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Abstract

Background: The study of islands as model systems plays a key role in understanding many evolutionary processes.
Knowledge of the historical events leading to present-day island communities is pivotal for exploring fundamental
mechanisms of speciation and adaptation. The remote Mascarene archipelago (Mauritius, Réunion, Rodrigues),
considered to be the product of an age-progressive trend of north-to-south volcanic activity in the Indian Ocean, hosts
a remarkably diverse, endemic and threatened concentration of flora and fauna that has traditionally been considered
to be biogeographically related to Madagascar and Africa. To explore the evolutionary diversity of the Mascarene stick
insects (Phasmatodea), we constructed a global phylogeny from approximately 2.4 kb of mitochondrial and nuclear
sequence data of more than 120 species representing all major phasmatodean lineages.

Results: Based on the obtained time-calibrated molecular tree we demonstrate that the current phasmid community
of the Mascarene archipelago, which consists of members of four presumably unrelated traditional subfamilies, is the
result of a single ancient dispersal event from Australasia and started radiating between 16-29 million years ago,
significantly predating the age of Mauritius (8-10 million years).

Conclusions: We propose that the Mascarene stick insects diversified on landmasses now eroded away, presumably to
the north of Mauritius. In consequence, ancient islands have probably persisted in the Indian Ocean until the

emergence of Mauritius and not only served as stepping stones for colonisation events during sea-level lowstands, but
as long-lasting cradles of evolution. These ancient landmasses most likely allowed for adaptive speciation and served as

Madagascar.

significant sources of diversity that contributed to the biomes of the Mascarene archipelago and the megadiverse

Background

The Indian Ocean harbours a number of major terrestrial
biodiversity hotspots including Madagascar and nearby
archipelagos of the Comores, Seychelles and Mascarenes
[1]. While Madagascar and the granitic Seychelles are of
old continental origins, the Mascarene Islands Mauritius
and Réunion have been shown to be much younger as the
result of the similar process of plate movement over a sta-
tionary volcanic hot spot that formed the Hawaiian archi-
pelago and the Galdpagos Islands in the Pacific [2-5].
Recent studies suggest the presence of Precambrian, albeit
currently submerged continental fragments underneath
the Mascarene Plateau covered by magmatic deposits in
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the Indian Ocean that separated from Madagascar
about 61-83.5 million years ago (mya) [6]. Although
less well-studied, biologically speaking, than the Hawaiian
and Galdpagos Islands, the Mascarene archipelago appears
to be likewise rich in biodiversity, notably in endemics [7].
Unfortunately, the Mascarene Islands, Mauritius and
Rodrigues in particular, have already lost a significant
amount of this endemic diversity since human settlement
in the 17 century due to habitat destruction [7, 8].
Understanding the biogeographic processes leading to
endemic diversity is crucial both to interpretation of
their evolutionary history and to the establishment of
conservation strategies [9]. The majority of the extant
species diversity of the Mascarene Islands has been de-
scribed as the result of recent colonisations from outside
the archipelago and divergence within the contemporary
island system, often with immigrating lineages derived
from Madagascar and Africa [10-14]. Yet, unexpectedly,
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numerous faunal elements are related to more remote
regions such as Asia and the Indo-Pacific [7, 15-18]. In
some taxonomic groups like skinks and stick insects, colo-
nisations of the Mascarenes appear to have involved long-
distance dispersals from the Australian region ranging
between 5600-7000 km [19, 20].

Stick and leaf insects (insect order Phasmatodea) are
particularly informative organisms for historical biogeo-
graphic research due to their limited dispersal capabilities,
manageable species numbers and ease of sampling. Phas-
matodeans are predominantly large nocturnal herbivores,
exhibiting extreme forms of plant mimicry (Fig. 1), with
very limited flight capability. Stick insects must be con-
sidered as being non-volant although they often possess
wings, which they generally use to control descent from
the canopy rather than for sustained flying [21]. The
Mascarene islands harbour stick insects from four
traditional subfamilies and one taxon incertae sedis
[22, 23], suggesting repeated transoceanic colonisations of
the archipelago by unrelated phasmatodean lineages.
However, previous studies demonstrated that geographical
distribution rather than traditional classification and mor-
phological similarity reflects the evolutionary relationships
among stick and leaf insects [20, 24]. Here we provide
another example of an unexpected adaptive radiation of
stick insects in geographical isolation and that further-
more, the age of this radiation predates the origin of the
islands that these species currently inhabit.

