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Abstract

Background: Wild birds are the major reservoir hosts for influenza A viruses (AIVs) and have been implicated in the
emergence of pandemic events in livestock and human populations. Understanding how AIVs spread within and
across continents is therefore critical to the development of successful strategies to manage and reduce the impact of
influenza outbreaks. In North America many bird species undergo seasonal migratory movements along a North-South
axis, thereby providing opportunities for viruses to spread over long distances. However, the role played by such avian
flyways in shaping the genetic structure of AIV populations remains uncertain.

Results: To assess the relative contribution of bird migration along flyways to the genetic structure of AIV we
performed a large-scale phylogeographic study of viruses sampled in the USA and Canada, involving the analysis of
3805 to 4505 sequences from 36 to 38 geographic localities depending on the gene segment data set. To assist in this
we developed a maximum likelihood-based genetic algorithm to explore a wide range of complex spatial models,
depicting a more complete picture of the migration network than determined previously.

Conclusions: Based on phylogenies estimated from nucleotide sequence data sets, our results show that AIV migration
rates are significantly higher within than between flyways, indicating that the migratory patterns of birds play a key role
in viral dispersal. These findings provide valuable insights into the evolution, maintenance and transmission of AIVs, in
turn allowing the development of improved programs for surveillance and risk assessment.

Background
Avian influenza viruses (AIVs) infect a wide range of
bird species, with sporadic jumps to mammalian hosts,
notably humans, causing short-lived epidemics and occa-
sionally establishing endemic transmission cycles [1, 2].
Wild birds, particularly Anseriformes (e.g. ducks, geese,
and swans) and Charadriiformes (e.g. gulls, shorebirds,
and terns), act as the main natural reservoirs for AIV,
and viral prevalence in these species is considerably
higher than in other birds [3, 4]. Importantly, many bird
species that experience high levels of AIV infection
undertake long-distance seasonal movements along mi-
gration routes, or flyways, in reaction to fluctuations in
the availibity of food or breeding sites [5, 6]. This natural

phenomenon provides an obvious mechanism for AIVs
to spread over long distances, connecting spatially
disjunct localities and creating opportunities for viral
transmission to those wild bird species and poultry resi-
dent in disparate geographic localities [7]. Indeed,
migrating wild birds have been linked to the geographic
diffusion of a variety of AIV subtypes [3], including
highly pathogenic H5N1 influenza virus [8–11], as well
as other RNA viruses such as West Nile virus [12, 13].
Despite their classification into multiple subtypes based

on sequence diversity in the hemagglutinin (HA) and
neuraminidase (NA) genes, those AIVs sampled from the
Western and Eastern hemispheres tend to form distinct
monophyletic groups, with relatively infrequent viral
movement between hemispheres [14–16]. This phylogen-
etic pattern implies that there is a low transmission rate
between birds that are located in disjunct localities, in turn
suggesting that bird movements, including wild bird mi-
gration, between North America and the Old World are
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limited [17]. It is therefore reasonable to assume that nat-
ural physical barriers like extended areas of water and
mountain ranges lead to the ecological separation of bird
species and, by extension, to their viral populations. One
such obvious barrier at the continental scale is the pres-
ence of avian flyways, which loosely describe the migratory
pathways followed by diverse avian species [18]. Four such
major flyways – the Pacific, Central, Mississippi, and
Atlantic – have been described in North America, and
describe (albeit loosely) the patterns by which birds mi-
grate along the North-South axis within the continent.
However, because flyway assignments are often only
approximate, and the borders between them fluid because
they do not reflect absolute physical boundaries, there will
evidently be some movement among flyways [19].
Despite the potential importance of avian flyways in

shaping the population structure of AIV and its patterns
of spread, those studies performed to date have pro-
duced strongly contradictory results [7, 14, 20, 21]. For
example, Lam et al. [14] showed that virus dispersion
occurred more frequently within than between migratory
flyways and concluded both that flyways acted as phys-
ical barrier for viral dispersal and that there was signifi-
cant virus isolation-by-distance. In marked contrast,
through a Bayesian phylogeographic approach Bahl et al.
[7] suggested that migratory flyways had relatively little
impact on the spatial spread of AIV, particularly as bird
movements along the East-West axis in North America
had a larger contribution to viral spread than previously
proposed. However, these studies used relatively small
data sets and applied very different analytical methods,
although both made use of the underlying AIV phyl-
ogeny. As a consequence, the role played by flyways in
AIV evolution and phylogeography is uncertain.
To better understand the role played by avian migra-

