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Abstract

only need a single model as input are indispensable.

Background: Protein model quality assessment (QA) is an essential procedure in protein structure prediction. QA
methods can predict the qualities of protein models and identify good models from decoys. Clustering-based
methods need a certain number of models as input. However, if a pool of models are not available, methods that

Results: We developed MASS, a QA method to predict the global qualities of individual protein models using
random forests and various novel energy functions. We designed six novel energy functions or statistical potentials
that can capture the structural characteristics of a protein model, which can also be used in other protein-related
bioinformatics research. MASS potentials demonstrated higher importance than the energy functions of RWplus,
GOAP, DFIRE and Rosetta when the scores they generated are used as machine learning features. MASS outperforms
almost all of the four CASP11 top-performing single-model methods for global quality assessment in terms of all of the
four evaluation criteria officially used by CASP, which measure the abilities to assign relative and absolute scores, identify
the best model from decoys, and distinguish between good and bad models. MASS has also achieved comparable
performances with the leading QA methods in CASP12 and CASP13.

Conclusions: MASS and the source code for all MASS potentials are publicly available at http://dna.cs.miami.edu/MASS/.

Keywords: Protein model quality assessment, Single-model QA, Random forests, Protein energy potentials

Background

The quality assessment (QA) of protein models plays an
important role in protein tertiary structure prediction
and model refinement [1]. Since it was introduced into
the critical assessment of techniques for protein struc-
ture (CASP) as an independent category in 2006, various
methods have been developed for predicting the qualities
of protein models [2—8]. Computational quality assessment
tools can be categorized into three types: single-
model methods, clustering-based methods, and quasi-single
methods. Compared with clustering-based methods that re-
quire a pool of protein models as input, single-model
methods only need an individual protein model as input [8]
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and are indispensable when there are only a few models
available in the model pool. Quasi-single methods can be
thought of as a hybrid of single-model and clustering-based
methods.

Most of the single-model methods are developed based
on machine learning algorithms, such as support vector
machine (SVM) [9, 10], random forests [11], and deep
learning algorithms [12-15]. Single-model methods
have used various features for training the machine
learning models, such as energy functions [7, 11] and
the consistency between predicted and assigned second-
ary structures [8]. Liu et al. [8] developed a deep learn-
ing architecture based on stacked denoising encoders
(SdA) to predict residue-specific qualities of individual
models. Cao et al. developed DeepQA [5], in which en-
ergy functions, physio-chemical characteristics, and
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structural information were used as features, and deep
belief networks were used as the machine learning algo-
rithm. ProQ3 [7] used Rosetta energy terms as input fea-
tures and SVM as machine learning algorithm and
outperformed its previous version ProQ2 [10].

In this study, we present a single-model method named
MASS for predicting global qualities of individual protein
models. We designed and re-implemented ten protein po-
tentials and proved that they indicate different structural
or energetic characteristics of a protein model. The ran-
dom forests algorithm is used as the machine learning al-
gorithm; the values from ten potentials along with six
other types of features are used to predict the global qual-
ities of individual models. We evaluated MASS along with
other QA methods in CASP11, CASP12, and CASP13 and
found that MASS outperforms most of the methods in
CASP11 and is comparable with the leading methods in
CASP12 and CASP13.

Methods

Training data and features

The training data were collected from previous CASP
experiments: 85 targets from CASP9 and 67 from
CASP10. The objective values are GDT-TS scores ob-
tained from superimposing protein models with their
native structures using LGA [16]. For each protein tar-
get, there are about 300 models. Considering the small
differences between the five models from the same
group, we randomly selected 150 models on each target
for generating machine learning features.

We used 70 features in seven categories: (1) the agree-
ment of predicted and assigned secondary structures,
specifically, the Q3, SOV’99, SOV _refine scores [17] and
three solvent accessibility scores (six features); (2) exist-
ing statistical potential energy of protein models, includ-
ing RWplus [18], GOAP [19], and DRIRE [20] (three
features); (3) pseudo amino acid composition of the
amino acid sequences [21] (23 features); (4) radius of
gyration of the models (one feature); (5) residue-residue
contact information (two features); (6) newly-designed
and newly-implemented protein statistical potentials (15
features); and (7) Rosetta energy functions [22] (20
features).