Results

This study represents the most comprehensive study
addressing the global phylogeny of stick and leaf in-
sects to date and the first one to include a represen-
tative sampling from landmasses of the Indian Ocean,
e.g., from Madagascar and the Mascarene archipelago.
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We sampled ~24 kb of nuclear and mitochondrial
sequence data from 121 phasmatodean individuals (repre-
senting 120 spp.) and 1 individual (Metoligotoma) of the
outgroup Embioptera (webspinners). The relaxed clock
model placed the root on the branch between the Embi-
optera and Phasmatodea (Fig. 2), consistent with previous
insect phylogenies [25-29]. The next split was between
Timema and the Euphasmatodea, again consistent with
previous phylogenetic reconstructions of the Phasmatodea
[25, 30]. The recovered phylogeny was consistent with
current phylogenetic hypotheses on stick and leaf insects
including some ambiguities at deeper nodes, e.g., the
radiation of major phasmatodean lineages, which are
currently poorly resolved [24, 31, 32]. We observed strong
support for several monophyletic groups, including Aschi-
phasmatinae (Maximum likelihood bootstrap [MLB] =98,
Bayesian posterior probability [BPP] = 0.99), Cladomorphi-
nae (MLB=94, BPP=0.98), Lanceocercata (MLB=97,
BPP =0.98), Lonchodinae (BPP=0.97), Pharnaciini
(MLB = 75, BPP = 0.99), Phylliinae (MLB = 100, BPP = 0.99)
and Stephanacridini (MLB =98, BPP =0.99). Clades less
well supported, but also monophyletic in accordance
with previous studies [24, 30-32] are Heteropteryginae
(BPP =0.93), Necrosciinae (BPP =0.94), Pseudophasmati-
nae (BPP =0.91) and Diapheromerinae (BPP = 0.63). Some
further, previously unrecognized groupings that receive
good support comprise a Malagasy lineage Achrioptera +
Anisacanthidae + Damasippoididae (MLB =61, BPP = 0.98)
and an African clade of paraphyletic Gratidiini (Gratidia,
Zehntneria) + Phalces (Bacillinae) (MLB = 100, BPP = 0.98).
Bacillidae (Antongilia, Phalces, Xylica) and Pachymorphinae
(Clonaria, Gratidia, Pachymorpha, Sceptrophasma, Spino-
tectarchus, Zehntneria) were recovered as polyphyletic.
Within Lanceocercata we corroborated earlier findings
that Platycraninae is monophyletic (MLB =100, BPP = 1)

Fig. 1 Photos of Mascarene stick insects. a Couple of Apterograeffea reunionensis (Platycraninae) from Réunion. b Male of Epicharmus marchali
(Xeroderinae) from Mauritius. ¢ Female of Rhaphiderus spiniger (Tropidoderinae) from Réunion
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(See figure on previous page.)

Fig. 2 Chronogram of the sampled stick insect specimens with taxa distributed across the Indian Ocean highlighted in tones of red. Numbers at
nodes indicate bootstrap values (left) and clade posterior probabilities (right); grey bars show 95 % highest probability density. Circled numbers
refer to fossil calibration points: (1) Renphasma [56], (2) Eophasma [61], (3) fossil Malacomorpha [63), (4) fossil Clonistria [63]. PI Pliocene, Qu Quaternary

including Graeffea seychellensis, but excluding Apterograef-
fea, and a clade comprising all taxa from New Caledonia
and New Zealand (MLB = 54, BPP = 0.98) [20, 24, 33]. All
individuals sampled from the Mascarene archipelago
(9 species, 6 genera) form one strongly supported
clade (MLB=98, BPP=0.99) among Lanceocercata.
Within the Mascarene lineage, all genera are well supported
(MLB =100, BPP =1) with a clade of Monandroptera +
Rhaphiderus (MLB =100, BPP=1) being sister to the
remaining Mascarene taxa (MLB =100, BPP = 1). Mauri-
tiophasma and Epicharmus are sister taxa (MLB=71,
BPP =0.99) as well as Apterograeffea and Monoiognosis
(BPP = 0.87).