tory flyways in the dispersal of AIV in North America
we analysed large data sets of the internal gene segments
of AIVs sampled from 36 to 38 administrative regions
across the United States and Canada. As in previous
studies [7, 14] we used continuous-time Markov models
to characterize transmission rates between discrete geo-
graphic locations. We evaluated simple models such as
the flyway-based models proposed by Lam et al. (7) and,
more importantly, designed an efficient genetic algo-
rithm that, given a fixed and small number of parame-
ters, automatically finds the best model that fits the data.
Importantly, the new phylogeographic method devel-
oped here does not require information on sampling
time such that data sub-sampling is not necessary when
sampling dates are missing or inaccurate, as was the case
with a number of the AIV sequences analysed here. In
addition, the simplicity of the method means that it is
able to accommodate thousands of gene sequences,
which would pose a significant challenge to more

computationally intensive phylogeographic methods
such as those incorporated within the BEAST package
[7, 22]. Critically, our results indicate that the mean
transition (i.e. dispersal) rate within flyways is between 4
and 13 times greater than that between flyways, suggest-
ing that the migratory patterns exhibited by birds have a
major impact on the spread of AIV in North America.

Methods
Data preparation
To investigate the strength of association between
viral and bird migration we focused on the internal
gene segments of AIV, encoding the PB2, PB1, PA,
NP, and MP (M1 and M2 coding regions were
concatenated) proteins. Those genes encoding the
viral HA and NA proteins were excluded due to the
very deep divergences between subtypes, while NS
was excluded due to the presence of two phylogenet-
ically distinct alleles (A and B). Full-length nucleotide
sequences of AIV isolated in North America were
downloaded from the Influenza Virus Resource
Database at NCBI (http://www.ncbi.nlm.nih.gov/ge-
nomes/FLU/FLU.html). For each gene, sequences
were aligned using MAFFT [23] and were manually
edited using Seqotron [24]. The sampling location
within North America was extracted from the se-
quence name, and each sequence was labelled with a
discrete geographic location using either the state
classification in the USA or the province classifica-
tion in Canada. Sequences belonging to a geographic
location that was represented less than 6 times were
discarded. This resulted in final data sets of 4346
(PB2), 4421 (PB1), 4505 (PA), 3853 (NP), and 3805
(MP) sequences. The number of distinct geographic
locations per gene was 36, 38, 38, 37, and 37 for the
PB2, PB1, PA, NP, and MP data sets, respectively.
Sequences in these data sets were sampled from both

wild birds (the majority) and poultry (i.e. quail, chicken,
turkey, and pheasant). To determine whether poultry in-
fluenced the dispersal of AIV on these data we subsam-
pled the representative PB2 gene data by removing all
those sequences (n = 232) associated with poultry. This
resulted in an alignment of 4114 wild bird AIV se-
quences sampled from 34 localities. All the data sets uti-
lized here are available on the Zenodo repository https://
doi.org/10.5281/zenodo.153883.

Flyway designation
Each US state and Canadian province was assigned to
one of the four North American flyways defined by the
United States Fish and Wildlife Service and Flyway
Councils (Lincoln 1979) and usually referred to as local-
ities in the text. From the west coast to east coast the
designated flyways are the Atlantic flyway (AF),
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Mississippi flyway (MF), Central flyway (CF), and the
Pacific flyway (PF). The assignment of individual local-
ities to specific flyways is described in the countries.csv
file in the Zenodo repository, although flyways are better
regarded as loose assemblages rather than entities with
fixed boundaries. The spatial distance between each pair
of states ⁄ provinces was calculated as the great circle
distance between the average latitude and longitude of
each locality.

Phylogenetic analyses
Maximum likelihood trees for each data set were in-
ferred using ExaML [25] assuming the generalised time-
reversible (GTR) substitution model and a discretised
gamma distribution (4 categories) of substitution rate
across sites using the default settings.

Genetic differentiation of AIV among sampling localities
We used the nearest neighbour statistic Snn [26] to deter-
mine the genetic differentiation among localities. This
statistic measures how often the nearest neighbors of se-
quences are found in the same geographic locality. Ac-
cordingly, an Snn estimate close to 1 suggests that
populations at two localities are highly differentiated,
while an estimate near 0.5 indicates little differentiation
(i.e. a panmictic population). This method requires pair-
wise genetic distances be calculated for every sequence.
To this end we used the phylogenetic tree inferred from
the nucleotide data sets of each internal gene segment and
calculated patristic distances between each pair of taxa, in
which the patristic distance is the sum of branches over
the shortest path between two taxa [27]. A C++ program
implementing this procedure is available from Github
repository https://github.com/4ment/gdp.