Comparison between predicted and assigned secondary
structures and solvent accessibilities

The predicted secondary structures and relative solvent
accessibilities were obtained by executing SCRATCH
[23]. The secondary structures and relative solvent ac-
cessibilities of a protein model were assigned by STRIDE
[24]. The Q3, SOV’99, and SOV_refine scores [17, 25]
were used to assess the similarity between the predicted
and assigned protein secondary structures. The other
three features indicate the percentage of identical values
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between the predicted and assigned relative solvent ac-
cessibilities including buried, exposed, and both buried
and exposed at 25% exposure threshold.

Statistical potential energy

We used three statistical potential energy scores, includ-
ing the ones generated by RWplus [18], GOAP [19], and
DFIRE [20].

Pseudo amino acid composition
Pseudo amino acid composition (PseAA) [21] was used
to indicate amino acid composition.

Radius of gyration

Radius of gyration has been widely used as an indicator
of protein structure compactness [26]. When we used
radius of gyration in this study, we only considered N,
Ca, and C atoms, and assumed that all atoms of interest
have equal masses.

Residue-residue contact information

The in-contact relationship between the Ca-Ca atoms is
defined as the sequence separation > 6 and Euclidean
distance in 3D space less than 8 A. The first feature is
the average sequence separation between atoms that are
in-contact. The second feature is the average value of
the distances between in-contact Ca-Ca atoms weighted
by their sequence separations.

MASS potentials

We designed six protein statistical potentials from
scratch including pseudo-bond angle potential (PAP),
accessible surface potential at the atomic level (ASPA),
sequence separation-dependent potential  (SSDP),
contact-dependent potential (CDP), relative solvent ac-
cessibility potential (RSAP), and volume-dependent po-
tential (VDP). We re-designed (made minor
modifications on the existing designs) the torsion angle
potential (TAP) previously defined in QMEAN [27]. We
re-implemented (the potentials were previously defined
by others; we implemented them in PERL) three previ-
ously defined protein potentials: centrosymmetric burial
potential (CSP), accessible surface potential at the resi-
due level (ASPR), and distance-dependent potential
(DDP).

We used both Ca and CP atoms to represent a residue
in five potentials: ASPR, CDP, CSP, DDP, and SSDP.
Therefore, we used in total 15 potentials for a given pro-
tein model (will be referred to as MASS potentials here-
after). The protein dataset we used for extracting
reference states is TOP8000 [28], which contains about
8000 high-resolution (<2.0A) and quality-filtered
experimentally-determined protein structures (chains)
with 70% PDB homology level. The dataset was
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previously used to update the torsional distributions in
MolProbity [28] and was used here to extract the distri-
butions of other reference states.

The reference state information consists of pseudo-
bond angles, torsion angles, centrosymmetric burial, ac-
cessible surface at the residue level and at the atomic
level, residue distance, sequence separation, residue-
residue contact, relative solvent accessibility, and atom
volume. The general formula [29, 30] we used to calcu-
late the potentials of an atom (a residue) or paired atoms
(paired residues) is:

E=RT x In[l1+ M X o]-RT

reference

% In |} +MxX0ox fohserved]

, where o is a weight parameter and was set to 1/50 [31]
and RT was set to 0.582 kcal/mole [30]. For the poten-
tials discussed below, we used newly-designed ways of

calculating M, fopserveas and freference:

Pseudo-bond angle potential

We defined pseudo-bond angles as the angles formed by
three consecutive N, Ca, or C atoms in the backbone.
The 180° degree of pseudo-bond angles is evenly split
into n = 6 classes. The M value in the pseudo-bond angle
potential (PAP) for a specific residue is defined as:

6 6 6
M=Mp= Z ZZZf(R,ss,CN,cca,cc)

sse{H ,E,C} en=1cc,=1cc=1

, where R denotes the residue type, ss is the secondary
structure state of the residue, cy is the class of pseudo-
bond angle formed by N atoms, c¢c, is the class of
pseudo-bond angle formed by Ca atoms, cc is the class
of pseudo-bond angle formed by C atoms, and f is a
function that returns the number of occurrences of a
specific combination of R, ss, ¢, cca, and cc. Therefore,
for a specific residue type R its M is the number of ob-
servations for different secondary structure states and
pseudo-bond angle classes based on our reference state
information.