The Mascarene clade diverged from the remaining Lan-
ceocercata approximately 27.15 mya, between 20.16 and
33.07 mya, and started diversifying around 22.03 mya ago,
between 15.99 and 29.39 mya. The overall divergence time
estimates indicate a recent diversification of Euphasmato-
dea beginning ~61.26 mya (51.04-75.43 mya). The split
between Timema and Euphasmatodea occurred ~103 mya
(85.52-122.12 mya).

Discussion

Mascarene stick insect phylogeny

Recent studies have revealed that convergently evolved
features have often been the basis of classification [24, 34].
Molecular studies provide a breakthrough in the
investigation of these radiations since they avoid the
use of circularly interpreted characters. Our molecular
phylogeny did not support the traditional classification
of Mascarene stick insects, which predicted that the
respective fauna consists of five unrelated lineages,
and, consequently, implied the occurrence of multiple
colonisation events leading to the present-day phasma-
todean community in the archipelago [22]. Instead we
recovered a single origin of all Mascarene stick insects,
forming a strongly supported lineage deeply nested
within the highly diverse Australasian Lanceocercata
(Fig. 2). All Mascarene genera we sampled here (6) and
the majority of species (7) are found on Mauritius,
which is generally considered to be the oldest island in
the archipelago, its volcanic emergence dated 7.8 mya
[5]. Three genera, Apterograeffea, Monandroptera, and
Rhaphiderus, also have species on Réunion, which is a
much younger island dated at 2.1 mya [5]. The age of Ro-
drigues has been debated with estimates ranging between
11 mya for the old volcanic ridge and 1.5 mya for the re-
cent emergent part [5], some sources give 15 mya as the
oldest date of its emergence [7, 8, 14]. The only reported,

endemic stick insect from Rodrigues, Xenomaches incom-
modus (Butler, 1876), which is an extinct member of the
Platycraninae [35], was not available for our analysis.

The Lanceocercata clade has undergone an impressive
evolutionary diversification during the past ~40 million
years that led to several adaptive radiations in geograph-
ical isolation, e.g.,, New Caledonia and New Zealand,
resulting in several morphologically and behaviourally
convergent ecotypes [20, 24, 33]. Therefore, it did not
come as a surprise that the discovery of Lanceocercata
rendered numerous traditional systematic entities arti-
ficial. Lanceocercata comprises species from six sub-
families, Pachymorphinae, Tropidoderinae, Xeroderinae,
Phasmatinae, Eurycanthinae, and Platycraninae, none of
which is monophyletic. This knowledge is significantly en-
hanced by our finding of another unexpected adaptive ra-
diation in the Mascarene archipelago, which involves
further strikingly convergent ecotypes. For instance, the
Mascarene Apterograeffea (Fig. 1a), traditionally viewed as
a member of the Platycraninae (coconut stick insects and
allies), exhibits the same enlarged genae (‘cheeks’) neces-
sary to accommodate the massive mandibular muscles ne-
cessary for feeding on hardy palm or screw pine
(Pandanus) leaves as do the unrelated Australian and
Pacific ecotypes, e.g., Graeffea and Megacrania [22]. On
Mauritius, Epicharmus (Fig. 1b), traditionally assigned to
Xeroderinae, is a stout winged stick insect with lobes on
legs and abdomen, which enhance crypsis of this bark-
dwelling species, is most reminiscent to the unrelated
Australian Xeroderus and New Caledonian Leosthenes.
The female of Rhaphiderus (Fig. 1c), hitherto assigned to
Tropidoderinae, is a wingless leaf-imitating form very
similar to the Australian Malandania and Tropidoderus.
This remarkable diversity in appearance and ecology
prompted taxonomists to assume the Mascarene species
to be unrelated to each other, especially in regard of the
young age of Mauritius, and to incorrectly place them in
different subfamilies.

