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Abstract

Electron micrographs revealed the presence of gap junctions in osteoblastic cells over 40 years ago. These intercellular
channels formed from connexins are present in bone forming osteoblasts, bone resorbing osteoclasts, and osteocytes
(mature osteoblasts embedded in the mineralized bone matrix). More recently, genetic and pharmacologic studies
revealed the role of connexins, and in particular Cx43, in the differentiation and function of all bone types.
Furthermore, mutations in the gene encoding Cx43 were found to be causally linked to oculodentodigital dysplasia, a
condition that results in an abnormal skeleton. Pannexins, molecules with similar structure and single-membrane
channel forming potential as connexins when organized as hemichannels, are also expressed in osteoblastic cells. The
function of pannexins in bone and cartilage is beginning to be uncovered, but more research is needed to determine
the role of pannexins in bone development, adult bone mass and skeletal homeostasis. We describe here the current

knowledge on the role of connexins and pannexins on skeletal health and disease.

Backgound

Connexin (Cx) complexity: Cxs oligomerize to form he-
michannels (connexons) that are transported to the cell
surface where they dock with hemichannels from a con-
tacting cell to form intercellular gap junction channels
[1]. Channels typically cluster into crystalline structures
known as gap junction plaques where they act to ex-
change numerous small molecules important in cell sig-
nalling [1]. To add to the complexity of connexin
channels, undocked connexin hemichannels at the cell
surface function to release small signaling molecules to
the extracellular environment [2, 3]. Gap junction chan-
nels are even more complex as connexin subunits
can form homomeric or heteromeric arrangements that
dock across the extracellular space to form homo- or
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heterotypic channels. As an example, Cx43 has also been
reported to form heterotypic channels with Cx40 [4, 5],
Cx45 [6] and Cx46 [7]. Interestingly, these same connex-
ins (Cx46, Cx45 and Cx43) are all found in the bone
where they have the potential to create different types of
channels with unique abilities to pass ions and small
molecules as well as be regulated by pH, voltage, and
posttranslational modifications [8].

In addition to their role as membrane channels,
connexins have been shown to interact with intracel-
lular structural and signalling molecules [9], adding
yet another layer of complexity to their function. In
particular for bone, it has been shown that Cx43 C-
terminus domain interacts with B-arrestin [10], PKC8
[11], and o5B1 integrins [12, 13] in osteoblasts and
osteocytes. Further, the Cx43 C-terminus domain is
required for the survival effect of bisphosphonates
and parathyroid hormone, and to enhance osteoblast
signaling and gene expression following FGF2 admin-
istration [10, 14, 15].
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Role of connexins on skeletal ontogeny

Global deletion of Cx43 results in perinatal death due to
impaired cardiac function [16], precluding the possibility
to investigate the role of Cx43 in the mature skeleton.
However, early studies performed in embryos showed
delayed ossification both in intramembranous and endo-
chondrial bone [17]. Similar results were observed in a
later study [18]. This phenotype was observed in cranial
bones, as well as clavicles, ribs, vertebrae and limbs.
Interestingly, at the time of birth both axial and appen-
dicular skeleton are normal, and only the cranial bones
retain abnormal mineralization [17]. The expression of
the osteoblastic gene osteocalcin is reduced during
embryonic life (days 18.5 and 19.5 post-coitum), whereas
alkaline phosphatase and osteopontin levels are reduced
early on but normalized or even increased by day 19.5
[18]. In addition, osteoblasts lacking Cx43, or expressing
only one copy of the gene (Cx43*") isolated from new-
born mice exhibit reduced expression of bone matrix
proteins and reduced mineralization potential ex vivo
[17]. However, bone length during development [18] as
well as size and morphology of the growth plate at birth
are not affected by Cx43 deletion [17].

Less is known about the role of Cx43 in other cell
types during bone development. A study showed delayed
mineralization of cranial bones at birth in mice lacking
Cx43 in osteochondro progenitors, as well as in mice
expressing the oculodentodigital dysplasia (ODDD)
mutant Cx43138R [19]. On the other hand, mice with
the deletion of Cx43 in osteoblast precursors do not ex-
hibit mineralization abnormalities, as evidence by whole
mount alizarin red and alcian blue staining of newborn
mice [20], suggesting that Cx43 expression in earlier
precursors is needed for proper bone mineralization. In
the case of other connexins that have been investigated,
global deletion of Cx37 does not lead to changes in skel-
etal mineralization at birth [21]. Moreover, even though
Cx45 and Cx46 expression has been demonstrated in
bone cells, their role on skeletal development has not
been studied.