For the ith residue with residue type R;, suppose it has
a specific combination of states (ss,cn,cc,,cc), then we
define f;(ss, ey, cc,,cc) as the number of occurrences of
that combination of states for residue type R; (one oc-
currence number is generated for a residue type, with in
total 20 occurrence numbers generated for 20 amino
acid types). We define froprence as:

20
_ ZR:lfi(SSa N, CCyy CC)
freferene - 20
r=1Mr

, where the denominator is the sum of all
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observations or occurrences for all residue types based
on our reference state information, and the numerator is
the sum of the observations for this specific state com-
bination for all residue types. The f,pserveq is defined as:

fj(Ri,SsacNaCCach)
Mg

f observed —

. fobservea is very similar to freferences but when calculat-
ing the former one, we only considered the residue type
R,

Torsion angle potential

We refined the definition of torsion angle potential
(TAP) previously defined in QMEAN [27]. For three ad-
jacent residues in a protein chain, six dihedral angles
(D, ,¥,_1, D, ¥, D;,1,¥,;,1) are defined. For each of
the six dihedral angles, we first evenly split the 360° de-
gree into n =9 classes. The existing definition of TAP
includes two types of combinations of the six dihedral
angels: (@;1, ©;, O;,1) and (Vi1, ¥y, Yii1). We will use
(a;, ap, asz) hereafter to indicate these two categories
of combinations. For a given specific class set or com-
bination (a;, a,, a3), we further created another two ap-
proaches of defining the state combinations. The first
approach defines five classes cs: if a; =a, and a; = a3, we
label it as cs;; if a; # ay, gy # as, and a; # a;, we label it as
Csp; if ay=ay and a; =as, we label it as cs3; if a; =
a; and a; # a5, we label it as csy; and if ay = a3 and a; =
ay, we label it as c55. The second apporach defines four
classes cy: if ay = a; and a, = a3, we label it as c4,; if a5 =
a; and a, # az, we label it as c4; if ay = a; and a, # a3, we
label it as c43; and if a, = a3 and a, # a;, we label it as cyq.
Therefore, given a set of six dihedral angles (®;_ 1, ¥;_ 1,
O, V¥, D;, 1,¥;,1), we first classify each of them into
n =9 classes ¢(®;_1,¥;_1, D, ¥, D;, 1, ¥;,1), and then
classify them based on c¢5 and ¢, if we set (aj, ay, a3) =
o(D;_1, Dy, D; 1) or (ay, A, a3) = c(¥;_1, ¥, Vi 1) The
refined definition of M for the torsion angle potential for
a specific residue is:

5 4

M=M= Z i Z Z if(R7SS7(DCs7\PCS7(DC47\{IC4)
Yeam1

sse{H E,C} ®Pcs=1¥es=1 Dcy=1 Y.

, where @cs denotes the category of @, that is, ¢(®;_
1 @, D, 1) and c5 class definition, similarly for Wcs, Dcy,
Yey.

For the ith residue with residue type R;, suppose it has
a specific state combination (ss, @cs, Wcs, Dy, Yey ), we
then define f(ss, @cs, Ycs, ey, Yey) as the number of oc-
currences of that combination of states for residue type
R; (one occurrence number is generated for a residue
type, with in total 20 occurrence numbers generated for
20 amino acid types). We define forrence and fopservea as:
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B Ziozlfi(ss, Dcs, Vs, Deg, Peu)

f referene 12?0: 1MR
f’ 7fi(RiaSS7 q)c5alyc57(DC4,\PC4)
observed —

Mr,

i

The definitions of Mg, freferenes aNd fopservea are very
similar to the ones we defined in Pseudo-bond angle po-
tential, but here we use a two-layer class assignment sys-
tem (first use a;, ay, and az and then use ¢4 and c¢s) for
torsion angles.