Origins of the Mascarene fauna

Usually, islands are colonised from the nearest land source,
and not surprisingly the Mascarene biota shows close
affinities to Madagascar, which is approximately 700 km
away. Terrestrial vertebrates like giant tortoises [36],
Phelsuma day geckos [10] and slit-eared skinks [11] and
also recently studied invertebrates such as carnivorous
land-snails [12] and the golden orb spider Nephila [13] are
few examples among many others [7, 8, 14]. We, in con-
trast, found no close relationships between any Malagasy
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lineage of stick insects and those of the Mascarene archipel-
ago and, based on a more restricted sampling, already dem-
onstrated the Mascarene Tropidoderinae, Monandroptera
and Rhaphiderus, are deeply nested within the Australasian
Lanceocercata [20, 24]. Indo-Pacific ancestors of Mascarene
lineages have been revealed before. The most famous ex-
ample might be the extinct dodo (Raphus) on Mauritius
and the solitaire (Pezophaps) from Rodrigues, which form
sister taxa with close relatives in Southeast Asia [15, 16].
Nactus geckos and skinks of the genus Leiolopisma are
further examples showing Australasian origins [19]. The
arrival of Leilopisma skinks in the Mascarenes requires a
spectacular transmarine dispersal between 5600 km from
West Australia or more than 7000 km from a more trop-
ical region such as New Guinea. A similar route must have
been taken by the ancestral Mascarene stick insect. An
east—west directed ocean stream towards Madagascar, the
South Equatorial current, which was already existent dur-
ing the Oligocene and Miocene, is most likely responsible
for these kinds of long-distance transoceanic passages
[37, 38]. It has recently been demonstrated that the
hard-shelled, seed-like eggs of certain phasmatodeans can
survive a significant amount of time (several months)
under marine conditions, e.g., floating on seawater [39].
Eggs of Mascarene stick insects are often glued to twigs
and other plant substrate [23], which would further facili-
tate above-water dispersal. It is noteworthy that the
remarkable transoceanic journey via east—west dispersal
across the Indian Ocean occurred twice within Lanceocer-
cata and is not restricted to the Mascarene clade alone.
Graeffea seychellensis, a member of the true coconut
stick insects (Platycraninae) (cf. Fig. 2) that are dis-
tributed in Australia and throughout the Southwest
Pacific, reached and colonised the Granitic Seychelles.
Ocean currents are also likely responsible for repeated
dispersals from Mauritius towards Réunion. Both islands
have never been connected by land and are separated by
164 km from each other [8], nevertheless members of
three Mascarene genera, Apterograeffea, Monandroptera,
and Rhaphiderus, colonised Réunion since its emergence.
Island colonisations are contingent events. Whereas colo-
nisations of New Caledonia and New Zealand led to
flourishing stick insect radiations [20, 24], the Pacific
Galdpagos Islands and the Hawaiian archipelago are devoid
of any phasmatodeans. Peculiarly, Madagascar was never
successfully colonised by Lanceocercata [20, 40] either
from Australia or the Mascarenes, despite being separated
from the latter, viz. Réunion, by only 665 km of ocean [8],
far less than the 5600-7000 km that separate Australia
from the Mascarenes, and it forms a significantly larger
target area than the Mascarene Islands or Seychelles.
However, the size and structure of the ancient island com-
munity of the Mascarene plateau, which might had much
larger landmasses than today, especially during sea-level
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lowstands [8, 17], remains speculative. We cannot preclude
that Lanceocercata might have actually arrived on
Madagascar, but was not able to persist and diversify be-
cause the Malagasy lineage of stick insects, which colonised
the island earlier (between 38 and 51 mya), already under-
went a flourishing radiation and largely reduced ecological
opportunities for any newcomer.