Mouse models of connexin deficiency and the
skeleton

As indicated above, mice with global Cx43 deletion die
soon after birth, precluding the study of the adult skel-
eton. Absence of one Cx43 allele in mice expressing a
floxed Cx43 allele Cx43"" mice does not alter bone min-
eral density accrual or bone mass in adult mice, com-
pared to Cx43"% mice [20]. To overcome the lethality of
the Cx43 full knockout, and to study the adult skeleton,
several models of tissue specific deletion of Cx43 have
been generated [22]. These mice lacking Cx43 in cells of
the osteoblastic lineage have helped to understand the
role of connexins in the skeleton. The bone phenotype
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of mice lacking Cx43 in osteoblastic cells is more strik-
ing when the gene is deleted in early progenitors, and
becomes less profound when it is deleted in more
mature cells. Mice lacking Cx43 in osteochondro pro-
genitors (using Dermol-Cre) exhibit decrease bone mass
and reduced bone length [19]; whereas mice in which
the gene is deleted in committed osteoblastic cells
(Col2.3 kb-Cre) also exhibit low bone mass and decreased
cancellous bone volume, but not changes in bone length
[20, 23]. Mice lacking Cx43 in mature osteoblasts (OCN-
Cre) do not exhibit low bone mineral density or cancel-
lous bone volume [24, 25], neither do mice lacking Cx43
in osteocytes (DMP1-8 kb-Cre) [26]. In spite of the differ-
ence in bone mineral density and the cancellous bone
phenotype of these mice, they all share a cortical bone
phenotype, with increased periosteal bone apposition and
bone perimeter, enlarged marrow cavity and accumulation
of osteoclasts on the endocortical surface of the femoral
mid-diaphysis [19, 25, 26]. Further, a recent study has pro-
posed a new role for Cx43 in osteocytes [27] mediating
intracortical bone remodeling and osteocytic osteolysis, a
process by which osteocytes remove the surrounding bone
matrix [28].

A recent report using genetically-modified mice re-
vealed the role of Cx43 channel function in osteocytes
[29]. In this study, 2 transgenic mice were generated,
one expressing a mutated Cx43 with impaired channel
permeability and the other expressing a Cx43 mutant
able to form functional hemichannels but unable to
form gap junction channels. Mice without functional
channels or hemichannels exhibit increased bone mass,
whereas mice expressing a Cx43 able to form hemi-
channels were not different from wild type littermate
controls. Further differences were found between these
2 transgenic animal models, recently reviewed [22].

Unlike Cx43 full knockout mice, Cx37 deficient mice
survive until adulthood and exhibit increased bone mass
due to defective osteoclast function [21]. As for bone
development, the role of Cx45 and Cx46 in the adult
skeleton has not been explored.

Connexins and bone regeneration

Only a few studies reported the role of Cx43 in bone re-
pair and tissue regeneration in fracture healing models.
Using a close femur fracture model, a recent study, re-
vealed that Cx43 is widely expressed in the callus one
month post-fracture [30]. Further, bone and total volume
of the callus, as well as the number of TRAP+ osteoclasts
are decreased in mice lacking Cx43 in osteoblasts and os-
teocytes (Cx43Y8LOCN-Cre mice) after fracture, com-
pared to littermate controls. Cx43"%;0OCN-Cre mice also
exhibit decreased mineralization during healing, com-
pared to control mice expressing Cx43 in osteoblastic
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cells. In addition, the mechanical properties of the newly
formed tissue are altered in Cx43"";0CN-Cre mice.

The effect of age on bone repair after damage and
mechanical stimulation also involves gap junctional inter-
cellular communication (GJIC) and Cx43 activity. For ex-
ample, reduced osteocyte density and Cx43 levels were
observed in regenerated bone in aged animals, limiting
the establishment of GJIC, altering bone formation and
bone resorption, as well NO and PGE, secretion [31].