Centrosymmetric burial potential

We re-implemented the centrosymmetric burial poten-
tial (CSP) [32] with two major alternations. One of them
is that we integrated the static radius of gyration (Rg) for
protein models and native structures. The Rg we used in
this work was derived from a simple function of the
number of residues (N): Rg = 0.395 x N°¢ +7.257, result-
ing from regression analysis between a dataset of about
1000 globular proteins from the PDB database and their
corresponding sequence lengths [33]. The second alter-
nation is that we added secondary structure classes (i.e.,
H, E, and C), in the same way as in the former two po-
tentials. The range [0, 3 x Rg] is evenly divided into 30
bins or classes ¢3. For each atom (Ca or CP), we calcu-
lated the distance between the atom and center of mass
of the current protein and determine which ¢z, this dis-
tance belongs to. The M, fieference and fopservea fOr
the CSP for each atom (Ca or CP) are defined as:

30
M=Mz= Y > f(Rss cx)

sse{H E,C} c30=1

20
f _ 21/ i(ss: ¢30)
referene i(): ) Mg

Sfi(Ri, ss,¢30)
Mz

i

f observed —

For the ith residue (atom Ca or CPB) with residue type
R;, suppose it has a specific state combination of (ss, c3¢),
we define fi(ss, c30) as the number of occurrences of that
combination of states for residue type R; (one occur-
rence number is generated for a residue type, with in
total 20 occurrence numbers generated for 20 amino

acid types).

Accessible surface potential at the residue level

We re-implemented the accessible surface potential at
the residue level (ASPR) [34]. The accessible surface of
any given residue is calculated as the total number of
residues locating within a 11 A radius sphere centered
on the given residue [34]. The accessible surface for a
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given residue is classified into 25 classes c,5 (the range
[0,50] is evenly divided into 25 bins). The M, f cterences
and fpserveq for the ASPR for each residue (represented
by Ca or CP atom) are defined as following:

25
M=Mz= Y Y f(Rsscx)

sse{H E,C} c25=1

_ SR filss o)

freferene - 20
R:IMR
~ fi(Ri,ss,c25)
fobserved - Mg

i

For the ith residue (represented by Ca or Cp atom)
with residue type R;, suppose it has a specific
state combination (ss, cps), we define fi(ss, cys5) as the
number of occurrences of that combination of states
for residue type R; (one occurrence number is gener-
ated for a residue type, with in total 20 occurrence
numbers generated for 20 amino acid types).

Accessible surface potential at the atomic level

We designed accessible surface potential at the atomic
level (ASPA) based on the classification of all heavy
atoms into 40 atom types c4o [35]. For each given heavy
atom, we calculated its accessible surface as we did for
ASPR but used an 8 A radius sphere. The accessible sur-
face for a given heavy atom is classified into 30 classes
c30 (the range [50,200] is evenly divided into 30 bins).
The M, f.cterences and fopservea for the ASPA for each
heavy atom are defined as:

30
M:MR: Zf(R,Cgo)

c30=1
40
f _ > _r-1/i(c30)
referene ;L;): ) MR
_ i(Ri; €30)
observed M

i

For the ith heavy atom with atom class R;, suppose it
has a specific state ¢3p , we define fi(c3o) as the number
of occurrences of that state for heavy atom type R; (one
occurrence number is generated for one type of heavy
atoms, with in total 40 occurrence numbers generated
for 40 heavy atom types).

Distance-dependent potential

We re-implemented the same distance-dependent po-
tential (DDP) as described in [29, 30]. Therefore, no de-
tailed description is shown here. We evenly divided the
distance range [5, 25] into 40 classes and only considered
any two residues with at least three residues away. When
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calculating DDP, we used Ca or CP atom to represent a
residue.

Sequence separation-dependent potential

We designed sequence separation-dependent potential
(SSDP) based on the definition of DDP. SSDP is very
similar to DDP, but we evenly divided the sequence sep-
aration range [0,300] into 60 classes and only considered
two residues with distances equal to or less than 8 A.
For calculating SSDP, we used Ca or Cf atom to repre-
sent a residue.