Estimation of AIV migration between geographic localities
Migration rates of avian influenza viruses between
discrete geographic locations were analysed using a re-
versible continuous-time Markov chain model as de-
scribed in Pagel [28] and implemented in Physher [29].
The state space of the Markov chain was defined as the
set of geographic locations. For the phylogeographic
analysis of each gene segment, we fixed the tree topology
and the branch lengths to their maximum likelihood
estimates obtained in the phylogenetic inference of the
corresponding nucleotide alignment. Time in this
Markov chain is therefore measured in units of
nucleotide substitutions per site.
To investigate the patterns of viral migration we use

several classes of models: (i) a homogeneous rate model
(HRM) with equal transition rates among localities; (ii) a
two-rate model (TRM) in which transition rates within
any flyway are equal and transition rates of pairs of
states belonging to different flyways are equal; (iii)

flyway-specific rate models (FRM) where transition
rates within a flyway are equal and transition rates
between flyways are different; (iv) a general rate model
(GRM) in which given a fixed number of rates, the
equal transition rate within flyways assumption is
relaxed. We refer to 4-FRM for models based on four
flyways (i.e. AF, CF, MF, and AF) and 3-FRM when the
central and Mississippi flyways are merged into a sin-
gle flyway due to their geographic overlap. Similarly,
the TRM are named either 4-TRM or 3-TRM depend-
ing on the number of flyways under investigation.
Calculating the maximum likelihood of the HRM,

TRM, and FRM models is relatively straightforward as it
only requires standard numerical methods to optimize
continuous parameters. In contrast, the parameter space
in the GRM is high dimensional and contains both
discrete and continuous parameters. Given a fixed num-
ber of transition rate categories k and a symmetric d × d
transition rate matrix, the GRM will have the following
parameters:
r = (r1,…,rk) the value of the rate for each category.
z = (z1,…,zd*(d-1)/2) vector of rate-class assignments for

each non-diagonal element of the rate matrix where zi ∈
1… k.
Rate parameters r1,…,rk are optimized using standard

numerical methods while rate-class assignment is opti-
mized using a genetic algorithm (GA). We implemented
the GA as a generational genetic search algorithm CHC
GA, an approach that was previously applied to natural
selection and molecular clock inference [29, 30]. Each
individual of the GA population is represented as a vec-
tor containing a particular rate-class assignment (z). We
implemented the method in Physher [29] and the
genetic algorithm was parallelized using POSIX threads.

Model comparison
Since the homogeneous, 2-rate model, and flyway-
based models are nested, we used the likelihood ratio
test (LRT) to test their goodness-of-fit [31]. The HRM
is the simplest model is at contains only one transition
rate. The number of flyways under investigation will
determine the number of parameter in the FRM
models. For a four-flyway rate model (4-FRM) the
number of free parameters is 10, while the number of
free parameters for three flyways (3-FRM) is reduced
to 6. Although the GRM and HRM models are nested,
this is not necessarily the case for the GRM and FRM
models, so that the LRT cannot be used to compare
these latter models.
Another approach to model selection is to use infor-

mation theory-based criteria such as the Akaike infor-
mation criterion (AIC) and the Bayesian information
criterion [32]. Unlike the LRT, these selection criteria
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are applicable to non-nested models. The AIC penalizes
the number of parameters using the following formula:

AIC ¼ −2LnLþ 2k ð1Þ

where LnL is the log-likelihood and k is the number of
estimated parameters. When the number of observation
is small, it is recommended to use a second order
correction to the AIC:

AICc ¼ −2LnLþ 2k þ 2k k þ 1ð Þ
s−k−1

ð2Þ

where LnL is the log-likelihood, s is the number of
observations, and k is the number of estimated parame-
ters. To be valid, the AICc requires that the number of
observations exceed the number of estimated parame-
ters. Unfortunately, it is difficult to define the number of
observations in phylogenetics. In nucleotide-based infer-
ence, the number of observations is usually assumed to
be either the number of characters or the number of
unique sites in the alignment [32]. Using the total num-
ber of characters is likely to be an over-estimate due to
the correlation of characters among sites, while the
number of unique sites would underestimate the effect-
ive sample size. In the context of phylogeography we can
only observe one realization of the spatial process that
generated the discrete geographic locations.
Due to the difficulty in statistically comparing models

of different dimensionality, we fixed a priori the number
of parameters to 6, which represents the number of free
parameters in the 3-FRM.

Assessing the impact of migratory flyway on viral spread
We assessed the influence of migratory flyways on viral
spread by calculating the within- and between-flyway
mean rates and their ratio, in which a ratio greater than
1.0 suggests that migratory flyways act as a barrier to
viral dispersal.
Importantly, however, this flyway assignment is un-

likely to be accurate since flyway boundaries coincide
with administrative boundaries of localities and are
therefore not entirely based on ecological data. To

investigate the impact of flyway boundary choices we
changed the flyway boundaries and calculated both
mean rates and calculated their ratio. Depending on
the gene segment under investigation there are at
most 8 localities abutting flyway boundaries, so we
redefined the boundaries around these localities. For
example, using the flyway classification used in this
paper Alberta belongs to the Central flyway while the
neighboring province of British Columbia belongs to
the Pacific flyway. In this particular case we recalcu-
lated means rates and their ratios twice by assigning
both states to either the Pacific or Atlantic flyway.
Specifically, we tried every combination where one or
more localities were assigned to the flyway of its
neighbour, while avoiding flyway overlaps. For ex-
ample, we do not assign Alberta to the Pacific flyway
and British Columbia to the Central flyway as this
would change the order of flyways on the east-west
axis (i.e. from Pacific/Central/Mississippi/Atlantic to
Central/Pacific/Mississippi/Atlantic).