In contrast, in vivo transplantation of Cx43-transduced
bone marrow stromal cells (BMSC) within gelatin scaf-
folds resulted in a larger quantity of bone relative to
control cells. Bone regenerated from BMSC exhibiting
enhanced GJIC also showed a thicker cortex and a large
amount of trabecular-like bone [32]. These data suggest
that Cx43 establishes a signalling platform to improve
cell to cell communication in 3-dimensional (3D) struc-
tures and may have a major impact in the design of cell-
based tissue engineering strategies for enhancing bone
tissue regeneration [33, 34]. Further, modulation of con-
nexin channels might also improve cellular interactions
in cell-free scaffolds, by improving the communication
among host cells recruited to the 3D structures.

These data also provide new insights into the 3D
approach for the establishment stimulation of cell to cell
communication. Mesenchymal stem cells cultured in 3D
matrices for bone tissue engineering express higher
levels of Cx43 compared to 2D cultures in plastic culture
dishes [35]. The 3D microenvironment modifies the
distribution of cells cultured within the matrices and
enhances the cellular contacts. Further, the spheroid
organization of cells within scaffolds contributes to the
increase in Cx43 expression and new bone formation in
experimental models [35].

Osteoinductivity of calcium phosphate-based scaffolds is
also likely mediated by Cx43 expressed by dental pulp cells
[36]. These findings are expected to advance the design of
future tissue engineering materials in which Cx43 could be
used to activate bone cell differentiation and bone forma-
tion. In this context, a cell-permeant mimetic peptide, alpha
connexin carboxyl-terminal peptide («CT1), based on the
carboxyl-terminus of Cx43, has been shown to elicit
changes in gap junction organization and GJIC associated
with upregulation of protein kinase C-mediated phosphor-
ylation of Cx43 in cell systems other than bone. It has been
demonstrated that this mimetic peptide reduces scar pro-
genitor and promotes regenerative healing following skin
wounding [37] and also augments corneal wound healing
[38], suggesting that it could be used to enhance bone
ormation in bone scaffolds.

Connexin gene mutations and human disease
Early in the new millennium, germline mutations in the
GJAI gene encoding Cx43 were found to be causal of
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oculodentodigital dysplasia (ODDD) [39]. Nearly all
ODDD mutations are inherited in an autosomal dominant
manner and cause syndactyly, camptodactyly, craniofacial
abnormalities, enamel hypoplasia, cartilage anomalies that
result in a thin nose and ophthalmic defects [39-45].
There are now at least 76 Cx43 (GJAI) mutations linked
to ODDD [39-42, 45-67]. So far, 100 % of the ODDD pa-
tients harbor mutations in one of the GJAI gene alleles
that encode Cx43 [61] but there are now autosomal muta-
tions linked to Cx43 that do not cause ODDD but rather
cranio-metaphyseal dysplasia (R239Q) [68] and sudden in-
fant death (SID) (E42K, S272P) [69]. In addition, two re-
cessive GJAI mutations (encoding R33X and R76H) have
been reported [41, 42, 70]. Patients homozygous for the
R76H mutant not only exhibit symptoms of ODDD but
also Hallermann-Streiff syndrome denoted by a small stat-
ure, congenital cataracts, hypotrichosis, beaked nose, skel-
etal anomalies and teeth defects [42]. It is intriguing that
specific Cx43 mutants cause different disease symptoms
with variations in autosomal dominant or recessive inher-
itance and it is intriguing that nearly all mutants cause
bone abnormalities.