Timing the Mascarene colonisation

Most surprisingly, we obtained a time estimate for the
origin of the Mascarene clade that significantly exceeds
the geological ages of the extant emerged islands. At
22.03 mya (15.99-29.39 mya) the Mascarene phasmid
lineage began to radiate long before Mauritius is sup-
posed to have emerged (8—10 mya) [5, 8]. This result is
largely contrasted by the recent accumulation of
molecular phylogenetic studies favouring recent arrival
and diversification of terrestrial colonisers, e.g., 3.5-5.1
mya for Phelsuma day geckos [10], ~3 mya for slit-eared
skinks [11], 1.9-7.4 mya for hermit spiders and 0.8 mya
for Nephila spiders [13]. Austin and Arnold [19]
recovered a divergence time of 17 mya for Mascarene
Leiolopisma skinks, however this refers to the stem di-
vergence time separating the Mascarene skinks from
their most closely related Australian relatives. This
might represent an over-estimate, since the age of the
branching between the island lineage and the outside
relative (the continental sister group) marks the upper
time limit of colonisation, because the closest outside
relative might be unsampled or extinct [3]. Conse-
quently, the colonisation event could have occurred sig-
nificantly later. On the other hand, the age of the most
recent common ancestor of a multi-species lineage of
island organisms marks the lower limit, because it is
possible that the ancestral species colonised the island
long before the historically known taxa began to diver-
sify (= crown divergence time) [3]. The crown diver-
gence time of Leiolopisma skinks, when speciation on
Mauritius began, is dated to 3.4 mya [19], thus being
concordant with the island’s geological age. A similar
pattern is observed in certain flowering plants (Laurales:
Monimiaceae) with a stem divergence time of 31.55 mya
between Monimia (Réunion) and its sister Palmeria
(Australia) and a crown divergence time of Monimia of
1.34 mya [18]. In contrast, the crown divergence time of
the Mascarene palm genus Hyophorbe is observed to lie
between 12 and 14 mya, albeit with a lower 95 % confi-
dence interval boundary falling within the assumed age
of the Mascarene Islands [41], unlike our results.

We used a twofold conservative approach to date the
Mascarene phasmid lineage, since our analysis is based
on fossil calibrations, and any given fossil indicates the
minimum time of the taxon in question, and we refer to
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the crown divergence time, a potential under-estimate.
Taking this into consideration, it is possible that the
Mascarene clade (and the whole phasmatodean tree) is
even older than suggested by our analysis. We calibrated
the split between Phasmatodea and Embioptera at ~122
mya, whereas recent studies based on transcriptomic
data inferred much older estimates of ~164 mya [29]
and even at ~250 mya [42] and (based on a combination
of nuclear and mitochondrial markers) at ~260 mya [43]
for the same node. In a previous less conservative ap-
proach based on published mitochondrial DNA (mtDNA)
rates only, we estimated the stem divergence time of 39.5
mya for the Mascarene members of Tropidoderinae
alone [20]. However, molecular clock analyses based
on mitochondrial genes can overestimate divergence
times [44]. For instance the proposed ancient split (~10
mya) between the two Galdpagos iguanas based on
mtDNA suggested speciation on now-sunken islands of
the archipelago [2], which was recently challenged by a
study using protein-coding nuclear genes and arriving at a
much younger divergence (~4.5 mya) on currently sub-
aerial islands [45].

Confidence in our time estimates as proposed here
gains further support by the dates we obtained for the
inter-island splits of the three phasmid genera that have
members on both Mauritius and Réunion. The split be-
tween the two species of Apterograeffea is 3.45 mya
(1.41-6.02 mya), and 0.05 mya (0.01-0.11 mya) lie be-
tween Rhaphiderus scabrosus and R. spiniger. The split
between the two Monandroptera acanthomera speci-
mens, which are considered to represent one single spe-
cies despite their greater genetic distance, is dated 1.4
mya (0.5-2.51 mya). These dates are consistent with dis-
persal from Mauritius to Réunion following formation of
the latter at least 2.1 mya.

