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Abstract

Background: Attention deficit hyperactivity disorder (ADHD) is characterized by symptoms of inattention, excessive
motor activity and impulsivity detected mostly during childhood. These traits are known to be controlled by
monoamine neurotransmitters, chiefly dopamine, serotonin and norepinephrine. Monoamine oxidase A (MAOA)
and B (MAOB), two isoenzymes bound to the outer membrane of mitochondria, are involved in the degradation of
monoamines and were explored for association with ADHD in different ethnic groups. In the present study, few
exonic as well as intronic MAOB variants were analyzed in ADHD probands (N = 150) and ethnically matched
controls (N = 150) recruited following the Diagnostic and Statistical Manual for Mental Disorders-4™ edition
(DSM-IV). Appropriate scales were used for measuring the behavioural attributes. Gene variants were analyzed by
amplification of target sites followed by DNA sequencing and data obtained were analyzed by population based
statistical methods.

Results: Out of 34 variants present in the analyzed sites, only seven functional variants, rs4824562, rs56220155,
rs2283728, 1s2283727, 53027441, rs6324 and rs3027440, were found to be polymorphic. rs2283728 ‘€' (P = 3.45e-006)
and rs3027440 T’ (P=0.02) alleles showed higher frequencies in ADHD probands as compared to controls.
rs56220155 A’ (P =0.04) allele and ‘GA" (P =0.04) genotype showed higher frequencies in the male and female
ADHD probands respectively as compared to sex-matched controls. Analysis of pairwise linkage disequilibrium
revealed striking differences between probands and controls. Haplotype analysis revealed significantly higher
occurrence of different haplotypes in the ADHD probands while some haplotypes were detected in the controls
only. Higher scores for conduct problems were found to be associated with rs56220155 A’ (P =0.05) allele in the
male ADHD probands. Multifactor dimensionality reduction analysis showed independent as well as interactive
effects of polymorphic variants which were more robust in the male probands.

Conclusions: Since all the polymorphic variants analyzed were functional, it may be inferred that MAOB gene
variants are contributing to the etiology of ADHD in the Indo-Caucasoid population from eastern India which
merits further in depth analysis.
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Background

Attention deficit hyperactivity disorder (ADHD) is an
etiologically complex behavioural disorder. Major symp-
toms include persistent age-inappropriate hyperactivity
and impulsivity, sometimes in association with inatten-
tion [1], leading to impairments in academic perfor-
mances as well as social life [2, 3]. Worldwide ADHD is
highly prevalent and boys are more prone to the dis-
order than girls [4, 5]. In India also, ADHD is quite
prevalent and diagnosed more frequently in boys than
girls [6—8]. Co-morbidity with other psychiatric disor-
ders is common and in such condition, impairment is
more [9, 10].

Being a multi-factorial genetic disorder with around
76 % heritability [11, 12], genetics is believed to play sig-
nificant role in the etiology of ADHD [13, 14]. Neuro-
transmitters like dopamine, serotonin, and norepinephrine
regulate all vital behavioural attributes and studies on can-
didate genes involved in the regulation of these neuro-
transmitters [15, 16] revealed associations between altered
dopaminergic transmission and behavioural as well as
cognitive deficits in various populations [17, 18].

Monoamine oxidase A (MAOA) and B (MAOB) are
mitochondrial outer membrane bound isoenzymes, cata-
lyzing oxidative deamination of neurotransmitters like
dopamine, serotonin, norepinephrine, and other neuro-
modulators like benzylamine, phenylethylamine (PEA),
tyramine and tryptamine in the brain as well as periph-
eral tissues [19, 20]. The two isoenzymes differ in sub-
strate specificity [20, 21]; while MAOA preferentially
oxidizes serotonin and norepinephrine, MAOB prefers
benzylamine and PEA. MAOB activity in human in-
creases with age [22] and is selectively inhibited by low
concentration of deprenyl; but in high concentration, the
selectivity is lost [23]. In the human brain, MAOB is the
key enzyme degrading dopamine [24—26] and subcor-
tical regions exhibit higher MAOB activity [22]. MAOB
was hypothesized to control impulsivity, attention and
vulnerability to ADHD by degrading dopamine [24, 25],
which is the major factor responsible for regulating be-
haviour and cognitive function [18]. Further, MAOB
knockout mice showed high level of PEA in the brain as
well as an increased reactivity to stress and other behav-
ioural alterations [20]. A correlation between platelet
MAOB activity and sensation seeking as well as impulsive-
ness have also been reported [27, 28]. Platelet MAOB ac-
tivity was used as a marker for psychic behaviour though
it was not evident whether platelet MAOB activity was
correlated with brain MAOB activity or not [29].

Several MAOA variants have showed association with
ADHD in various populations, including the Indo-
Caucasoid population [30, 31]. MAOB gene variants
have also been studied, though the numbers of variants
investigated were few and the data obtained were
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inconsistent [24, 28, 32-37]. Since genes encoding for
MAOA and MAOB are located on the X-chromosome
[24], we hypothesized that these genes may have a role
in the sex bias of ADHD and our earlier study revealed a
biased maternal transmission of MAOA variants to the
male probands [30]. In this study, for the first time few
MAOB variants were explored for association with
ADHD and its associated phenotypic traits in the Indo-
Caucasoid population.

Methods

Subject recruitment

Sample size of 150 was determined statistically [38] con-
sidering 8 % prevalence of ADHD in this population [6].
ADHD cases (126 males and 24 females) were recruited
by child psychiatrist and clinical psychologist following
the Diagnostic and Statistical Manual of Mental
Disorders-4"" edition (DSM-1V) criteria [1]. 73.34 % of
the recruited cases were of the combined subtype, while
hyperactive-impulsive and inattentive subtypes were of
13.33 % each. Mean age of the ADHD cases was 7.69 +
2.99 years (range 3 to 18 years). Psychological evaluation
was done through - The revised Conners’ Parent Rating
Scale (CPRS-R) [39] and Wechsler Intelligence Scale for
Children >5 years [40]/Developmental Screening Test
[41] for children<5 vyears for the inattention-
hyperactivity level and intelligent quotient (IQ) status re-
spectively. DSM-IV score for oppositional defiant dis-
order (ODD) and Parental Account of Children’s
Symptoms (PACS) score for conduct problems were also
used for assessing the traits in ADHD probands. Patients
with any other neuropsychiatric disorders, mental re-
tardation (IQ<70) including Down syndrome and
Fragile-X syndrome, pervasive developmental disorder
were excluded from the study.

The control group comprised of 150 ethnically
matched healthy individuals (125 males and 25 females)
assessed by the same psychometric evaluation proced-
ure. Mean age of the control individuals was 18.41 +
8.78 years (range 3 to 28 years).

Genotyping

Peripheral blood collected from the study participants
was used for genomic DNA preparation using the stand-
ard protocol [42]. The target regions (detailed in Add-
itional file 1) were amplified via polymerase chain
reaction using primers (provided in Additional file 2) de-
signed in the lab using the Primer3 software [43]. Ap-
plied Biosystems 3130 Genetic Analyzer with 98.5 %
base calling accuracy and Read Length of upto 950 bp
was used for sequence analysis of the amplicons using
Big Dye v 3.1 chemistry and Sequencing Analysis Soft-
ware, v 5.2 (Additional file 2). Chromatograms were also
analyzed manually and mis-spaced letters/double peaks
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were investigated carefully for genotyping. For identifica-
tion of heterozygous SNPs, >25 % base calling was ac-
cepted. Function of polymorphic variants was analyzed
in silico using the is-rSNP [44].