Cx43 gene mutations cause disease by different
mechanisms
Many categories of disease-linked Cx43 mutants have
been identified which include changes in connexin half-
life, dysregulated pH and/or voltage gating and assembly
defects that lead to loss- or gain- of channel or hemichan-
nel function [60]. Of the documented mechanisms, one
group includes mutants that assemble into gap junction
channels (I130T [71-74]) but have known reductions in
channel function. Another class of mutants includes those
with altered intracellular trafficking, typically resulting in
mutants being retained in the endoplasmic reticulum and/
or Golgi apparatus (5230, fs260 [75, 76]). Still other
mutants fall into a class that have a gain-of-function
where hemichannel (G138R [77]), or channel function is
enhanced beyond what is observed for wild-type Cx43
(G143S). Finally, Cx43 mutants may be efficiently trans-
ported to the cell surface and assemble into gap junction
plaques, but remain functionally dead (G21R [78]). Col-
lectively, these findings suggest that specific mutations
may exhibit distinct mechanisms of action that have direct
bearing on the clinical presentation of ODDD.
Disease-linked mutants are co-expressed with wild-
type Cx43 and may contribute to the overall level of
Cx43-based GJIC if functionally active, or alternatively,
inhibited wild type Cx43 function if functionally dead.
For example, the I130T mutant exhibits ~20 % normal
channel function when expressed alone [73] and,
together with co-expressed wild-type Cx43, maintains
Cx43-based GJIC at >50 % [72, 73, 79]. In other cases,
the mutant may be dominant-negative to co-expressed
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wild-type Cx43 (G21R, {5260 [76, 78, 80, 81]) resulting
in total Cx43-based GJIC to be <50 %. Since nearly all
human cells co-express Cx43 along with other connexin
family members, the mutants have the theoretical poten-
tial to exhibit transdominant negative properties on
other connexins. This condition seems to be rare as the
hearts of ODDD patients, for example, are rarely dis-
eased. However, bone anomalies are common in ODDD
patients where osteoblasts and osteocytes express Cx37,
Cx45 and Cx46 [82-88] all of which can potentially
interact with co-expressed Cx43.

Cx43 in bone and cartilage

Bone development, remodeling and repair require the
exquisite and coordinated activity of osteoprogenitor
cells, osteoblasts, osteocytes and osteoclasts all of which
express Cx43 that mediates both hemichannel function
and GJIC [86, 87, 89, 90]. While Cx43 is by far the pre-
dominant connexin in cells of osteogenic lineage, Cx37,
Cx45 and Cx46 have also been found [89]. Several
reports using Cx43 knockout mice and conditional abla-
tion of Cx43 from osteoblasts and osteocytes during
early development have demonstrated excessive endo-
cortical bone resorption together with periosteal enlar-
ging resulting in reduced whole body bone mass
together with cortical widening and thinning [20, 26,
91-93]. Connexins in cartilage are less well understood
but Cx43 is again the predominant connexins in mesen-
chymal cells and chondrocytes [94-98] while Cx45,
Cx32, and Cx46 expression have also been reported [99].
Collectively, these studies suggest that Cx43 plays an
essential role in skeletal development. In addition, in-
creasing evidence supports the notion that Cx43 also
plays a key role during bone remodeling in aging, as its
ablation has been reported to desensitize osteoclasts that
typically become activated after the removal of mechan-
ical load [100]. Further, the increase in GJIC in response
to PTH and cholera toxin is diminished in cells from old
(12-month-old) compared to young (4-month-old) rats
[101]. We know that ODDD patients consistently exhibit
craniofacial anomalies yet little information exists as to
whether there are changes in long bones. Phenotypic
evaluation of Cx43%°%’* mice revealed thinner cortical
bones, enlarged marrow cavity, decreased mineral dens-
ity, a decline in trabecular bone volume and reduced
overall mechanical strength [102]. Most recently, these
mice were found to have higher levels of osteoprogeni-
tor cells and greater osteoblast function leading to the
up-regulation of bone sialoprotein and the receptor
activator of NFkB ligand [103]. While young mutant
mice had greater osteoclast number leading to osteope-
nia, this condition was self-corrected during aging
[103]. In a second conditional mouse model of ODDD
where the G138R mutant was introduced into cells of

Page 32 of 150

osteochondro lineage, skulls were found to be smaller
and whole body bone mineral density was less as the
mice suffered from cortical thinning [19]. Thus, while it
is clear that Cx43 plays a key role in bone development
and remodeling the mechanisms involved remain
largely unknown and it has yet to be determined how
these skeletal changes manifest during bone fracture
and healing. In addition, we have little knowledge of
how ODDD mutants affect hemichannel and gap junc-
tion channel status in cells of osteogenic lineage. Hemi-
channel function, in particular, is of considerable
interest as several studies have shown that shear stress-
induced opening of hemichannels allows the release of
prostaglandins and ATP resulting in the activation of
paracrine signaling pathways [89, 104]. The import-
ance of these findings is enhanced by the fact that
at least a few ODDD mutations (e.g., G138R) result
in gain-of-hemichannel function [77].