A potential explanation for the discrepancy between the
young age of Mauritius and the greater age of the respect-
ive lineage of stick insects is provided by historical tec-
tonic and volcanic events in the western Indian Ocean.
The Mascarene archipelago is considered to be the prod-
uct of an age-progressive trend of north-to-south volcanic
activity, the Réunion hot spot chain, with a northward
increase in age of volcanic activity [5]. It is assumed that
many parts of the Réunion hot spot chain were above sea
level over the last 65 million years at the time of their
formation (Fig. 3) and that these islands would have
been temporarily available as stepping-stones for line-
ages dispersing between India and Madagascar [12, 17].
The next major islands that emerged prior to the rise of
Mauritius were Saint Brandon (Cargados-Carajos), 385 km
north-east of Mauritius, dated 31 mya, and Nazareth Bank,
which is nearly contiguous with St. Brandon bank at its
northern margin, dated at 35 mya [8]. Based on our conser-
vative divergence time estimates we reject the possibility of
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an ancestral Mascarene phasmid arriving in Mauritius and
instead propose the scenario of a colonisation of either
Nazareth Bank or St. Brandon with subsequent radiation
and dispersal towards the much younger Mauritius. Smaller
uplifts between St. Brandon and Mauritius, e.g, Baissac
Bank and Soudan Bank (Fig. 3), might have further facili-
tated spread of terrestrial faunal elements. This stepping-
stone route was already assumed for the extinct dodo on
Mauritius and its sister, the solitaire, on Rodrigues, which
exhibit an equally deep divergence time between 23-25
mya [15, 16], and also for two sister taxa of land-snails [12].
With only two taxa involved, the alternative, albeit less par-
simonious hypothesis that they diverged on a distant land-
mass and colonised the islands independently, has to be
considered [2]. However, the more diverse radiation of stick
insects with a distant Australasian origin makes this
scenario very unlikely. It is likewise implausible to assume
multiple colonisations from still existent landmasses in the
Indian Ocean, such as Madagascar, that requires the as-
sumption that each coloniser’s sister taxon went extinct on
this landmass after the colonisation event. Another poten-
tial source of colonisation could be Rodrigues whose upper
age estimate (15 mya) nearly overlaps with our lower esti-
mate of the Mascarene phasmid clade (16 mya). Given that
our estimate, if anything, is an under-estimate, the time-
span difference between the origin of the Mascarene clade
and the emergence of Rodrigues is probably much larger.
Furthermore, past studies have shown that Rodrigues is
rather a sink than a source for colonisers with not a single
organismic lineage of Rodrigues having colonised any
other island in the region [14]. Thus, the possibility
of Rodrigues as a source for the Mascarene stick
insects appears highly unlikely. A further alternative
hypothesis in accordance with our data would be that
Mauritius is much older than previously thought. A recent
study suggests the presence of a Precambrian microcontin-
ent in the Indian Ocean, now covered by younger mag-
matic deposits that separated from Madagascar 61-83.5
mya and fragmented into a ribbon-like configuration that
also comprises Mauritius [6]. However, this conclusion does
not necessarily mean that all of these continental frag-
ments, including Mauritius, were above sea level before the
more recent volcanic uplift. Nevertheless, exposed lavas in
the Mascarenes are often the result of recent volcanic
reactivation and might impede the detection of the true age
of the underlying geology [7].

Consequently, we favour the assumption that submerged
islands such as St. Brandon have existed continuously
above sea level since its formation until the emergence of
Mauritius, viz. over a period of more than 20 million years.

Speciation in the Mascarene archipelago
We found limited evidence for speciation of stick insects
on Mauritius. The dates for the inter-generic splits of
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Mascarene phasmatodeans predate the island’s age again. It
is generally assumed that a minimum island size exists
below which speciation is rather unlikely due to the lack of
opportunities for geographical isolation and niche partition-
ing [46]. Small islands, like those forming the current
Mascarene archipelago, lack speciation in some organismic
lineages, as recently observed for Tetragnatha spiders [47],
because these islands do not allow for sufficient geograph-
ical isolation (allopatric speciation) and provide fewer
ecological opportunities, e.g., less niche space than large
islands, that would more readily allow diversification due to
ecological specialisation (sympatric speciation). Yet, the
weevil genus Cratopus underwent a quite impressive radi-
ation in the archipelago leading to more than 80 species
[7]. Before severe habitat destruction since the 17" century,
Mauritius was homogenously covered by semi-dry palm
forest and moist tropical rain forest [8], but the much youn-
ger Mauritius might have been ecologically more diverse.
The current landscape of distantly spaced small islands in
the Mascarene archipelago was probably preceded by a
period of larger islands that more readily allowed for speci-
ation. Therefore, it appears plausible that at least some