Comparison with other ethnic groups

Allelic and genotypic frequencies of African (ACB: African
Caribbeans in Barbados; ASW: Americans of African An-
cestry in SW USA; ESN: Esan in Nigeria; LWK: Luhya in
Webuye, Kenya; MAG: Mandinka in The Gambia; MSL:
Mende in Sierra Leone; YRL: Yoruba in Ibadan, Nigeria),
American (CLM: Colombians from Medellin, Colombia;
MXL: Mexican Ancestry from Los Angeles USA; PEL:
Peruvians from Lima, Peru; PUR: Puerto Ricans from
Puerto Rico), East Asian (CDX: Chinese Dai in Xishuang-
banna, China; CHB: Han Chinese in Bejing, China; CHS:
Southern Han Chinese; JPT: Japanese in Tokyo, Japan;
KHW: Kinh in Ho Chi Minh City, Vietnam), European
(CEU: Utah Residents (CEPH) with Northern and
Western European Ancestry; FIN: Finnish in Finland;
GBR: British in England and Scotland; IBS: Iberian
Population in Spain; TSI: Toscani in Italia); South
Asian (BEB: Bengali from Bangladesh; GIH: Gujarati
Indian from Houston, Texas; ITU: Indian Telugu
from the UK; PJL: Punjabi from Lahore, Pakistan;
STU: Sri Lankan Tamil from the UK) ancestry were
retrieved from the 1000 Genomes Project Phase 3
(32) database [45] and compared with that of the
Indo-Caucasoid (IND) control population (natives of
the eastern Indian state of West Bengal; 23°N, 87°E).

Statistical analyses of data

To test the Hardy-Weinberg equilibrium [46], genotypic
counts of only female ADHD probands and ethnically
matched female controls were used since the MAOB
gene is X-linked [24] and it is still unclear whether the
male hemizygotes and female homozygotes are equiva-
lent or not [47]. Allelic and genotypic association ana-
lyses for individual polymorphism as well as haplotype
analysis were carried out using the UNPHASED v 3.1.5
[48] and correction for multiple testing was done while
running the UNPHASED at 1000-fold iteration. To
examine genotypic association, only female cases and fe-
male controls were considered. To calculate the power
of the tests showing significant association, Piface ver-
sion 1.72 [49] was used. Online odds ratio calculator
[50] was used to calculate the odds ratio (OR). Pairwise
linkage disequilibrium (LD) between the variants was
measured using the Haploview program version 4.2 [51].

Analysis of interaction between the variants

Interaction between the variants or epistasis was ana-
lyzed by the Multifactor Dimensionality Reduction
(MDR) program [52] through a 4-step process using the
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case-control data set. In the first step, using filter
methods, interesting polymorphisms were selected from
the pool of possible candidates through entropy-based
measures of information gain (IG) for each individual
polymorphism/attribute (i.e. main effects) and each pair-
wise combination of attributes (i.e. two way interaction
effects) [53]. In the second step, a new multilocus attri-
bute, which capture interaction information is con-
structed using previously selected polymorphisms in
conjunction with constructive induction algorithm. Thus
multilocus genotypes were pooled into high-risk and
low-risk groups, effectively reducing the dimensionality
of the attributes from multiple dimensions to one
dimension. In the third step, the new multilocus attri-
bute constructed in the previous step was evaluated
using a machine learning method (i.e. naive Bayes classi-
fier, based on probability theory). In the final step, an
interaction circle graph, using the entropy estimates
from step 1, was depicted by the program. Interaction
circle graph comprised of a node for each attribute (i.e.
polymorphism) with pairwise connections between
them. The percentage of entropy (i.e. information gain
or IG) by each polymorphism was visualized on each
node, while the IG for each pairwise combination of
polymorphisms was visualized on each connection.
Thus, the independent main effects of each polymorph-
ism were quickly compared to the interaction effect
between them. Positive entropy values indicated synergy,
while negative entropy values indicated redundancy [53].
All these analyses were implemented in the open-source
MDR software package version 2.0 beta 8.4.

Association of alleles with phenotypic traits

Based on the CPRS-R, ‘T scores, ranging between 38
and 90, were obtained for ADHD probands. DSM-IV
scores (ranging between 0 and 36) for assessing ODD
trait and PACS scores (ranging between 0 and 90) for
assessing conduct problems were also obtained. Male
probands were sub-grouped based on the presence/
absence of the derived allele for each variant and dis-
tribution pattern of behavioural scores in each of the
two comparing groups was checked using the
Kolmogorov-Smirnov normality test [54]. Equality of
variances was also checked using two sample F-test
[55]. Allelic association with behavioural scores was
analyzed using the Student’s t-test [56] only when the
variables (i.e. behavioural scores) showed a normal
distribution and variances were equal. In other condi-
tions, nonparametric test such as Mann-Whitney test
[56] was performed. As the number of female pro-
bands was limited, comparative analysis on behav-
ioural scores and genotypes was not performed for
this group.
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Table 1 Comparative analysis on allelic and genotypic frequencies in different populations [1000 Genomes Project Phase 3 (32)]

