs in pretreatment data

Chromosome Start Stop No. probes DMR p value Method

1 247802703 247803688 7 <001 Bumphunter
" 68583422 68609203 15 3.25E-14 GlobalP

" 68607622 68607676 2 1.01E-06 Comb-p

1 68607675 68607737 2 1.69E-21 DMRcate

" 68606155 68608154 3 1.30E-15 GlobalP

12 11803199 12038352 31 2.34E-3 GlobalP

20 443632 443641 2 3.00E-2 Bumphunter
21 43620345 249212500 23 2.34E-3 GlobalP
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Table 2 Genomic position (hg19) and significance of DMRs identified to be associated with TGs in posttreatment data

Chromosome Start Stop No. probes DMR p value Method
1 26880547 26881009 5 1.00E-02 Bumphunter
1 111742515 111744309 5 1.00E-02 Bumphunter
1 161183762 161185092 6 2.00E-02 Bumphunter
" 68583422 68609203 15 8.83E-11 GlobalP
11 68607622 68607676 2 6.84E-06 Comb-p
11 68608155 68609419 3 141E-12 GlobalP

The Type I error rate of GlobalP was slightly inflated.
While false-positive rates of all 3 existing methods have
been demonstrated to be well controlled, we did not
evaluate their Type I error rate in the current data set
because of computational burden [4-6]. However, the
original report on DMRcate included a warning that
Type I error rate will increase if the probe FDR <0.05
criterion for starting a seed region is relaxed. Therefore,
it is impossible to detect aggregated weak signals (FDR
> 0.05 for all probes) in a region without increasing Type
I error [4].

GlobalP is less computationally intensive than the boot-
strap approach of Bumphunter, but more computationally
intensive than DMRcate and comb-p, largely because
GlobalP uses individual data to calculate the partial correl-
ation between each set of probes. It is common in gene
and pathway analysis of genetic data to use an external
reference sample to estimate correlation between genetic
variants [17-19]. One future direction would be to per-
form a sensitivity analysis using precomputed probe

correlations from publically available data, which would
reduce the computational burden and allow for analysis of
published EWAS results.

Conclusions

We proposed a new method, GlobalP, to detect DMRs as-
sociated with TGs in both pre- and posttreatment methy-
lation data from GAW20. We evaluated the Type I error
rate of GlobalP, and compared it with three existing
methods: comb-p, DMRcate, and Bumphunter. The Type
I error rate of GlobalP was slightly inflated. This could po-
tentially be caused by the inflated Type I error rate of the
Imekin EWAS, but further investigation is needed to ad-
dress this. DMRs identified by our novel method, GlobalP,
were similar to the ones identified by comb-p and
DMRcate, but did not overlap with the ones identified by
Bumphunter. GlobalP was capable of detecting additional
DMRs not identified by the other methods and found
stronger evidence of association in the CPTIA region than
comb-p found.
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