Contact-dependent potential

We designed contact-dependent potential (CDP). Two
residues, with sequence separation equal to or larger
than 6, are considered to be in-contact if their Euclidean
distance is less than 9 A in the 3D space. Therefore, the
M, freferencer and fypserved for the CDP for any two resi-
dues (each represented by their Ca or Cp atom and each
belonging to 20 residue-type classes c¢;) being in-
contact are defined as:

20
M= Mp = Z Zf(RJs,cj)

sse{H E,C} ¢;j=1

f referene 20
R:IMR

7fi(Ri7ss,cj)
f observed — TRZ
For the ith and jth residues (represented by Ca or Cp
atoms) with residue type R; and c;, suppose they have a
specific class combination (ss, c;), we define fi(ss, c;) as
the number of occurrences of that combination of states
for residue type R; (one occurrence number is generated
for a residue type, with in total 20 occurrence numbers
generated for 20 amino acid types).

Relative solvent accessibility potential

We designed relative solvent accessibility potential
(RSAP) from scratch. The relative solvent accessibility is
assigned by STRIDE [24], and evenly divided into 10
classes cjo from range [0,1]. The M, fieferences and fop.
served fOr the RSAP for each residue (represented by the
Cot or CP atom) are defined as:

10
M=Mg= Y > f(Rsscu)

sse{H E,C} c10=1

f - Z?%O:lfi(ssa c10)
referene 20
r=1Mr
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¥ :f,'(RhSS, c10)
observed MR

For the ith residue (represented by the Ca or C( atom)
with residue type R;, suppose it has a specific state com-
bination (ss, ¢1p), we define fi(ss, c19) as the number of
occurrences of that combination of states for residue
type R; (one occurrence number is generated for a resi-
due type, with in total 20 occurrence numbers generated
for 20 amino acid types).

Volume-dependent potential

We designed a new potential: volume-dependent poten-
tial (VDP). For each Ca atom, we calculated its volume
as described in [36]. Given a volume value, we classified
it into 10 classes ¢y (range [10, 30] was evenly divided).
The M, f.cferences aNd fopgerveq for the VDP for each resi-
due (represented by Ca atom) are defined as:

10
M=Mg= Y > f(Rssci)

sse{H E,C} c1o=1

_ RS ilss c0)

freferene - 20
r=1 MR
_ fi(Ri,ss,c10)
fobserved - Mer

For the ith residue (represented by the Ca atom) with
residue type R;, suppose it has a specific class combin-
ation (ss, c10), we define fi(ss, c10) as the number of oc-
currences of that combination of states for residue type
R; (one occurrence number is generated for a residue
type, with in total 20 occurrence numbers generated for
20 amino acid types).

Rosetta energy functions

We used Rosetta Energy Function 2015 (REF15) to gen-
erate 19 energy scores for each residue [22]. The Rosetta
energy of a protein model is the sum of all residues’ en-
ergy scores; and the twentieth energy score provided by
REF15 is the sum of all 19 energy scores.

Optimal parameters

Given a protein model, we first calculated the ten poten-
tials at the atom or residue level and obtained the poten-
tials/energy scores of this protein model by summing up
all residues’ energy scores (XE). To determine the
optimal parameters (e.g., range boundaries and class
number) in each of the ten potentials, we selected 730
single-domain models in CASP9 by randomly selecting
10 models from each of the 73 template-based-
modelling (TBM) single-domain targets. We tested vari-
ous configurations of parameters. The Pearson’s and
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Spearman correlations between GDT-TS of the 730
models and their corresponding energy scores were used
to determine the final parameters (see Additional file 1:
Table S1).

Random forests

The random forests algorithm [37] was used as the
machine learning algorithm in this study, which has
been widely used in the field of computational biology
39 ,38]]. We used five-fold cross-validation to deter-
mine the optimal parameters (i.e., ntree, mtry) [40].
The number of trees (i.e., ntree) we tested were from
500 to 5000 with an interval of 500. The mtry values
we tested were from 10 to 34 with an interval of one.
The optimal parameters we obtained were 2500 and
24, respectively.