Variants with respective alleles  Super-populations Populations — Allele count Chi-square  Genotype count Chi-square
(frequency) (p-value) (frequency) (p-value)
2 11 112 202
rs4824562 [A (1), G (2)] AFR ACB 140 (0.97) 5(0.03) 27.80 (0.00) 46 (0.94) 3(006) 0(0.00) 1630 (0.00)
ASW 93 (097) 3(0.03) 20.20 (0.00) 32 (0.91) 3(0.09) 0 (0.00) 00 (0.00)
ESN 144 (0.99) 1 (0.01) 38.10 (0.00) 45(098) 1(0.02 0(0.00) 2030 (0.00)
LWK 153(0.99) 1(0.01) 4050 (0.00) 54 (098) 1(0.02) 0(0.00) 24.10 (0.00)
MAG 170 (0.99) 1 (0.01) 44.80 (0.00) 57(098) 1(002) 0(0.00) 2540 (0.00)
MSL 127 (0.99) 1 (0.01) 3370 (0.00) 43 (1.00) 0(0.00) 0(0.00) 2260 (0.00)
YRI 163 (0.99) 1 (0.01) 43.00 (0.00) 56 (1.00) 0(0.00) 0(0.000 2850 (0.00)
AMR CLM 110 (0.76) 35(0.24)  0.01 (0.93) 5(049) 22(043) 4(008) 1.00(061)
MXL 79(082) 17(0.18) 1.69(0.19) 17 (053) 13 (041) 2(006) 083 (0.66)
PEL 85 (066) 44 (034) 331(0.07) 16 (0.36) 25(0.57) 3(007) 396 (0.14)
PUR 135(0.88) 19(0.12) 802 (0.01) 5(0.70) 14(028) 1(002) 372(0.16)
EAS CDX 112(0.79) 30(0.21)  0.53 (047) 8 (057) 19(039 2(004) 1.75(042)
CHB 134 (0.84) 26 (0.16)  3.54 (0.06) 9 (068) 14 (025 4(007) 1.28(053)
CHS 141 (0.89) 17(0.11)  10.70 (0.00) 40 (0.75) 13 (0.25) 0(0.00) 764 (0.02)
JPT 130 (0.86) 22(0.14)  521(0.02) 33(069) 14(029 1(0.02) 341(0.18)
KHV 128 (0.84) 24 (0.16)  3.85(0.05) 1(0.77) 10(0.19) 2(004) 416 (0.13)
EUR CEU 125(0.84) 24(0.16) 351(006) 35(0.70) 13(026) 2(004) 231(031)
FIN 131 (0.82) 29(0.18)  2.06 (0.15) 41 (067) 18(030) 2(0.03) 270 (0.26)
GBR 116 (0.85) 20 (0.15)  4.61(0.03) 32(0.71) 12(0.27) 1(002) 341(0.18)
IBS 142 (0.89) 18(0.11) 996 (0.00) 39 (0.74) 13(0.25) 1(001) 451(0.11)
TSI 135(0.84) 26(0.16)  3.65 (0.06) 1(0.76) 11(020) 2(004) 3.79(0.15)
SAS BEB 98 (0.75)  32(025) 000(099)  27(062) 16(0.36) 1(0.02) 2.77(0.25)
GIH 110 (0.73) 40(027) 0.19(067) 29(062) 13(028) 5(0.10) 022 (0.90)
TU 115(0.79) 30(0.21) 068 (041) 25(0.58) 16(037) 2(0.05 130(0.52)
PJL 116 (0.81) 28 (0.19)  1.20(0.27) 29 (060) 181(0.38) 1(002) 3.14(0.21)
STU 119 (0.80) 30(0.200 091 (0.34) 9(062) 14(030) 4(008) 032(0.85)
IND 132 (0.75) 43(0.25) - 14 (056) 8(032) 3012 -
1s56220155 [G (1), A (2)] AFR ACB 58 (040) 87 (060) 0.27 (0.60) 6(0.12)  30(061) 13(027) 7.77(0.02)
ASW 37(039) 59(061) 005082 2(006) 18(051) 15(043) 3.99(0.14)
ESN 55(038) 90(062) 002 (089 8(0.17) 18(039 20(044) 1.12(0.57)
LWK 59038 95(062) 0.05(0.83) 11 (0200 23(042) 21038 227(032)
MAG 68 (040) 103 (0.60) 0.25(062)  9(0.16) 29 (050) 20 (0.34) 3.93(0.14)
MSL 61 (048) 67(052) 3.36(0.07) 8(0.19) 27(062) 8(0.19) 10.70 (0.01)
YRI 69 (042) 95(0.58) 0.86(0.35) 10 (0.17) 25045 21(038) 262 (0.27)
AMR CLM 20 (0.14)  125(0.86) 2220(0.00) 2 (0.04) 10(020) 39(0.76) 4.64(0.10)
MXL 10 (0.10)  86(090) 22.10(0.00) 1(0.03) 3(0.09) 28(0.88) 7.32(0.03)
PEL 7 (0.05) 122 (0.95) 4130(0.00) 0(0.00) 6(0.14) 38(0.86) 10.70(0.01)
PUR 53(034) 101 (066) 027 (061)  7(0.14) 24 (048 19(038) 2.89(0.24)
EAS CDX 16 (0.11) 6(0.89) 2760 (0.00) 1(002) 7(0.14) 41(084) 8.13(0.02)
CHB 26 (0.16) 134 (0.84) 1840(0.00) 1(0.02) 15(0.26) 41(0.72) 646 (0.04)
CHS 23(0.15)  135(0.85) 21.80(0.00) 0(0.00) 17(032) 36(068) 895 (0.01)
JPT 21 (0.14) 1(0.86) 22.80(0.000 1(0.02 10(0.21) 37(0.77) 6.06 (0.05)
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Table 1 Comparative analysis on allelic and genotypic frequencies in different populations [1000 Genomes Project Phase 3 (32)]

(Continued)
KHV 5(0.10)  137(090) 3270(0.00) 1 (002 10(0.19) 42(0.79) 721 (0.03)
EUR CEU 5(0.23) 114(0.77) 7.03(0.01) 3(006) 16(032) 31(062) 197(0.38)
FIN 5028 115(0.72) 3.08 (0.08) 5(008) 26 (043) 30(049) 2.18(0.34)
GBR 5(033) 91067 055 (046) 4(0.09) 23(051) 18(040) 3.61(0.16)
IBS 9(0.31) 111 (069) 158 (0.21) 4 (0.08) 26(049) 23(043) 3.53(0.17)
TSI 44 (027) 117 (0.73) 3.68 (0.06) 6(0.11)  19(0.35 29(0.54) 061 (0.74)
SAS BEB 3(0.25 97(0.75) 473(0.03) 1002 22(050) 21(048) 6.20 (0.05)
GIH 0(020) 120 (0.80) 1150 (0.00) 3(0.06) 15(032) 29(062) 1.72(042)
ITU 4(037)  91(063) 0.00 (0.99) 7(0.16) 17 (040) 19 (044) 1.05(0.59)
PJL 6(032) 98 (068 094 (033) 3(006) 20(042) 25(052) 251(0.29)
STU 8(032) 101 (068) 0.86(0.35) 1(0.02 26 (055 20(043) 7.80(0.02)
IND 65(037)  110(063) - 4(0.16) 7(028) 14(0.56) -
152283727 [C (1), A (2)] AFR ACB 132 (091) 13(0.09  14.20 (0.00) 40 (0.82) 9(0.18 0(0.00) 7.63(0.02)
ASW 84 (0.88) 12(0.12) 6.04(0.01) 27(0.77) 8(0.23) 0(0.00) 497 (0.08)
ESN 124 (086) 21(0.14) 557(0.02) 35(0.76) 10(0.22) 1(002) 3.64(0.16)
LWK 140 (091) 14 (0.09)  14.50 (0.00) 45 (0.82) 8(0.15) 2 (0.03) 467 (0.10)
MAG 155(091) 16 (0.09) 1500 (0.00) 50 (0.86) 7(0.12) 1(0.02) 799 (0.02)
MSL 112 (088) 16(0.12) 744(0.01) 33(0.77) 9(021) 1(002 348(0.18)
YRI 143 (0.87) 21(0.13) 832(0.00) 47(0.84) 8(0.14) 1(0.02) 6.70(0.04)
AMR CLM 145 (1.00) 0 (0.00) 42.30(0.00) 51 (1.000 0(0.00) 0(0.00)  23.50(0.00)
MXL 96 (1.00) 0 (0.00) 28.80 (0.00) 32(1.00) 0(0.00) 0(0.00) 1550 (0.00)
PEL 127 (098) 2 (0.02) 3220 (0.00) 42 (095) 2(0.05) 0(0.00) 1440 (0.00)
PUR 149 (0.97) 5 (0.03) 31.00 (0.00) 48 (0.96) 2 (0.04) 0(0.00) 16.60 (0.00)
EAS CDX 130 (0.91) 12(0.09) 1500 (0.00) 43(0.88) 5(0.10) 1(0.02 7.0 (0.02)
CHB 141 (0.88) 19(0.12) 964 (0.00) 43 (0.75 13(0.23) 1(0.02) 452(0.10)
CHS 38 (0.87) 20(0.13) 834(0.000 39(0.74) 14(026) 0(0.00 6.83(0.03)
JPT 131 (086) 21(0.14) 6.55(0.01) 37(0.77) 10(0.21) 1(0.02 399 (0.14)
KHV 140 (0.92) 12 (0.08) 17.10 (0.00) 44 (0.83) 9(0.17) 0(0.00) 856 (0.01)
EUR CEU 148 (0.99) 1 (0.01) 40.30 (0.00) 49 (098) 1(0.02 0(0.00) 1940 (0.00)
FIN 160 (1.00) 0 (0.00) 46.30 (0.00) 61 (1.00) 0(0.00) 0(0.00) 27.60 (0.00)
GBR 134 (0.99) 2 (0.01) 34,00 (0.00) 44 (098) 1(0.02 0(0.00) 1750 (0.00)
IBS 160 (1.00) 0 (0.00) 46.30 (0.00) 53 (1.00) 0(0.00) 0(0.00) 2430 (0.00)
TSI 161 (1.00) 0 (0.00) 46.60 (0.00) 54 (1.00) 0(0.00) 0(0.000 24.70 (0.00)
SAS BEB 103 (0.79) 27 (0.21)  0.80(0.37) 26 (0.59) 18 (041) 0(0.00) 6.02 (0.05)
GIH 127 (0.85) 23 (0.15) 475(0.03) 32(068) 12(0.26) 3(0.06) 0.82(0.66)
ITU 101 (0.70) 44 (0.30)  1.08 (0.30) 21 (049 17 (0400 5(0.11) 097 (062
PJL 109 (0.76) 35 (0.24)  0.03 (0.86) 31 (065) 14029 3(006) 0.72(0.70)
STU 119 (0.80) 30 (0.20) 1.15(0.28) 30 (0.64) 17 (036) 0(0.00) 6.01(0.05)
IND 131 (0.75) 44 (0.25) - 150600 7028 3012 -
rs3027441 [C (1), T (2)] AFR ACB 25(0.17)  120(0.83) 0.77 (0.38) 1(0.02) 16(0.33) 32065 1.89(0.39)
ASW 18 (0.19) 78 (0.81)  0.22 (0.64) 0(0.00) 13(037) 22(063) 365(0.16)
ESN 31(021)  114(0.79) 000(096)  3(0.06) 15(033) 28(061) 059 (0.75)
LWK 16 (0.10) 138 (0.90) 7.01(0.01) 2(0.04) 10(0.18) 43(0.78) 1.18(0.55)
MAG 22 (0.13) 149 (0.87) 4.19(0.04) 1(002) 13(022) 44(0.76) 207 (0.36)
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Table 1 Comparative analysis on allelic and genotypic frequencies in different populations [1000 Genomes Project Phase 3 (32)]