Results
To investigate the structure of AIV transmission be-
tween US states and Canadian provinces, and its as-
sociation with patterns of bird migration (i.e. the
presence of avian flyways), we constructed several
continuous-time Markov chains (Table 1) and com-
pared them when appropriate.

Table 1 Log-likelihoods and the number of the parameters of
the homogeneous rate model (HRM), two-rate models (3-TRM
and 4-TRM), general rate model (GRM), and flyway rate models
(3-FRM and 4-FRM)

Log-likelihoods (number of parameters)

HRM 3-TRM 4-TRM 3-FRM 4-FRM GRM

Gene 1 2 2 6 10 6

PB2 -8074.00 -7800.43 -7824.98 -7722.97 -7681.91 -6597.88

PB1 -8615.70 -8296.80 -8347.27 -8215.62 -8180.37 -6790.40

PA -8630.13 -8296.92 -8344.78 -8221.35 -8147.05 -6965.91

NP -8246.47 -7943.91 -7951.55 -7885.42 -7820.08 -6664.63

MP -8939.48 -8645.74 -8698.52 -8579.15 -8541.34 -7362

Table 2 Estimates of the within- and between-flyway rates and their ratio under the 4-TRM for each gene segment. Under the 4-TRM
the ratio is equal to the within flyway rate estimate over the between flyway rate estimate. Under the 4-FRM and GRM the ratio is equal
to the mean within flyway rate over the mean between flyway rate. Mean rates are calculated assuming four flyways

4-TRM 4-FRM GRM

Gene within between ratio within between ratio within between ratio

PB2 7.7 1.75 4.4 8.37 1.67 5.01 6.06 1.4 4.33

PB1 7.96 1.75 4.55 8.48 1.69 5.02 14.75 1.75 8.43

PA 8.92 1.92 4.64 8.8 1.92 4.58 6.85 1.5 4.57

NP 8.56 1.7 5.03 8.76 1.64 5.34 7.18 1.45 4.95

MP 11.52 2.68 4.3 11.55 2.67 4.33 9.85 2.09 4.71
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First, to assess the heterogeneity of the migration net-
work we compared the (non-flyway) HRM model to the
3-TRM and 4-TRM (flyway-based) models using a likeli-
hood ratio test. For each gene we found that the TRM
models provided a significantly better fit to the data than
the (non-flyway) HRM (LRT p-value << 10−10 for every
gene analyzed). Most notably, the within-flyway rate is
about 4 to 5 times greater than the between-flyway rate
depending on the gene segment and the number of fly-
ways assumed. Although the 3-TRM and 4-TRM have
the same number of parameters, the log-likelihood of
the former is higher than that of the latter in every ana-
lysis suggesting that viral gene flow is relatively

unconstrained between the Central and Mississippi
flyways. Another explanation for this pattern is that
the within-flyway rate of these two flyways is equal.
Both the 3-FRM and 4-FRM models impose fewer
constraints on the underlying structure of the
migration network by allowing heterogeneity in mi-
gration rate between flyways. These complex models
fit the data better than any of the TRMs in all data
sets (LRT p-values = 0). Similarly, the most
parameter rich model, 4-FRM, also fit the data sig-
nificantly better than the 3-FRM in each analysis
(LRT p-value << 10−10). Migration rates inferred
using the 3-TRM, 4-TRM, 3-FRM and 4-FRM

Table 3 Estimates of the within- and between-flyway rates and their ratio under the 3-TRM assuming 3 flyways for each gene segment.
Under the 3-TRM the ratio is equal to the within flyway rate estimate over the between flyway rate estimate. Under the 3-FRM and GRM
the ratio is equal to the mean within flyway rate over the mean between flyway rate. Mean rates are calculated assuming three flyways