Results

Similar to how CASP officially evaluates QA methods
that predict global qualities [1] of protein models, we
assessed our method, together with four methods partic-
ipated in CASP11, seven in CASP12, and 16 in CASP13,
by four criteria measuring the abilities to assign relative
scores, identify the best model from decoys, assign abso-
lute scores, and discriminate good models from bad
models. The corresponding measures are (1) the
weighted mean of Pearson’s product moment correlation
coefficient (wmPMCC), (2) the average loss (Ave loss),
(3) the average GDT-TS deviations (Ave AGDT), and (4)
the Matthews correlation coefficient (MCC) and receiver
operating characteristic (ROC). The weighted mean of
Pearson’s product moment correlation coefficient
(wmPMCC) was used to evaluate the QA methods’ abil-
ity to predict relative model accuracy. In each stage, the
Pearson’s correlation coefficients r between predicted
and real GDT-TS scores for each target were calculated,
and then the correlation r was transformed into an addi-
tive quantity using:

1 1+r
z=- In
2 1-r

, where z is the normally distributed variable. We then
calculated the arithmetic mean score of z values, de-
noted as z. The final wmPMCC 7 was obtained using the
following inverse equation.

ef—e*
&+ e*

7 =

The average loss (Ave loss) was designed to assess the
quality of identifying the best model from a pool of
models of each target. The loss value is the absolute
value between the native GDT-TS scores of the best
model and the predicted best model, which means that
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smaller loss values correspond to better ability to iden-
tify best models.

Compared with wmPMCC, the average GDT-TS devi-
ation (Ave A GDT) was used to evaluate the QA
methods’ ability to assign absolute model accuracy. For
each model in a target, the GDT-TS deviation is the ab-
solute value between real GDT-TS score and predicted
global-quality score.

To evaluate the ability of distinguishing between good
and bad models, we computed the Matthews correlation
coefficient (MCC). For a protein model, if its true GDT-
TS score is 250 (out of 100) and a QA method assigns a
score > 50, we counted it as true positive (TP). The
MCC score was calculated as:

TP x TN-FP x FN

MCC =
/(TP + FP)(TP + FN)(TN + FP)(TN + EN)

, where TN stands for true negatives, FP for false posi-
tives, and FN for false negatives. We also performed the
receiver operating characteristic (ROC) analysis [41].
ROC curves (AUC) indicate the ability of binary classifi-
cation of the model's quality; if real GDT-TS 250, the
model quality is considered good, otherwise poor.

We first proved that the ten MASS potentials are sig-
nificantly different from each other. We calculated the
Pearson’s correlations of every two potentials for 730
models (see Additional file 1: Table S2 upper triangular)
and the statistical significance of the differences at the
95% confidence level using paired t-tests (see Additional
file 1: Table S2 lower triangular). We also calculated the
Spearman correlations of every two potentials for 730
models (see Additional file 1: Table S3 upper triangular)
and statistical significance of the differences at the 95%
confidence level using paired Wilcoxon Signed-Rank
tests (see Additional file 1: Table S3 lower triangular).
From Additional file 1: Tables S2 and S3, we can con-
clude that the ten MASS potentials we designed and re-
implemented are statistically and significantly different
from each other.

We blindly tested MASS on 75 CASP11 targets in two
stages (sel20 and best150), and compared its

Table 1 Evaluations of our method MASS with four top-
performing single-model methods in stage 2 for 75 targets of
CASP 11 (groups are ranked by wmPMCC and best results
are highlighted in bold)

Group ID wmPMCC Ave loss Ave AGDT MCC ROC
MASS 0.409 0.07029 0.00076 0.60 0.88
QAcon 0.390 0.07543 0.00064 0.61 0.88
Qprob 0.368 0.07540 0.00113 052 0.86
ProQ2-refine 0351 0.07068 0.00083 0.58 0.86
ProQ2 0.349 0.06191 0.00085 0.57 0.85
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d

Real GDT-TS: 0.620 (
MASS score: 0.596 ~_ =

Fig. 1 Two examples showing the real GDT-TS scores and MASS predicted scores. a The native 3D structure of T0882 in CASP12 (green)
superimposed with the model of IntFOLD4_TS3 (blue). b The native structure of T0760 in CASP11 (green) superimposed with the model of