(Continued)
MSL 21(0.16) 107 (0.84) 1.07 (0.30) 1(0.02) 12(0.28) 30(0.70)0 1.25(0.54)
YRI 29 (0.18)  135(0.82) 0.65 (042) 3(005) 10(0.18) 43(0.77) 0.71(0.70)
AMR CLM 12 (008)  133(092) 10.10 (0.00) 0 (0.00) 7 (0.14) 4(0.86) 5.81 (0.06)
MXL 7 (0.07) 89 (093) 875(0.000 0(0.000 3(0.09 9 (091) 5.35(0.07)
PEL 22 (0.17) 107 (0.83) 0.79 (0.37) 2(0.04) 13(030) 29(066) 052(0.77)
PUR 11(0.07) 143(093) 129(0.00) 0 (0000 5(0.10) 5(090) 7.20(0.03)
EAS CDX 17 (0.12)  125(088) 4.67(0.03) 1(002 9(0.18) 9 (0.80) 2.00 (0.37)
CHB 7(0.17)  133(0.83) 099 (032) 1(0.02 17(030) 39 (068) 2.06 (0.36)
CHS 2(020) 126 (0.80) 0.04 (0.84) 10002 19(036) 33(062) 248(0.29)
JPT 7(0.24) 115(0.76) 0.48 (0.50) 2 (0.04) 18(038) 28(0.58) 1.60(045)
KHV 16 (0.10) 136 (0.90) 6.75(0.01) 1 (0.02) 9(0.17) 3(0.81) 247 (0.29)
EUR CEU 1(0.01) 148 (0.99) 3260 (0.00) 0 (0000 1(0.02 49(098) 1430 (0.00)
FIN 0 (0.00) 0 (1.00) 38.00 (0.00) 0 (0.00) 0 (0.00) 1(1.00) 21.50 (0.00)
GBR 2 (0.01) 134 (099) 27.00(0.00) 0(0.00) 1(0.02 44 (098 1290 (0.00)
IBS 0 (0.00) 60 (1.00) 38.00 (0.00) 0 (0.00) 0(0.00  53(1.00) 1890 (0.00)
TSI 0 (0.00) 1(1.00)0 3830(0.000 0 (0000 0(0.00) 54(1.00) 19.20 (0.00)
SAS BEB 27 (0.21) 103 (0.79) 0.1 (0.94) 0(0.00) 18(041) 26(0.59 5.03(0.08)
GIH 23(0.15) 127 (085 1.81(0.18) 3(006) 12(0.26) 32 (0.68) 0.08(0.96)
[TU 44 (030) 101 (0.70) 3.55 (0.06) 5(0.11) 17 (040) 21049 237(031)
PJL 35(0.24) 109 (0.76) 045 (0.50) 3(006) 14(029) 31(0.65) 026 (0.88)
STU 30 (0.20) 119 (0.80) 0.05(0.82) 0(0.00) 17(036) 30(0.64) 4.56(0.10)
IND 37(021) 138(0.79) - 2 (008 6(0.24) 7(0.68) -
156324 [C (1), T (2)] AFR ACB 141 (0.97) 4 (0.03) 24.00 (0.00) 46 (0.94) 3(0.06) 0(0.00) 957 (0.01)
ASW 92 (096) 4 (0.04) 13.90 (0.00) 32 (091) 3(009) 0(0.00) 6.09 (0.05)
ESN 135(093) 10(0.07) 1280 (0.00) 42 (091) 3(007) 1(002 6.26(0.04)
LWK 149 (0.97) 5 (0.03) 2360 (0.00) 51(093) 3(005 1(0.02 824(0.02)
MAG 165 (0.96) 6 (0.04) 24.70 (0.00) 54 (093) 4(007) 0(0.00) 10220 (0.01)
MSL 123 (0.96) 5 (0.04) 1840 (0.00) 38(0.88) 5(0.12) 0(0.00) 5.75(0.06)
YRI 155 (0.95) 9 (0.05) 17.70 (0.00) 52 (093) 3(0.05 1(002 846 (0.02)
AMR CLM 134 (092) 11(0.08) 1140 (0.00) 45(0.88) 6(0.12) 0(0.00 6.1 (0.04)
MXL 89 (093) 7(0.07) 8.75(0.00) 29(091) 3(009 0(0.00 535(0.07)
PEL 108 (0.84) 21 (0.16)  1.14 (0.29) 30 (0.68) 12(0.27) 2(0.05) 039(0.82)
PUR 146 (0.95) 8 (0.05) 17.60 (0.00) 46 (0.92) 4(0.08) 0(0.00 834 (0.02)
EAS CDX 125(0.88) 17(0.12) 467 (0.03) 39(080) 9(0.18) 1(0.02 200 (037)
CHB 133(0.83) 27(017) 099 (032 39 (068) 17(030) 1(0.02) 206 (0.36)
CHS 126 (0.80) 32(0.20) 0.04 (0.84) 33062 19(036) 1(0.02) 248(029
JPT 115(0.76) 37(0.24) 048 (049) 28 (0.58) 18(0.38) 2(0.04) 1.60 (045)
KHV 136 (090) 16 (0.10) 6.75(0.01) 43 (081) 9(0.17) 1(002) 247 (0.29)
EUR CEU 148 (0.99) 1 (0.01) 3260 (0.00) 49 (098) 1(0.02) 0(0.00) 1430 (0.00)
FIN 160 (1.00) 0 (0.00) 38.00 (0.00) 67 (1.00) 0 (0.00) 0 (0.00) 0 (0.00)
GBR 134 (0.99) 2 (0.01) 27.00 (0.00) 44 (098) 1(0.02 0(0.00) 1290 (0.00)
IBS 160 (1.00) 0 (0.00) 38.00 (0.00) 53(1.00) 0(0.00 0(0.00) 1890 (0.00)
TSI 161 (1.00) 0 (0.00) 3830 (0.00) 54 (1.00) 0(0.00) 0(0.00) 19.20 (0.00)
SAS BEB 103 (0.79) 27 (0.21)  0.01 (0.94) 26 (0.59) 18 (041) 0(0.00) 5.03(0.08)
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Table 1 Comparative analysis on allelic and genotypic frequencies in different populations [1000 Genomes Project Phase 3 (32)]