3-TRM 3-FRM GRM

within between ratio within between ratio within between ratio

PB2 6.39 1.34 4.77 7.13 1.3 5.48 5.37 1.1 4.88

PB1 6.81 1.32 5.16 7.52 1.28 5.7 12.86 1.07 12.02

PA 7.47 1.41 5.3 7.75 1.39 5.58 6.04 1.12 5.39

NP 6.85 1.32 5.19 7.25 1.28 5.66 6.08 1.27 4.79

MP 9.94 2.04 4.87 10.3 2.01 5.12 8.86 1.56 5.68

Transition Rates

0.72
2.38
4.50
9.54
30.05

AtlanticCentral MississippiPacific

Fig. 1 Viral migration and migratory flyways in North America. Viral migration rates were inferred from the PB2 gene segment (an exemplar of
the AIV data set as a whole). US states and Canadian provinces (locations) are color-coded according to their flyway assignment. No viruses were
analyed from locations that have a light color. The color of each line connecting two locations corresponds to the inferred rate. The absence of a
line connecting two locations suggests that the migration rate was 0
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revealed that migration rates within flyways are
higher than those between flyways (Tables 2 and 3).
Importantly, the migration rate between the most dis-
tant flyways (i.e. Pacific and Atlantic flyways) was sig-
nificantly lower than the other rates, indicating that
there is clear isolation-by-distance along the East-
West axis.
Using the same number of rates as in the 3-FRM

(i.e. 6 rates), we relaxed the assumption that transi-
tion rates within flyways are identical and inferred

the best model using a genetic algorithm. This suc-
cessfully identified models that fit the data better
than the flyway-based models. Notably, although the
3-FRM and the general rate GRM have the same
number of parameters, the log-likelihood of the
GRM is significantly higher than the 3-FRM in every
data set (Table 1), suggesting that the flyway-based
classification of rates is too stringent or unrealistic.
For example, Nevada and Alaska are allocated to the
same (Pacific) flyway but are separated by thousands

Transition Rates

1.59
6.50
14.14
23.98
251.95

AtlanticCentral MississippiPacific

Transition Rates
0.68
2.14
6.35
14.99
41.01

AtlanticCentral MississippiPacific

Transition Rates

0.59
1.57
4.64
14.18
43.12

AtlanticCentral MississippiPacific

Transition Rates

0.90
2.49
6.04
16.76
51.96

AtlanticCentral MississippiPacific

PB1 PA

NP MP

dc

ba

Fig. 2 Viral migration and migratory flyways in North America. Viral migration and migratory flyways in North America inferred from the PB1, PA,
NP, and MP gene segments. US states and Canadian provinces (locations) are color-coded according to their flyway assignment. No viruses were
analysed from locations that have a light color. The color of each line connecting two locations corresponds to the inferred rate. The absence of a
line connecting two locations suggests that the migration rate was 0
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of kilometres, obviously providing fewer opportun-
ities for direct transmission of avian viruses between
birds than neighbouring localities. Overall, our ana-
lyses show that transmission rates vary widely not
only within flyways but also between them (Figs 1, 2,
3 and 4). In what follows we present the results
based on the PB2 gene segment in detail as these are
illustrative of the overall pattern (results for the
other gene segments are provided in the supplemen-
tary material). In the PB2 gene analysis (Figs 1 and
2), the highest migration rate category was assigned
to pairs of localities that belong to different flyways,
while some migration rates within flyways were equal
to 0. Importantly, the three highest migration rate
categories were not assigned to pairs of localities be-
longing to either the Pacific or Atlantic flyways.
Many of the estimated transmission rates were equal
to 0, while non-zero rates spanned several orders of
magnitude, revealing a patchy and heterogeneous
transmission network between localities. We also es-
timated the mean within and between flyway rates
for each data set; their ratio suggested that the
within-flyway rate is at least four times higher than
the between-flyway estimate (Tables 2 and 3). Finally,

Figs 1 and 2 also suggest that Alaska is highly
connected with localities belonging to any flyway,
confirming its importance as a hub for wild bird
migration.
It can be argued that our estimates may be influ-

enced by our a priori assignment of localities to
flyways. To identify a potential bias in our analyses we
therefore calculated the same ratio described above
but using different combinations of locality-to-flyway
assignments for localities located along flyway bound-
aries. In all cases the ratio is greater than two, suggest-
ing that our model is robust to uncertainties in
locality-to-flyway assignments (Fig 5).
We next determined the level of genetic differenti-

ation among geographic localities using the nearest
neighbour statistic (Snn). Although there appears to
be no correlation between spatial distance and Snn,
our results show that as the spatial distance between
localities increases so the mean Snn tends to be
higher, suggesting the presence of a structured popu-
lation (Figs 6 and 7). Furthermore, when three flyways
are considered, the mean within-flyway Snn is lower
(i.e. less structured) than the mean between-flyway
Snn involving contiguous flyways, which in turn is
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Fig. 3 Patterns of migration rates across localities. Plots of migration rates using the PB2 phylogeny (as an exemplar) on a two-dimensional matrix
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lower than the between-flyway statistic involving non-
contiguous flyways (i.e. the Pacific and Atlantic
flyways) (Table 4).
Finally, a recent study suggested that poultry are an im-

portant driver of the regional spread of AIV [33]. Since
poultry movements are independent of the flyway system,
we reanalyzed the PB2 gene segment data set by removing
all those sequences isolated from poultry. Using the same

genetic algorithm and assuming four flyways, the mean
within-flyway rate is inferred to be 4.28 times higher than
the mean between-flyway rate in this wild bird-only
data set, a value almost identical to the ratio
estimated using the full data set (ratio = 4.33). We
argue that if poultry played an important part in the
spread of AIV it would dampen the north-south pat-
tern observed in these data since domestic birds