Pcons-net_TS4 (blue)

b Real GDT-TS: 0.678

MASS score: 0.671

performance with four leading methods in CASP11:
ProQ2 [3], ProQ2-refine [10], Qprob/ MULTICOM_
NOVEL [4], and QAcon/MULTICOM-CLUSTER [42].
We also blindly tested MASS on 72 CASP12 targets and
compared it with leading methods in CASP12 including
ProQ3 [7], SVMQA [6], VoroMQA [43], DeepQA/MUL-
TICOM-CLUSTER [5], Myprotein-me, QASproGP, and
QMEAN [27]. As shown in Additional file 1: Table S4
for CASP11, our method (MASS) outperforms the other
four in every aspect in stage 1, for stage 2, see Table 1.
Our method is the only method that achieves >0.7
wmPMCC in stage 1 and > 0.4 in stage 2, indicating that
MASS can accurately predict the real GDT-TS scores.
Figure 1 shows two example predictions of MASS on
two CASP targets.

In terms of CASP12, as shown in Additional file 1:
Table S5, ProQ3 and DeepQA outperform the others in
stage 1, and ProQ3 and SVMQA outperform the others
in stage 2, see Table 2. MASS outperforms SVMQA in

Table 2 Evaluations of our method MASS with seven top-
ranking single-model methods in stage 2 for 72 targets of CASP
12 (groups are ranked by wmPMCC and best results

are highlighted in bold)

Group ID wmPMCC  Ave loss Ave AGDT  MCC ROC
SVMQA 0.677 0.05608  0.00091 0.62 0.90
ProQ3 0.664 0.06073 0.00064 0.67 0.93
MASS 0.649 0.08744 0.00086 0.62 0.90
QASproGP 0634 0.07992 0.00069 0.65 092
VoroMQA 0619 0.08169 0.00077 0.16 0.86
DeepQA 0616 0.08145 0.00051 0.69 0.93
Myprotein-me ~ 0.614 0.10350 0.00089 044 0.80
QMEAN 0311 0.10546 0.00141 041 0.81

terms of Ave AGDT in both stages and in terms of
MCC and ROC in stage 1. Moreover, we reported the sig-
nificance of differences between any two methods in Add-
itional file 1: Table S6 for CASP 11 and Additional file 1:
Table S7 for CASP 12 by Fisher Z-Transformation and t-
test. It shows that the predictions of MASS are signifi-
cantly different to the predictions of QAcon, ProQ3, and
SVMQA.

Table 3 Evaluations of our method MASS with seven top-
ranking single-model methods in stage 2 for 57 targets of CASP
13 (groups are ranked by wmPMCC and best results

are highlighted in bold)

Group ID wmPMCC  Ave loss  Ave AGDT MCC ROC
ModFOLD7 0.906 0.0936 0.00041 072  0.94
ModFOLD7_cor 0.888 0.09313  0.00039 0.74 0.94
ModFOLD7_rank 0.839 0.05807  0.00091 064 093

FaeNNz 0.78 0.09127  0.00083 058 089
ProQ4 0.773 0.08708  0.00106 057 086
MESHI-enrich-server  0.756 0.08826  0.00087 052 088
MESHI-corr-server 0.742 0.08727  0.00088 057 088
VoroMQA-A 0.721 0.08322  0.00098 034 087
MUFold_server 0.714 0.08675  0.00095 0.6 0.89
VoroMQA-B 0.69 0.07854  0.001 033 086
MASS 0.682 0.09037  0.00106 054 085
MULTICOM-NOVEL  0.667 0.07839  0.00113 038 083
MASS2 0652 0.09748  0.00124 046 083
Bhattacharya-SingQ  0.638 0.08676  0.00097 046 081

Bhattacharya-Server 0601 0.11021  0.00106 044 082
PLU-AngularQA 0.57 0.13504  0.00097 044 083
PLU-TopQA 0.026 020285  0.00165 0.21 0.65
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Fig. 2 The feature importance of 70 features used in MASS. Different feature classes are highlighted with different colors

We also evaluated our method using 57 targets in
CASP13 experiment along with 16 methods partici-
pating in CASP13 including ModFOLD?7 series [15],
FaeNNz, ProQ4 [14], MESHI series, VoroMQA series
[44], MULTICOM-NOVEL, Bhattacharya-SingQ,
Bhattacharya-Server, PLU-AngularQA [45], and PLU-
TopQA (methods having missing models or targets
were excluded). The results are shown in Table 3 for
stage 2 and Additional file 1: Table S8 for stage 1. In
stage 1, ModFOLD?7 series [15] perform better than
the others according to the five evaluation metrics.
MASS achieves a slightly lower ROC (i.e., 0.94) com-
pared with 0.99 from ModFOLD7. In stage 2, Mod-
FOLD? series still outperform the other methods.