(Continued)

GIH 127 (0.85)

[TU 101 (0.70)

PJL 109 (0.76)

STU 119 (0.80)

IND 138 (0.79)

rs3027440 [T (1), C (2)] AFR ACB 141 (0.97)
ASW 92 (0.96)

ESN 135 (0.93)

LWK 149 (0.97)

MAG 165 (0.97)

MSL 123 (0.96)

YRI 155 (0.95)

AMR CLM 134 (0.92)
MXL 89 (0.93)

PEL 108 (0.84)

PUR 146 (0.95)

EAS CDX 125 (0.88)

CHB 133 (0.83)

CHS 126 (0.80)

JPT 115 (0.76)

KHV 136 (0.90)

EUR CEU 148 (0.99)

FIN 160 (1.00)

GBR 134 (0.98)

IBS 160 (1.00)

TSI 161 (1.00)

SAS BEB 103 (0.79)

GIH 127 (0.85)

TU 101 (0.70)

PJL 109 (0.76)

STU 119 (0.80)

IND 128 (0.73)

3(0.15) 1.81(0.18) 32(068) 12(0.26) 3(0.06) 0.08 (0.96)
4(030) 355(006)  21(049) 17 (040) 5(0.11) 237 (031)
5(0.24) 045 (0.50) 1(065) 14(029) 3(0.06) 0.26 (0.88)
0(0.20) 005(082) 30(064) 17(036) 0(0.00) 456 (0.10)
7021 - 17 (068) 6(024) 2008 -
4(0.03) 3440 (0.00) 46 (0.94) 3(0.06) 0(000) 779(0.02)
4(0.04) 2090 (0.00) 32(091) 3(0.09) 0(0.00) 489 (0.09)
10 (0.07) 2160 (0.00) 42 (091) 3(0.07) 1(002) 463 (0.10)
5(0.03) 3430 (0.00) 51(093) 3(0.05 1(002) 624 (0.04)
6 (0.03) 36.30 (0.00) 54 (0.93) 4(0.07) 0(0.00) 830 (0.02)
5(0.04) 2740 (0.00) 38(088) 5(0.12) 0(0.00  4.71(0.10)
9 (0.05) 2800 (0.00) 52(093) 3(005 1(002) 642 (0.04)
11 (0.08) 19.80 (0.00) 45 (0.88) 6(0.12) 0(0.00) 540 (0.07)
7 (0.07) 1490 (0.00) 29 (091) 3(0.09) 0(0.00  428(0.12)
21(016)  479(0.03) 30(068) 12(0.27) 2(0.05 070 (0.70)
8 (0.05) 2760 (0.00) 46 (0.92) 4(0.08) 0(0.00) 678 (0.03)
17(0.12) 1080 (0.00) 39(0.80) 9(0.18) 1(002) 160 (045)
27 (017)  484(0.03) 39(068) 17(030) 1(0.02) 251(0.29)
32(020) 200(0.16)  33(062) 19(036) 1(002) 3.28(0.19)
37(024) 027 (060) 28(058) 18(038) 2(0.04) 253(0.28)
16 (0.10)  139(0.00) 43 (081) 9(0.17) 1(002) 1.92(038)
1(0.01) 43.70 (0.00) 49 (098) 1(002) 0(0.00) 1200 (0.00)
0 (0.00) 50.00 (0.00) 61 (1.00) 0(0.00) 0(0.00) 1860 (0.00)
2(0.02) 37.20 (0.00) 44 (098) 1(0.02) 0(0.00) 10.70 (0.01)
0 (0.00) 50.00 (0.00) 53 (1.00) 0 (0.00) 0(0.00) 16.30 (0.00)
0 (0.00) 5030 (0.00) 54 (1.00) 0(0.00) 0(0.00) 16.60 (0.00)
27(021)  150(022) 26(059 18(041) 0(0.00) 6.03(0.05)
23 (015  635(0.01) 32(068) 12(026) 3(0.06) 031 (0.86)
44 (0.30) 047 (049)  21(049) 17 (040) 5(0.11)  355(0.17)
35(024) 027(060) 31065 14029 3(006) 0.74(069)
30(020) 201(0.16)  30(064) 17(036) 0(0.00) 532(0.07)
47 (027) - 18 (0.72) 5(0200 2008 -

AFR African, ACB African Caribbeans in Barbados, ASW Americans of African Ancestry in SW USA, ESN Esan in Nigeria, LWK Luhya in Webuye, Kenya, MAG
Mandinka in The Gambia, MSL Mende in Sierra Leone, YRI Yoruba in Ibadan, Nigeria, AMR American, CLM, Colombians from Medellin, Colombia, MXL Mexican
Ancestry from Los Angeles USA, PEL Peruvians from Lima, Peru, PUR Puerto Ricans from Puerto Rico, EAS East Asian, CDX Chinese Dai in Xishuangbanna, China,
CHB Han Chinese in Bejing, China, CHS Southern Han Chinese, JPT Japanese in Tokyo, Japan, KHW Kinh in Ho Chi Minh City, Vietnam, EUR European, CEU Utah
Residents (CEPH) with Northern and Western European Ancestry, FIN Finnish in Finland, GBR British in England and Scotland, IBS Iberian Population in Spain, TS/
Toscani in Italia, SAS South Asian, BEB Bengali from Bangladesh, GIH Gujarati Indian from Houston, Texas, ITU Indian Telugu from the UK, PJL Punjabi from Lahore,
Pakistan, STU Sri Lankan Tamil from the UK, IND Indo-Caucasoid control population. Significant differences are presented in bold

Results

Out of 34 variants localized in the investigated re-
gions, only seven, rs4824562, rs56220155, rs2283728,
rs2283727, rs3027441, rs6324 and rs3027440, were
found to be polymorphic in the studied population
(Additional file 1). In silico analysis revealed that all
these variants have potential regulatory function
(Additional file 3).