speciation took place on (intra-island) or between (inter-is-
land) these former, now submerged northern landmasses,
which apparently were much larger than Mauritius, e.g., St.
Brandon, Nazareth Bank (Fig. 3), followed by repeated
colonisations, 3-6 times, of Mauritius. In fact, multiple
dispersals towards Mauritius are not unlikely since stick
insects already colonised Réunion at least three times
during the past 2 million years alone. Allopatry might have
played an important role in regard of the deeper nodes of
the Mascarene stick insects and was most likely crucial for
more recent speciation events. With the exception of
Monoiognosis, which has only very recently diverged into
two species on Mauritius, further intra-generic splits
occurred only in geographical isolation after colonisation of
Réunion. Similar patterns are observed in the Mascarene
radiations of giant tortoises [36] and geckos [10], in which
allopatric inter-island speciation as well as sympatric intra-
island speciation events are reported.

Conclusion
In summary, the results of our phylogenetic analysis
and divergence time estimates strongly suggest that



Bradler et al. BMC Evolutionary Biology (2015) 15:196

the Mascarene stick insects are older than the landmass
they currently inhabit. We conclude that the ancestral
Mascarene stick insect colonised former, now sunken
islands, most probably located to the north of Mauritius.
It has been suggested before that subsided seamounts
throughout the Indian Ocean, when fully above water,
could have served as stepping-stones between India and
the Mascarenes and would have reduced the distance for
oceanic dispersal [12, 14—18, 41]. However, fossil evidence
for a subaerial past has so far only been provided for the
Paleocene islands in the Ninetyeast Ridge [48]. Concordant
with previous conclusions [8, 15, 41], our results imply that
ancient islands must have existed permanently above sea
level throughout the Oligocene and Miocene. We expect
future phylogeographic investigations in the Mascarene
archipelago, which still remains a comparatively uncharted
study system, to reveal further deep divergence times in
support of our observations and explanations.

Methods
DNA extraction and phylogenetic analysis
We extracted and sequenced DNA from 38 stick insect
specimens and combined these data with 83 previously
sequenced taxa, which represent all major lineages cur-
rently recognised in Phasmatodea (see Additional file 1:
Table S1 for detailed information) [24, 31]. We focussed
on a particularly dense sampling of stick insects from the
landmasses of the Indian Ocean. We included nearly all
known genera and species from Mauritius and Réunion,
which represent members of different taxonomic units,
e.g., Apterograeffea (Platycraninae), Epicharmus (Xeroder-
inae), Mauritiophasma (Phasmatinae), Monandroptera
and Rhaphiderus (Tropidoderinae), and Monoiognosis
(incertae sedis). We were unable to obtain a sample of
Heterophasma wmultispinosum Cliquennois and Brock,
2004 from Réunion, another genus currently placed in
Tropidoderinae, and of the extinct Xenomaches incommo-
dus from Rodrigues, currently assigned to Platycraninae.
We amplified regions of the mitochondrial cytochrome
¢ oxidase subunit I (COI) and II (COII) genes and the
nuclear Histone subunit 3 (H3) and ribosomal large sub-
unit RNA gene (28S) using methods described previ-
ously [24]. Chromatograms were edited in Geneious
7.1.5 (http://www.geneious.com) [49]. DNA sequences
were aligned using Muscle [50] as implemented in Gen-
eious v7.1.5 (http://www.geneious.com [49]). We used
GBLOCKS [51] to identify regions in the alignment with a
large number of contiguous conserved positions of a mini-
mum length. We used the GBLOCKS server and imple-
mented the “options for a less stringent selection”. The
data were partitioned into four character sets; mitochon-
drial 1° and 2™ codon positions, mitochondrial 3" codon
positions, H3 gene and 28S gene. Model selection was
performed separately on each partition using JModelTest
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v.2.1.3 [52]. We used the AIC to select from a set of 88
models with base frequencies estimated. Likelihoods were
calculated on a BioNJ tree that was fixed across models.
Phylogenetic analyses were performed in maximum likeli-
hood and Bayesian frameworks using Garli v2.0 [53] and
BEAST 1.7.4 [54] respectively. For the Garli analyses we
performed 100 bootstrap replicates with 20 random
addition replicates per bootstrap. A partitioned model was
employed with parameter estimates from JmodelTest. For
the Bayesian analyses we used a log Normal distributed re-
laxed clock model [55] under a Yule speciation prior (10)
with the following exponential priors for the nucleotide
substitution model parameters; relative substitution
rates = 100, relative rate matrix parameters = 1.0, alpha
shape parameter = 0.5, uncorrelated log Normal mean =
0.5, uncorrelated log Normal standard deviation = 0.5. For
the proportion of invariable sites a uniform distribution
bounded by 0 and 1.0 was used. The analyses were run for
60 million generations, sampling every 1000 generations.