Cx43 has been shown to be involved in the response of
the skeleton to different insults. For example, mice lacking
Cx43 in osteoblastic cells and subjected to ovariectomy, a
well-known maneuver to mimic post-menopausal bone
loss, does not lose bone mass 3 weeks after surgery, unlike
littermate wild type controls [105]. However, bone mineral
density in Cx43-deficient mice reaches similar values to
those of wild type mice 4 weeks post-ovariectomy, sug-
gesting that bone loss induced by lack of sex steroids is
delayed, but not abolished, in the absence of osteoblastic
Cx43.

In addition to its role in skeletal development and
bone cell function, in vitro and in vivo evidence supports
a role of Cx43 on bone acting stimuli. In particular, the
survival effect of bisphosphonates and parathyroid hor-
mone (agents used to treat osteoporosis and other bone
diseases) on osteoblastic cells required Cx43 expression
in vitro [10, 14]. The requirement of Cx43 for bisphos-
phonate survival effect has been confirmed in vivo, in
mice lacking Cx43 in osteoblasts and osteocytes [24].
Further, the bone anabolic effect of intermittent parathy-
roid hormone administration is diminished in mice lack-
ing Cx43 in osteoblastic cells [20].

Cx43 has also been involved in the effect of mechanical
stimulation on the skeleton. In particular, mice lacking
Cx43 in osteochondro progenitors, in osteoblastic cells, or
in osteocytes exhibit an increased response to mechanical
stimulation in bone [25, 26, 106]. Further, Cx43 deletion
from osteoblastic cells attenuates bone loss induced by
reduced mechanical forces [93, 107].

Pannexins

Upon their discovery in the new millennium, pannexins
(Panxs) gained instant attention as a possible new family
of gap junction proteins due to their limited homology to
invertebrate gap junction proteins [108]. The pannexin
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family of channel proteins consists of Panx1, Panx2 and
Panx3. Through the use of a molecular toolkit it was
discovered that members of the pannexin family are
long-lived, channel-forming glycoproteins that function
in ATP release [109-111]. While the proposed role of
pannexins as molecular constituents of intercellular
channels remains unlikely, there is general agreement
that Panxl forms large single membrane channels at
the cell surface that serve a role in paracrine signaling
[112]. For example, Panx1- [113] and Panx3-mediated
[114] ATP release plays a role in calcium wave propaga-
tion which may involve their interplay with purinergic
receptors [115-118]. ATP and UTP released via Panx1
channels also serves as “find-me” signals for clear apop-
totic cells [110]. Signaling through Panx1 channels may
also contribute to cell death and seizures under
ischemic or epileptic conditions [119-121], lead to
inflammatory bowel disease [116], promote melanoma
disease progression [122] and even facilitate HIV-1 viral
infection [123]. Panx3 has been linked to the prolifera-
tion/differentiation of keratinocytes [124], chondrocytes
[125, 126] and osteoblasts [114, 125, 127]. Other stud-
ies highlighted the regulatory role of Panxl and Panx3
in keratinocyte differentiation while Panx3 was found
to be important in osteoprogenitor cells, chondrocytes
and osteoblasts [124, 125, 127]. Amongst a variety of tis-
sues, Panxl mRNA and protein has been detected in the
developing and mature cartilage and bone [109, 112, 128].
Panx3 has a more restricted distribution pattern in the
body but widely found in skeletal tissue, including pre-
hypertrophic chondrocytes and perichondrium osteoblasts
[112]. In addition, a recent study showed that Panx2 is
present in extracellular matrix vesicles obtained from min-
eralizing osteoblastic cells [129].

Role of pannexins in skeletal tissues

It is now well established that Panx3 is expressed in car-
tilage where it may regulate chondrocyte proliferation
and differentiation [125, 126]. This notion is supported
by the up-regulation of Panx3 during terminal differenti-
ation of chondrocytes [130, 131]. Panx3 was also found
to be of critical importance in the maturation of growth
plates in the chicken embryo. Interestingly the expres-
sion of Panx3 in N1511 and ATDCS5 cells promoted dif-
ferentiation of chondrocytes which was inhibited in
Panx3 knockdown studies [126]. Chondrocyte differenti-
ation was further linked to the reduction and in cAMP
and ATP release [126]. Through what might be attrib-
uted to calcium waves and ATP release, Panx3 appears
to govern osteoblast differentiation [114]. Consistent
with our studies showing Panx3 expression in skeletal
tissues and its regulation by the skeletal master tran-
scription factor Runx2 [125], it is highly likely that
Panx3 plays a key role in cartilage and bone
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development. The involvement of pannexin channels in
acquired pathological conditions has only been reported
in skeletal muscle atrophy [132].