Frequencies of rs4824562 ‘G, rs3027441°C; rs6324 ‘T”
and rs3027440 ‘C’ alleles in the IND population revealed
significant differences as compared to several world pop-
ulations, while the distribution pattern of rs4824562,
rs6324 and rs3027440 matched with populations from
the South Asia (Table 1). On the other hand, rs56220155
exhibited statistically significant difference even with
populations from South Asia (Table 1, BEB and GIH, P
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< 0.05), chiefly due to an increase in the minor allele fre-
quency in the IND. rs2283727 also exhibited significant
differences in the derived A’ allele frequency as com-
pared to all other populations except BEB, ITU, PJL,
STU with South Asian ancestry (Table 1). No informa-
tion was available in the 1000 Genomes Project Phase 3
(32) database for rs2283728.

Case-control comparative analysis revealed statistically
significant higher occurrence of rs2283728 ‘C’ (P=121e-
005; power =99 %) and rs3027440 ‘T” (P =0.04; power =
53 %) alleles in the probands (Table 2, Additional file 4).
Stratification based on gender revealed statistically signifi-
cant higher occurrence of rs2283728 ‘C’ (P = 3.45e-006;
power = 99.63 %), rs3027440 T” (P=0.02; power =66 %)
and rs56220155 A’ (P =0.04; power =54 %) alleles in the
male probands in comparison to the male controls (Table 2,
Additional file 4). All the variants followed the HWE in the
female subjects (Additional file 5). Statistically significant
higher occurrence of rs56220155 ‘GA’ genotype (P = 0.04;
OR=392; 95 % confidence interval (CI)=1.28-11.95;
power = 62 %) was also observed in the female probands as
compared to the female controls (Additional file 5). Rest of
the investigated variants did not show any biased occur-
rence (Additional files 4 and 5).

Pairwise LD analyses showed strikingly varied patterns
(Fig. 1, Additional file 6); LD of the ADHD group was
significantly different from that of the control group
(Fig. 1a, b). Subjects stratified on the basis of gender re-
vealed significant difference between the male subjects and
sex-matched controls (Fig. 1c, d). Striking differences in the
pattern of the LDs were also noticed between female
ADHD probands and female control group (Fig. 1e, f).

The C-T haplotype, formed between rs2283728 and
rs3027440 having strong LD (D’ 0.84, ? 0.58), exhibited
significant higher occurrence (P=1.07e-008; OR =3.6)
in the probands (Table 3). Significant higher occurrence
of the A-C-T haplotype of rs56220155-rs2283728-
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rs3027440 (P = 1.99e-009; OR = 4.52) was also noticed in
the male probands (Table 3). Haplotype analysis for all
the seven variants (rs4824562-rs56220155-rs2283728-
rs2283727-rs3027441-rs6324-rs3027440) showed statisti-
cally significant higher occurrence of four haplotypes (A-
A-C-C-T-C-T, A-G-C-C-T-C-T, A-G-T-A-C-T-C and G-A-
C-C-T-C-T) in the probands (P < 0.04; OR > 2) (Table 3).
Stratified analysis based on gender, also revealed statisti-
cally significant higher occurrence of three haplotypes (A-
A-C-C-T-C-T, A-G-T-A-C-T-C and G-A-C-C-T-C-T) in the
male probands (P <0.005; OR > 3) and nominally signifi-
cant higher occurrence of the A-G-C-C-T-C-T haplotype
in the female probands (P = 0.055; OR = 8.23) as compared
to sex-matched controls (Table 3).

MDR analysis using data of male controls and ADHD
probands revealed strong pairwise interactions between
different variants (Fig. 2a, Additional file 7). rs2283728
showed highest independent main effect (nodal IG =
6.19 %) followed by rs3027440 (nodal IG=1.68 %) and
rs56220155 (nodal IG =1.21 %). rs3027440 showed high
degree of synergistic interactive effects with rs56220155,
rs2283727, rs3027441, rs6324 and moderate degree of
synergistic interactive effect with rs2283728 (Fig. 2a, Add-
itional file 7). rs6324 and rs3027441 separately interacted
with rs2283728 and rs2283727 in pairwise combinations
showing high degree of synergy alongside rs3027440, and
interacted with rs56220155 showing moderate degree of
synergy (Fig. 2a, Additional file 7). A nominal synergy was
observed between rs56220155 and rs2283727 (Fig. 2a,
Additional file 7). rs4824562 showed minimum redundant
effects with individual polymorphic variants (Fig. 2a, Add-
itional file 7). Minimal redundancies were also observed
between rs56220155 and rs2283728, rs2283728 and
rs2283727, rs3027441 and rs6324 respectively (Fig. 2a,
Additional file 7).

Stratified analysis for female subjects showed highest
independent main effect of rs56220155 (nodal IG =

Table 2 Comparative analysis on allelic frequencies of MAOB variants showing significant association with ADHD

Variants Alleles Groups Control Proband Chi-square (p-value) Odds Ratio Power
(95 % confidence interval)

rs56220155 G Male® 04 0.28 4.2 (0.04) 1.72 (1.02-2.9) 54 %
A 0.6 0.72

rs2283728 T AllP 042 021 19.15 (1.21e-005) 271 (1.73-4.26) 99 %
C 0.58 0.79
T Male? 047 0.2 21.55 (3.45e-006) 34 (201-5.74) 99.63 %
C 0.53 0.8

rs3027440 T All° 0.73 0.82 4.13 (0.04) 1.68 (1.02-2.78) 53 %
C 027 0.18
T Male® 0.7 0.83 5.83(0.02) 2.03 (1.14-3.62) 66 %
C 03 0.17

N =125 Control/126 proband
PN = 125 male and 25 female controls/126 male and 24 female probands
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Fig. 1 Pairwise linkage disequilibrium between the studied variants. a controls; b ADHD probands; ¢ male controls; d male probands; e female
controls; f female probands. D’ is a measure of frequency of association of alleles at 2 loci and numbers represent the D’ value expressed as a
percentile. Diamonds without numbers represent D’ values of 1.0

9.63 %) followed by rs2283728, rs2283727, rs4824562,
and rs3027440 (nodal 1G =3.18 %, 1.93 %, 1.60 %, and
1.14 % respectively). High degree of synergistic effects of
rs4824562 with rs2283728 and rs2283727, along with
moderate synergistic effect with rs56220155, and min-
imal synergistic effect with the rest of the variants were
also noticed (Fig. 2b, Additional file 8). rs56220155,
showing moderate degree of synergy with rs4824562,
also showed minimal synergy with rs3027440, minimal
redundancy with rs2283727, rs3027441, rs6324, and
highest redundancy with rs2283728 by pairwise combi-
nations (Fig. 2b, Additional file 8). 1s2283728,
rs2283727, rs3027441, rs6324 and rs3027440 showed

minimal redundancy with each other in pairwise combi-
nations (Fig. 2b, Additional file 8).