Fossil calibrations

To calibrate the phylogeny we used four fossils that we
were able to assign to specific nodes on the tree. The
first calibration was obtained from the Yixian Formation
in Liaoning, China based on an adult male specimen,
Renphasma sinica [56]. This is the oldest fossil that can
be clearly identified as a true phasmatodean [57]. Males
of Phasmatodea possess a sclerotised hook on the venter
of abdominal segment 10, the vomer, between a pair of
unsegmented cerci, which are interpreted as unambigu-
ous apomorphic characters for Phasmatodea [58], both
exhibited by Remphasma [56]. The Yixian Formation
dates from at least 122.1 mya [59]. We calibrated the
root of the tree that separates the Embioptera from the
Phasmatodea with an exponential prior with mean of 1.0
and offset at 122 mya. This represents a conservative
approach to dating because we have calibrated the dee-
per Embioptera/Phasmatodea split, rather than shallower
crown group radiations. The effect of this conservative
approach is to yield more recent divergence times than
applying crown-group calibrations. Further calibrations
were provided based on fossil eggs. Eggs of stick insects
are hard-shelled and richly sculptured with species-
specific traits that are considered to be of major taxo-
nomic importance for the order [32, 60]. The second
calibration was from Clark Sellick [61], who described
fossil eggs from the Eocene Clarno Formation Nut Beds
of Oregon. These species can confidently be assigned to
the Pseudophasmatinae subgroup Anisomorphini be-
cause their eggs bear a conspicuous negative opercular
angle [61], which represents a derived state among phas-
matodean eggs. The Clarno Formation has been dated
to 44 mya [62]. We calibrated the basal node of the
Pseudophasmatinae with an exponential prior with mean
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of 1.0 and offset at 44 mya. The third and fourth calibra-
tions were taken from Poinar [63] who described two fossil
eggs from Clonistria and Malacomorpha from Dominican
amber on Hispaniola. We used the Malacomorpha fossil to
date the divergence of this genus from its sister taxon
Anisomorpha. Eggs of some Malacomorpha species, e.g.,
M. cyllarus (Westwood, 1859), have a very specific rugose
capsule with raised net-like protuberances [64]. We used
the Clonistria fossil to date the basal divergence of the
Diapheromerinae. Clonistria eggs can be determined by
their vesicular, open capitulum broadly covering the oper-
culum, which is not present in the ground pattern of
Diapheromerinae (absent in Ocnophiloidea and Lobolibe-
thra) [60, 63]. Both genera, Clonistria and Malacomorpha
have numerous extant members on Hispaniola [63, 64].
Dating of Dominican amber is controversial, with the
youngest proposed age of 15-20 mya based on foramin-
ifera and the oldest as 30-45 mya based on coccoliths
[65, 66], with the specific amber containing the fossil
phasmatodeans from La Buscara mine being dated be-
tween 20 and 40 million years [63]. In order to be conser-
vative we used an exponential prior with mean of 1.0 and
offset at 20 and 40 mya respectively.

Additional file

Additional file 1: Table S1. List of species included in this study with
Genbank accession numbers for each gene. Cells with a dash indicate
missing data. Taxa in alphabetical order with subfamily assignment
following [24] with amendments from [22, 23, 31]. Mascarene taxa in
bold. (PDF 167 kb)
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