Transition Rates

0.00
1.59
6.50
14.14
23.98
251.95

Newfoundland
New Brunswick

Nova Scotia
Prince Edward Island

Québec
Virginia

Pennsylvania
North Carolina

New York
New Jersey

Massachusetts
Maryland

Maine
Delaware

Ontario
Wisconsin

Ohio
Missouri

Mississippi
Minnesota

Michigan
Louisiana

Iowa
Illinois

Arkansas
Alabama

Saskatchewan
Alberta

North Dakota
Texas

Colorado
British Columbia

Alaska
Washington

Oregon
Nevada

Idaho
California

C
al

ifo
rn

ia
Id

ah
o

N
ev

ad
a

O
re

go
n

W
as

hi
ng

to
n

A
la

sk
a

B
rit

is
h 

C
ol

um
bi

a
C

ol
or

ad
o

Te
xa

s
N

or
th

 D
ak

ot
a

A
lb

er
ta

S
as

ka
tc

he
w

an
A

la
ba

m
a

A
rk

an
sa

s
Ill

in
oi

s
Io

w
a

Lo
ui

si
an

a
M

ic
hi

ga
n

M
in

ne
so

ta
M

is
si

ss
ip

pi
M

is
so

ur
i

O
hi

o
W

is
co

ns
in

O
nt

ar
io

D
el

aw
ar

e
M

ai
ne

M
ar

yl
an

d
M

as
sa

ch
us

et
ts

N
ew

 J
er

se
y

N
ew

 Y
or

k
N

or
th

 C
ar

ol
in

a
P

en
ns

yl
va

ni
a

V
irg

in
ia

Q
ué

be
c

P
rin

ce
 E

dw
ar

d 
Is

la
nd

N
ov

a 
S

co
tia

N
ew

 B
ru

ns
w

ic
k

N
ew

fo
un

dl
an

d

PACIFIC CENTRAL MISSISSIPPI ATLANTIC

Transition Rates

0.00
0.68
2.14
6.35
14.99
41.01

Newfoundland
New Brunswick

Nova Scotia
Prince Edward Island

Québec
Virginia

Pennsylvania
North Carolina

New York
New Jersey

Massachusetts
Maryland

Maine
Florida

Delaware
Ontario

Wisconsin
Ohio

Missouri
Mississippi
Minnesota

Michigan
Louisiana

Iowa
Illinois

Arkansas
Alabama

Saskatchewan
Alberta

North Dakota
South Dakota

Texas
Colorado

British Columbia
Alaska

Washington
Oregon

California

C
al

ifo
rn

ia
O

re
go

n
W

as
hi

ng
to

n
A

la
sk

a
B

rit
is

h 
C

ol
um

bi
a

C
ol

or
ad

o
Te

xa
s

S
ou

th
 D

ak
ot

a
N

or
th

 D
ak

ot
a

A
lb

er
ta

S
as

ka
tc

he
w

an
A

la
ba

m
a

A
rk

an
sa

s
Ill

in
oi

s
Io

w
a

Lo
ui

si
an

a
M

ic
hi

ga
n

M
in

ne
so

ta
M

is
si

ss
ip

pi
M

is
so

ur
i

O
hi

o
W

is
co

ns
in

O
nt

ar
io

D
el

aw
ar

e
F

lo
rid

a
M

ai
ne

M
ar

yl
an

d
M

as
sa

ch
us

et
ts

N
ew

 J
er

se
y

N
ew

 Y
or

k
N

or
th

 C
ar

ol
in

a
P

en
ns

yl
va

ni
a

V
irg

in
ia

Q
ué

be
c

P
rin

ce
 E

dw
ar

d 
Is

la
nd

N
ov

a 
S

co
tia

N
ew

 B
ru

ns
w

ic
k

N
ew

fo
un

dl
an

d

PACIFIC CENTRAL MISSISSIPPI ATLANTIC

Transition Rates

0.00
0.59
1.57
4.64
14.18
43.12

New Brunswick
Nova Scotia

Prince Edward Island
Québec
Virginia

Pennsylvania
North Carolina

New York
New Jersey

Massachusetts
Maryland

Maine
Florida

Delaware
Ontario

Wisconsin
Ohio

Missouri
Mississippi
Minnesota

Michigan
Louisiana

Iowa
Illinois

Arkansas
Alabama

Saskatchewan
Alberta

North Dakota
Texas

Colorado
British Columbia

Alaska
Washington

Oregon
Idaho

California

C
al

ifo
rn

ia
Id

ah
o

O
re

go
n

W
as

hi
ng

to
n

A
la

sk
a

B
rit

is
h 

C
ol

um
bi

a
C

ol
or

ad
o

Te
xa

s
N

or
th

 D
ak

ot
a

A
lb

er
ta

S
as

ka
tc

he
w

an
A

la
ba

m
a

A
rk

an
sa

s
Ill

in
oi

s
Io

w
a

Lo
ui

si
an

a
M

ic
hi

ga
n

M
in

ne
so

ta
M

is
si

ss
ip

pi
M

is
so

ur
i

O
hi

o
W

is
co

ns
in

O
nt

ar
io

D
el

aw
ar

e
F

lo
rid

a
M

ai
ne

M
ar

yl
an

d
M

as
sa

ch
us

et
ts

N
ew

 J
er

se
y

N
ew

 Y
or

k
N

or
th

 C
ar

ol
in

a
P

en
ns

yl
va

ni
a

V
irg

in
ia

Q
ué

be
c

P
rin

ce
 E

dw
ar

d 
Is

la
nd

N
ov

a 
S

co
tia

N
ew

 B
ru

ns
w

ic
k

PACIFIC CENTRAL MISSISSIPPI ATLANTIC

Transition Rates

0.00
0.90
2.49