CPRS-R ‘T scores’ for oppositional behaviour [62.07 +
15.81], cognitive problems/inattention [73.02 + 9.82], hyper-
activity [73.95+12.10], and ADHD index [71.63 + 8.25]
confirmed the disease associated traits. DSM-IV scores for
ODD trait [13.81 +8.19] and PACS scores for conduct
problems [17.34 + 11.68] were also noticeable. Male ADHD
probands harbouring the rs56220155 A’ allele showed sig-
nificantly higher mean score for conduct problems as com-
pared to the those having the ‘G’ allele (Table 4). DSM-IV
scores for ODD trait and CPRS-R ‘T scores’ failed to show
any significant association with any allele (Additional file 9).
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Table 3 Population-based comparative analysis on haplotype frequency
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Groups  Variant combinations "Haplotypes Control Proband Chi-square Odds Ratio
(p-value) (95 % confidence interval)
All? rs4824562-rs56220155-rs2283728-rs2283727- A-A-C-C-T-C-C 0.04 0 5.27 (0.02) 0.13 (0.03-0.65)
(53027441°156324:153027440 AAC-CTCT 032 049  1214(0.0005) 208 (136-3.19)
A-A-T-C-T-C-C 0.02 0 4.02 (0.04) 3 (0.02-0.96)
A-A-T-C-T-C-T 0.03 0 6.07 (0.01) 3 (0.03-0.66)
A-G-C-C-T-C-T 0.03 0.09 4.06 (0.04) 2.5 (1.04-6.03)
A-G-T-A-C-T-C 0.07 0.15 4.29 (0.038) 1(1.13-432)
A-G-T-C-T-C-T 0.03 0 5.04 (0.02) .13 (0.02-0.78)
G-A-C-C-T-C-C 0.03 0 4.03 (0.04) .13 (0.02-0.88)
GA-C-C-T-C-T 0.08 0.18 6.26 (0.01) 46 (1.33-4.58)
G-A-T-C-T-C-T 0.02 0 402 (0.04) .13 (0.02-0.96)
G-GT-A-T-C-C 0.02 0 4.06 (0.04) .13 (0.02-091)
G-G-T-A-T-C-T 0.04 0 7.05 (0.008) .13 (0.03-0.57)
G-G-T-C-T-C-T 0.02 0 1(0.08) .14 (0.01-1.3)
rs2283728-rs3027440 C 0.11 0.02 943 (0.002) 0.25 (0.11-0.57)
CT 047 0.77 32.72 (1.07e-008) 3.6 (2.34-5.55)
T-C 0.16 0.16 0.07 (0.78) 0.98 (0.55-1.75)
T 0.27 0.05 28.27 (1.05e-007) 0.2 (0.12-0.36)
Male® 15s4824562-rs56220155-rs2283728-rs2283727- A-A-C-C-T-C-C 0.05 0 6.2 (0.01) .13 (0.03-0.65)
153027441-156324-153027440 AACCTCT 026 053 1998 (7.85e-006) 3.16 (12-523)
A-A-T-C-T-C-C 0.03 0 4.1 (0.04) .13 (0.02-0.94)
A-A-T-C-T-C-T 0.03 0 4.1 (0.04) .13 (0.02-0.94)
A-G-T-A-C-T-C 0.04 0.15 8.91 (0.003) 3.58 (1.55-8.3)
A-G-TA-T-C-T 0.06 0.008 5.71(0.016) 0.2 (0.05-0.75)
A-G-T-C-T-C-T 0.04 0 5.14 (0.02) 3 (0.02-0.76)
G-A-C-C-T-C-C 0.03 0 4.1 (0.04) 3 (0.02-0.94)
G-A-C-C-T-C-T 0.06 0.17 7.75 (0.005) 3.04 (1.39-6.66)
G-A-T-C-T-C-T 0.03 0 4.1 (0.04) .13 (0.02-0.94)
G-G-T-A-T-C-C 0.03 0 4.1 (0.04) .13 (0.02-0.94)
G-G-T-A-T-C-T 0.02 0 3.06 (0.08) .13 (0.01-1.28)
G-G-T-C-T-C-T 0.02 0 3.06 (0.08) .13 (0.01-1.28)
rs56220155-rs2283728-rs3027440 A-C-C 0.13 0.02 11.85 (0.0006) .19 (0.07-049)
A-C-T 033 0.71 3598 (1.99e-009) 4.52 (2.76-7.42)
A-T-C 0.05 0 6.2 (0.01) .13 (0.03-0.65)
A-T-T 0.1 0 12.7 (0.0004) .12 (0.04-0.39)
G-CC 0.02 0 2.03 (0.15) .13 (0.008-2.14)
G-CT 0.06 0.08 0.54 (0.46) A5 (0.54-3.86)
G-T-C 0.1 0.16 7 (0.28) 149 (0.72-3.06)
G-T-T 0.22 0.04 17.54 (2.82e-005) 1(0.1-043)
Female® r1s4824562-1s56220155-1s2283728-152283727- A-G-C-C-T-C-T 0 0.08 3.69 (0.055) 8.23 (1.13-59.77)
153027441-156324-153027440 G-GTAT-CT 008 0 416 (0.04) 3 (002-097)

N =125 male and 25 female controls/126 male and 24 female probands

PN = control 125/126 probands
°N =25 control/24 probands
Statistically significant differences are presented in bold
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minimal redundancy. Green line represents high redundancy

Fig. 2 Interaction graph generated through Multifactor Dimensionality Reduction (MDR) software. a Population based analysis for male subjects;
b Population based analysis for female subjects. The graphical interaction model describe the percentage of entropy (i.e. information gain or IG)
in case-control status that is explained by each factor (i.e. gene variant) or two-way interaction. Two-way interactions between factors are
depicted by line accompanied by a percent of entropy explained by that interaction. Values inside large boxes on nodes indicate information
gain (IG) of individual/independent main effect of each polymorphic variant, whereas values inside small boxes between nodes exemplify IG of
pairwise combination/interactive effects of respective variants. Positive IG values, between the nodes, indicate the synergistic interactions; whereas
negative |G values indicate the redundancy between the respective nodes/variants. Schematic coloration represents a continuum from synergy to
redundancy. The red lines represent a high degree of synergy. The orange lines represent moderate synergy. The golden yellow lines accompanied by
a positive percent of entropy represent minimal synergy, whereas the golden yellow lines accompanied by a negative percent of entropy represent

Discussion

MAOB is a key enzyme in the human brain, modulating
oxidation of dopamine [24-26] as well as benzylamine,
PEA, tyramine, and tryptamine [19-21]. Previous genetic
association studies on MAOB revealed inconsistent find-
ings in different populations. To find out the role of
MAOB variants in the etiology of eastern Indian ADHD
probands, we used a four step approach. Initially, allelic
and genotypic frequencies of MAOB variants were ana-
lyzed by population-based methods to identify risk vari-
ants in the ADHD probands. Then, LD between the
studied variants was analyzed to understand whether
these variants are working independently or in a pair-
wise clubbed manner. Next, we verified independent
main effects and epistatic effects of MAOB variants
using case-control data set. Finally, to identify the rele-
vance of these gene variants in disease associated symp-
toms, we analyzed association between alleles and
behavioural attributes.