Notice that the pseudo amino acid composition for all
models of a target are the same. In section 1 of the
Additional file 1, we provided a discussion showing that
although this feature cannot distinguish the models
within a target, it can affect the scores given to all the
models of a target.

We provided the contribution of each of the 70 ma-
chine learning features in Fig. 2, which provides useful
information for future research in this field. All of the 70
features play a positive role in the machine learning task
with one of the solvent accessibility features, some of the
PseAA features, and the twentieth energy scores from
Rosetta contributing more than the rest.

The running time analysis of MASS is shown in the
Additional file 1. Finally, to assess the values of the
three energy sets including the three energy functions
(RWplus, GOAP, and DFIRE), our novel MASS po-
tentials, Rosetta energy functions, we individually oc-
cluded each of the three energy sets by setting the
corresponding features to zero and then executed the
same MASS model to obtain new predictions on 75
targets in CASP11 stage 2. We compared the evalu-
ation results with/without occlusion and the results
were shown in Additional file 1: Table S9. MASS po-
tentials demonstrated higher importance than the
three energy functions (RWplus, GOAP, and DFIRE)
and Rosetta energy functions.

Discussions

MASS is a random-forests-based approach for estimat-
ing the quality of individual protein models. It uses vari-
ous features extracted from protein sequences and
models. The features can be classified into seven sets: (1)
consistency between predicted and assigned secondary
structures and solvent accessibilities; (2) three energy
functions (RWplus, GOAP, and DRIRE); (3) PseAA cod-
ing of protein sequence; (4) radius of gyration of the
protein model; (5) residue-residue contact information;
(6) 15 MASS potentials; and (7) 20 Rosetta energy func-
tions. We evaluated MASS along with other QA
methods in CASP11, CASP12, and CASP13. MASS out-
performs most of the methods in CASP11 and is com-
parable with the leading methods in CASP12 and
CASP13.

We defined and re-implemented 10 protein poten-
tials using various protein properties including
sequence-separation-dependent, distance-dependent,
contact-dependent, volume-dependent, torsion angle,
pseudo-bond angle, accessible surface, relative solvent ac-
cessibility, and centrosymmetric burial. We have proved
that these 10 protein potentials play a key role in the good
performance of MASS. The 10 MASS potentials can be
used as machine learning features for other studies in the
field of protein science, such as protein structure predic-
tion and protein function prediction.

Currently, MASS does not support residue-specific
(local) quality assessment, which can be used in refining
protein models. However, most of the features we used
in this work are residue-specific, which can be directly
used as local or residue-specific features for developing
residue-specific quality assessment methods. As our fu-
ture work, we plan to integrate MASS potentials with
deep learning methods to estimate residue-specific pro-
tein model qualities.

Conclusions

In this study, we designed and implemented ten poten-
tials using different reference state information including
pseudo-bond angles, torsion angles, centrosymmetric
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burial, accessible surface at the residue level and at the
atomic level, residue distance, sequence separation,
residue-residue contact, relative solvent accessibility, and
atom volume. We proved that the ten potentials were
statistically significant different to each other. MASS po-
tentials demonstrated higher importance than the three
energy functions (RWplus, GOAP, and DFIRE) and Ro-
setta energy functions when used as machine learning
features.

We also present MASS, which uses seven types of fea-
tures and random forests to predict global qualities of
individual protein models. To evaluate MASS and the
related tools, we used four CASP-official-evaluation cri-
teria that measured the abilities to assign relative and
absolute scores, identify the best model from decoys,
and distinguish between good and bad models. MASS
outperforms almost all of the four CASP11 leading
single-model methods for global quality assessment.
MASS is comparable with most of the leading methods
in CASP12 and CASP13 experiments.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512859-020-3383-3.

Additional file 1. Supplementary Information and data. This document
provides more details regarding pseudo amino acid composition, MASS

potential comparision, and evaluation results for different QA methods in
stage 1.
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