6.04
16.76
51.96

Newfoundland
New Brunswick

Nova Scotia
Prince Edward Island

Québec
Virginia

Pennsylvania
North Carolina

New York
New Jersey

Massachusetts
Maryland

Maine
Delaware

Ontario
Wisconsin

Ohio
Missouri

Mississippi
Minnesota

Michigan
Louisiana

Iowa
Illinois

Arkansas
Alabama

Saskatchewan
Alberta

North Dakota
Texas

Colorado
British Columbia

Alaska
Washington

Oregon
Nevada

California

C
al

ifo
rn

ia
N

ev
ad

a
O

re
go

n
W

as
hi

ng
to

n
A

la
sk

a
B

rit
is

h 
C

ol
um

bi
a

C
ol

or
ad

o
Te

xa
s

N
or

th
 D

ak
ot

a
A

lb
er

ta
S

as
ka

tc
he

w
an

A
la

ba
m

a
A

rk
an

sa
s

Ill
in

oi
s

Io
w

a
Lo

ui
si

an
a

M
ic

hi
ga

n
M

in
ne

so
ta

M
is

si
ss

ip
pi

M
is

so
ur

i
O

hi
o

W
is

co
ns

in
O

nt
ar

io
D

el
aw

ar
e

M
ai

ne
M

ar
yl

an
d

M
as

sa
ch

us
et

ts
N

ew
 J

er
se

y
N

ew
 Y

or
k

N
or

th
 C

ar
ol

in
a

P
en

ns
yl

va
ni

a
V

irg
in

ia
Q

ué
be

c
P

rin
ce

 E
dw

ar
d 

Is
la

nd
N

ov
a 

S
co

tia
N

ew
 B

ru
ns

w
ic

k
N

ew
fo

un
dl

an
d

PACIFIC CENTRAL MISSISSIPPI ATLANTIC

PB1 PA

NP MP

a

d

b

c

Fig. 4 Patterns of migration rates across localities. Plots of migration rates inferred for the PB1, PA, NP, and MP gene segments on a two-dimensional
matrix where each cell represent a rate between two locations. Each cell is color-coded according to the migration rate between the locations. The
matrix is symmetric and location labels on the x- and y-axis are ordered so that locations belonging to the same flyway are next to each other
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could in theory spread AIV in any geographic direc-
tion. Although we have insufficient data to examine
the impact of the poultry trade in data, the apparent
lack of sensitivity to the inclusion of sequences ori-
ginating from poultry supports our conclusion that
wild birds primarily spread AIV along flyways.

Discussion
Our large-scale phylogeographic analysis reveals that
the main gradient of diffusion of avian influenza
viruses in North America occurs along a North-South
axis, within the migratory flyways utilized by wild
birds. In particular, our results show that the within-
flyway migration rate was 4–13 times greater than the
between-flyway rate depending on the gene segment
and the model used, thereby providing clear evidence
that migratory flyway plays an important role in struc-
turing AIV populations in North America. The most
compelling observation in this context was that viruses
sampled from the Pacific and Atlantic flyways, the
most geographically distant flyways, showed the least
gene flow implying a significant isolation-by-distance
along the East-West axis, in support of the suggestion
of Lam et al. [14]. However, it is also evident that gene
flow between flyways has occurred at a measureable
rate, as expected with geographically contiguous local-
ities. As noted previously [14], our analyses suggest a
strong overlap between the Central and Mississippi fly-
ways, with high transmission rates between these two
areas (Figs 1, 2, 3 and 4). Indeed, given that the bar-
riers between flyways are obviously fluid, some viral
spread between flyways is expected. This is in sharp
contrast to the separation of North American and
European birds by the Atlantic Ocean, which acts as a
strong barrier to bird interaction [34, 35].
Although genetic differentiation (Snn) and spatial