Table 4 Association of alleles with PACS scores of male ADHD
probands (N =126)

Variants Alleles PACS scores for conduct problems
Mean + SE p-value®
154824562 A 18.19+1.69 0.37
G 16.75+4.19
rs56220155 G 1442 +£242 0.05
A 19.81+1.94
152283728 T 1446+ 273 0.1
C 19.05+1.83
152283727 C 19.05+1.83 0.11
A 1446 +2.73
rs3027441 C 16+£299 0.27
T 1847 +1.79
16324 C 1847 +1.79 0.27
T 16+£2.99
rs3027440 T 186+ 1.74 0.19
C 14.78+3.18

?Analyzed through Student’s t-test; statistically significant differences are pre-
sented in bold

Alleles/genotypes of the eastern Indian control popula-
tion studied in the present investigation resembled the
South Asian ancestral population for most of the variants.
However, allelic frequencies of rs2283727 and rs3027440
differed from the Gujrati population while rs56220155 dif-
fered from both Bengali from Bangladesh and Gujrati In-
dian from Houston, principally due to an increase in the
minor allele frequency. We have earlier reported vast dif-
ference in the frequency of alleles in the Indian population
[57]. Whether this drift in allelic frequencies is conferring
any specific advantage is a matter of conjecture at the mo-
ment and merits further investigation in a large number
of samples belonging to each ethnic group.

Earlier investigators reported significant positive associ-
ation of MAOB gene variants with ADHD in the Spanish
probands [37], while in the Irish [33] and Czech [28] popu-
lation no association was noticed. International Multi-
centre ADHD Gene project, with Caucasian subjects from
12 specialized centres in eight different countries, also failed
to notice any association between ADHD and MAOB gene
variants, including rs4824562, rs6324 and rs3027440 [34].
In the present investigation, out of 34 variants only 7 were
identified to be polymorphic and in silico analysis revealed
that all can potentially regulate MAOB transcription. Four
variants, rs56220155, rs2283728, rs2283727 and rs3027441,
were analyzed for the first time for association with ADHD.
Variants like rs4824562 and rs3027440 were previously
studied in the European Caucasoid probands [34], while
rs6324 was studied in ADHD probands belonging to Han
Chinese [24, 35] as well as European Caucasoid [34] popu-
lations; in the Han Chinese population, significant positive
[24] as well as negative associations [35] were reported for
rs6324. This site failed to show any positive association with
ADHD in the Indo-Caucasoid population.

rs2283728 and rs3027440 showed allelic as well as hap-
lotypic associations with ADHD in the Indo-Caucasoid
population. rs56220155 showed genotypic association in
the female probands. All these three variants also showed
association in the male ADHD probands. Haplotypes con-
sisting of all the seven variants, including the above three,
showed significant association with the disorder. It can be
hypothesized from the present observation that these
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three variants independently as well as in combinations
may play an important role in ADHD.

We have noticed a striking difference in the LD pattern
of ADHD probands and controls; pairwise all variants were
in strong LD in the ADHD probands as compared to the
controls. In absence of ethnic differences, recruitment of re-
lated individuals, and consanguineous marriage, the ob-
served difference in the LD pattern may suggest a lower
rate of recombination between the studied variants in the
probands which facilitates generation of risk haplotypes as-
sociated with the disease etiology. Epistasis analysis showed
significant pairwise synergistic interactive effects of most of
the variants in the male ADHD probands. In female pro-
bands the interactive effects were very less. However, the
number of female probands was limited and further explor-
ation on the matter is desired before reaching into any con-
clusion. Allele A’ of rs56220155 was associated with high
conduct problems, as measured by the PACS score, in the
male ADHD probands. The A’ allele of rs56220155 also
showed statistically significant higher occurrence in the
male ADHD probands in comparison to the male controls.
It can be inferred from these observations that MAOB has
a significant role in the etiology of ADHD.

Conclusions

Our investigation for the first time revealed association
of rs56220155 and rs2283728 with ADHD. rs3027440,
previously reported to have no association in the Euro-
Caucasoid ADHD subjects [34], also revealed positive
association in the Indo-Caucasoid population. rs2283727
and rs3027441, in strong LD with rs2283728 and rs6324
respectively, were investigated for the first time in
ADHD probands and statistical analysis failed to show
any association in the studied population. The observed
difference in allelic/genotypic association in the present
study could be attributed to difference in allelic frequen-
cies since the IND population revealed a different allelic
distribution pattern as compared to other ancestral eth-
nic groups from other parts of the world. Stratified ana-
lysis revealed gross difference in the LD pattern of male
and female ADHD probands as compared to sex-
matched controls possibly be due to absence of recom-
bination between the sites in the probands, thus creating
a block conferring risk of ADHD. We have also noticed
higher frequencies of rs56220155 4 rs2283728 “C” and
rs3027440 “T” alleles in the male probands. Male pro-
bands exhibiting conduct problems also showed higher
frequency of rs56220155 A. Whether this is really a
male specific effect is a matter of conjecture at the mo-
ment since the major limitation of the present study was
the low number of female subjects investigated. The
high odd’s ratio (>2) observed for a few association ana-
lyses could also be attributed to the limitation in sample
number. We may infer from the data obtained that
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further investigation on a large cohort of samples be-
longing to different ethnic groups is warranted to valid-
ate our observation in the Indo-Caucasoid population
from the eastern India.

Additional files

Additional file 1: Details of the MAOB variants investigated. Description:
The table summarizes details of the MAOB variants investigated.
(XLSX 11 kb)

Additional file 2: Protocol followed for analysis of MAOB target regions.
Description: The table summarizes the protocol followed for analysis of
target sites. (XLSX 8 kb)

Additional file 3: Functional significance of MAOB polymorphic variants
predicted in silico using is-rSNP. Description: The table summarizes
functional regulatory role of MAOB polymorphic variants. (XLSX 40 kb)

Additional file 4: Population-based comparative analysis on allelic
frequencies of MAOB variants. Description: The table summarizes allelic
frequencies of MAOB variants in ADHD cases and ethnically matched
controls. (XLSX 10 kb)

Additional file 5: Genotypic distribution of MAOB variants in female
subjects. Description: The table summarizes comparative analysis on
genotypic distribution of MAOB variants in female ADHD cases and sex
matched controls. (XLSX 10 kb)

Additional file 6: Pairwise Linkage Disequilibrium pattern of MAOB
variants (analyzed using Haploview 4.2). Description: The table
summarizes the D’ and r° values for pairwise LD analysis in ADHD
probands and ethnically matched controls. (XLSX 11 kb)

Additional file 7: MDR analysis of case-control data set of male subjects.
Description: The table summarizes independent as well as interactive
effects of MAOB variants in case-control status for male subjects.

(XLSX 8 kb)

Additional file 8: MDR analysis of case-control data set of female
subjects. Description: The table summarizes the independent as well as
interactive effects of MAOB variants in case-control status of female
subjects. (XLSX 9 kb)

Additional file 9: Analysis of allelic association with DSM-IV scores for
ODD trait and CPRS-R T scores’ for oppositional behavior, cognitive
problems/inattention, hyperactivity, and ADHD index in male ADHD
probands. Description: This table summarizes statistical comparisons
between the mean scores and alleles. (XLSX 10 kb)
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