Mice with global deletion of Panxl, 2 and 3 have been
generated, as well as double Panx1/2 knock outs [133, 134].
All these mice are viable; however, the consequences of
pannexin deletion on bone/cartilage phenotypes (or lack
thereof) have not been reported, except in the case of
Panx3 where it appears to play a role in osteoarthritis (see
below).

Connexins and pannexins in osteoarthritis
Osteoarthritis is a progressive disease of the joint affecting
over 15 % of the world population [135]. This untreatable
disease tends to affect the aging population as multiple
joints experience articular cartilage degeneration which
includes deterioration of the synovium, bone and liga-
ments localized to joints [136, 137]. Molecular mecha-
nisms that govern this process are ill-defined but appear
to include changes that result in aberrant hypertrophic
differentiation of articular chondrocytes [138, 139].

Role of connexins

Several studies over the last few years show a correl-
ation between aberrant Cx43 expression and OA. In
particular, Cx43 expression and the presence of gap
junction plaques is increased in synovial lining cells iso-
lated from the knees of patients with OA [140]; and
Cx43 levels are elevated in the cartilage of the knees
and femoral heads [99] and in the shoulders [141] of
patients with osteoarthritis. In addition, Cx43 levels in
osteoarthritic cartilage correlate with the expression of
several pro-inflammatory and catabolic factors [141].
Further support for a role of Cx43 in cartilage is pro-
vided by the protection of inflammation and joint
destruction by silencing Cx43 in a model of rheumatoid
arthritis in rats [142]. In addition, a recent proteomic
study showed that the profile of Cx43-interacting pro-
teins changes in primary chondrocytes isolated from
patients with OA, compared to normal donors [143].

Role of pannexins

Panx3 has been shown to have a potentially important
role in OA as it was found to be upregulated in the
reticular cartilage of rats surgically treated to accelerate
the onset of OA [144]. A few years later this notion was
further supported by Iwamoto and colleagues [126] as
they found that knockdown of Panx3 blocked hyper-
trophic chondrocyte differentiation. As an extension to
these studies the first global and cartilage-specific Panx3
null mice were generated and subjected to OA onset by
destabilization of the medial meniscus surgery [134]. In
both cases, mice lacking Panx3 developed less severe
OA. Not surprisingly when human biopsies from OA
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Fig. 1 Figure summarizes the current understanding on the role of connexins and pannexins in the skeleton. OA, osteoarthritis; ODDD,

patients were assessed and compared to OA in mice,
both exhibited high levels of Panx3 suggesting that
Panx3 was instrumental in the development of OA
[134]. Current studies are underway by this same team
to determine if Panxl serves any role in OA onset and
progression. Nevertheless, these studies suggest that
Panx3 may be a potential target in the treatment of OA.

Conclusion

Mounting evidence supports a central role of Cx43 for
skeletal development, maintenance, and response to
bone acting stimuli (Fig. 1). Further, mutations of the
Cx43 gene in humans are linked to ODDD, a disease
with skeletal manifestations. On the other hand, the role
of pannexins in the skeleton is beginning to be uncov-
ered, and pannexins seem to have a more relevant func-
tion in cartilage than in bone.

Genetically-modified animal models have provided
fundamental information on the role of connexins and
pannexins in skeletal tissue. However, similarities and
differences between connexins and pannexins still
remained enigmatic. Basically, ascribing a particular
function to connexins vs. pannexins on the effects of
bone acting stimuli and for skeletal disease remains a
difficult problem plagued by the overlapping pharmaco-
logical selectivity between channels, compensation by
the others isoforms, methodological differences in asses-
sing channel function, and genetic alterations associated

with transgenic mouse models [145]. Therefore, better
tools are needed to understand the role of these chan-
nels in bone and cartilage. Furthermore, a fundamental
task for future research is to find compounds that spe-
cifically modulate the actions of connexins or pannexins,
allowing their use as pharmacological agents to treat
diseases of the skeleton.
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