distance appear to be uncorrelated, the trend
depicted in Figs 6 and 7 provides a more nuanced
explanation of the role of migratory flyways in the
spread of AIV and the impact of isolation by distance
on viral genetic diversity. Our results show that
spatial distance tends to reduce genetic diversity less
along the North-South axis than along the East-West
axis, suggesting that gene flow occurs more fre-
quently along migratory flyways. For example, the
mean Snn calculated for distinct pairs of localities
that belong to the Pacific and Atlantic flyways is
higher than for pairs of localities that belong to the
same flyway.
Other studies have investigated the extent of the cor-

relation between viral spread and migratory birds using
different data sets and methods, which have provided
contradicting conclusions. One early study [14] utilized
a combination of parsimony and maximum likelihood
phylogenetic methods and provided evidence that gene
flow was greater within flyways than between flyways,
hence supporting a key role for flyways. However, at
the time of this study, AIV sequences were only avail-
able from 16 localities (states and provinces) in North
America, thereby increasing the chance that intermedi-
ate transmission chains between close localities would
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Fig. 5 Uncertainty analysis of flyway assignment across localities. Plots
showing the distribution of the mean within-to-between ratios with
alternative location to flyway assignments for each gene. For each gene,
the curve represents the normalized probability function estimated from
different flyway assignments. Each cross shape represents the mean
within-to-between ratio estimated from the standard flyway
assignment used in the other figures and desribed in the results
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Fig. 7 Gene flow between pairs of localities plotted against their geographic distance. Plots of the nearest neighbour statistic (Snn) against spatial
distance for each pair of localities for the PB1, PA, NP, and MP gene segments

Table 4 Mean nearest-neighbor statistic (Snn) for each gene segment. Each column represents how pairs of localities are related

Gene Within flyway Contiguous flyways Flyways separated by one flyway Flyways separated by two flyways

PB2 0.88 0.89 0.91 0.94

PB1 0.9 0.91 0.91 0.94

PA 0.88 0.9 0.9 0.94

NP 0.86 0.88 0.9 0.92

MP 0.87 0.89 0.9 0.93
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be missed. Indeed, a later study based on the Bayesian
analysis of a larger data set (although still restricted to
16 geographic localities) suggested that viral spread
was mainly independent of bird migration patterns [7].
Herein, we have greatly expanded these data to an ana-
lysis of 36 to 38 localities, employing a model-based
approach similar to Lam et al. [14] but extending the
intuitive but rather inflexible flyway-based models to
allow variable rates within flyways without increasing
parameter space. Our models, which showed a better
fit to the data than the 3-FRM with the same complex-
ity, depicted a more intricate picture of viral spread in
North America, but still captured a strong correlation
between gene flow and migratory bird along flyways,
and showed that migration rates within flyways are not
homogeneous. In addition, the GRM reveals the
absence of viral transmission between some localities,
especially between pairs of localities that belong to the
Pacific and Atlantic flyways.
Another key element in our study is that transition

rates are estimated using a fixed phylogenetic tree top-
ology with branch lengths that are inferred from
nucleotide sequences. While transition rates expressed
in units of time would have been a more natural inter-
pretation, AIV exhibits strong substitution rate hetero-
geneity [36], rendering the estimation of chronograms
and substitution rates challenging. In addition, the
sampling dates of many sequences are either absent or
incomplete, which will clearly limit the scope of all
phylogeographic approaches that rely on molecular
clock dating.
As in previous studies [14], our estimation of the

migration prossess relies on a single phylogenetic tree
inferred from the nucleotide sequence alignment of
each segment separately. This is computationaly
attractive since our large-scale comparative analysis is
based on thousands of sequences, while the focus on
individual gene segments removes the possible impact
of reassortment. However, it is currently unclear how
to deal with the uncertainty involved in the estimation
of the tree and rate parameters within the maximum
likelihood framework developed here.

Conclusions
Our analyses of this set of genome sequence data pro-
vides strong evidence that the North-South migration of
birds in North America, reflected in the presence of
geographically-based flyways, plays an important role in
shaping the genetic structure of populations of avian in-
fluenza virus. As such, the spread of AIV in wild birds at
the continental scale has some degree of predictability
that may eventually assist in our attempts to control the
future spread of any highly pathogenic influenza viruses
that emerge in North America.
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