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Abstract 

Background:  Phenotypes such as height and intelligence, are thought to be a prod‑
uct of the collective effects of multiple phenotype-associated genes and interactions 
among their protein products. High/low degree of interactions is suggestive of coher‑
ent/random molecular mechanisms, respectively. Comparing the degree of interac‑
tions may help to better understand the coherence of phenotype-specific molecular 
mechanisms and the potential for therapeutic intervention.However, direct compari‑
son of the degree of interactions is difficult due to different sizes and configurations of 
phenotype-associated gene networks.

Methods:  We introduce a metric for measuring coherence of molecular-interaction 
networks as a slope of internal versus external distributions of the degree of inter‑
actions. The internal degree distribution is defined by interaction counts within a 
phenotype-specific gene network, while the external degree distribution counts 
interactions with other genes in the whole protein–protein interaction (PPI) network. 
We present a novel method for normalizing the coherence estimates, making them 
directly comparable.

Results:  Using STRING and BioGrid PPI databases, we compared the coherence of 
116 phenotype-associated gene sets from GWAScatalog against size-matched KEGG 
pathways (the reference for high coherence) and random networks (the lower limit of 
coherence). We observed a range of coherence estimates for each category of pheno‑
types. Metabolic traits and diseases were the most coherent, while psychiatric disorders 
and intelligence-related traits were the least coherent. We demonstrate that coherence 
and modularity measures capture distinct network properties.

Conclusions:  We present a general-purpose method for estimating and comparing 
the coherence of molecular-interaction gene networks that accounts for the network 
size and shape differences. Our results highlight gaps in our current knowledge of 
genetics and molecular mechanisms of complex phenotypes and suggest priorities for 
future GWASs.
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Background
Genome-wide association studies (GWAS) have significantly advanced our understand-
ing of complex phenotypes by identifying disease- and trait-associated genetic markers 
and suggesting corresponding genes [1, 2]. However, GWAS findings explain only a frac-
tion of heritability [3–5]. Furthermore, the corresponding genes are often spread across 
different chromosomes with no known connection to one another, hindering under-
standing of the molecular mechanisms. These limitations of current generation GWAS 
might stem from the yet incomplete knowledge of genetic determinants of complex phe-
notypes, the potential heterogeneity and/or the causes other than genetics [6–8].

Many studies have shown that genetically-driven phenotypes are often associated with 
functionally related genes that are more likely to form networks of interacting protein 
products [9–15]. This observation has been verified systematically for a large number 
of diseases [16], thus confirming a fundamental hypothesis of the interactome-based 
approach to understanding human phenotypes, namely that disease- and trait-associated 
genes tend to form interaction modules [17]. Such interaction modules may be viewed 
as connected subnetworks within the full interactome and may contain all the molecu-
lar determinants of a certain phenotype. Consequently, methods to quantitatively assess 
these phenotype-associated networks of functionally-related genes have been developed 
[10, 13, 18].

Network properties, such as connectivity (aka degree distribution) [15, 19–21], can be 
compared to better understand the relationships among phenotypes [22–24]. Networks 
formed by interactions among phenotype-associated genes, or, more precisely, their pro-
tein products, are thought to have high connectivity [10, 11, 17]. This intuition reflects 
a well-known “guilt-by-association” principle that genes (or, more precisely, their prod-
ucts) forming an interaction network are more likely to have similar functions [25] and 
co-expression patterns [11, 26]. Although this view has been criticized [27], several stud-
ies consistently observed phenotype-associated genes to be either connected as a single 
network or to participate in common phenotype-specific subnetworks [16, 18, 28–30]. 
Therefore, high connectivity among phenotype-specific genes may indicate coherent 
molecular mechanisms that could be targeted therapeutically. In terms of graph theory, 
we are asking whether a phenotype-specific network is a community—a highly con-
nected subgraph relatively well-separated from the rest of the network [31]. However, 
the direct comparison of connectivity across phenotype-specific networks is hindered by 
the fact that different phenotypes are associated with different numbers of genes form-
ing networks of different sizes and configurations.

This study presents a novel measure of network coherence as a slope of the internal 
versus external degree distributions. The internal degree distribution is defined as gene-
specific interaction counts within a protein–protein interaction (PPI) network formed by 
phenotype-associated genes, while the external degree distribution counts interactions 
with other genes in the whole PPI network. We used selected gene sets from the MSigDb 
database [32] as a reference for highly coherent networks, while sets of randomly sam-
pled genes were used as the reference for the absence of coherence. Using MSigDb and 
random networks matched in size to phenotype-specific networks, we derived a nor-
malized measure of coherence that can be compared across phenotypes. We hypoth-
esized that the level of coherence may inform us about similarities and differences 
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among phenotypes. Using two PPI databases (STRING [33] and BioGrid [34]), we com-
pared coherence of 133 phenotypes from GWAScatalog [35, 36]. Our results show the 
tendency of intelligence-related traits to have low coherence and metabolic traits and 
diseases to have high coherence. Our method enables direct comparison of coherence 
measures and highlights gaps in the current understanding of molecular mechanisms of 
many phenotypes, e.g., Major Depressive Disorder having the lowest coherence in the 
already low-coherence “Psychiatric disease” category.

Results
Phenotype‑specific networks of protein–protein interactions (PPIs)

We collected 133 phenotype-associated gene lists from the NHGRI-EBI GWAS catalog 
[36] (see Methods). They were grouped into seven disease categories (“Autoimmune”, 
“Cancer”, “Cardiovascular disease”, “Eye disease”, “Metabolic disease”, “Neurologic”, “Psy-
chiatric”) and five trait categories (“Anthropometric trait”, “Cardiovascular trait”, “Eye 
trait”, “Intelligence”, “Metabolic trait”, Table 1, Additional file 1).

We created networks of phenotype-associated genes using PPI information from 
STRING [33] and BioGrid [34] databases (see Methods). We used three types of PPI 
data. First, STRING data filtered by interaction confidence score above 500 (the middle 
of the bimodal distribution of the score, 0–1000 range, referred hereafter as “STRING fil-
tered”) was used as the primary source of curated PPI data. This filtering step selects for 
only high-confidence PPIs. The advantage of using filtered data is the reliance on high-
quality PPIs. The disadvantage is that, for some phenotypes, the number of PPIs may be 
insufficient for forming networks. Consequently, these phenotypes were removed from 
the analysis (see Methods) leaving 116 phenotype-associated gene sets that could be 

Table 1  Summary statistics of the analyzed categories

Average coherence estimates are shown. “NA” values indicate that a category lacked phenotypes with a sufficient number of 
PPIs. Sorted by “String Filtered” average coherence

Category Number 
of SNPs

Number 
of genes

Total diseases Mean 
biogrid 
coherence

Mean string 
coherence

Mean string 
filtered 
coherence

Trait
Eye trait 158 109 5 NA 0.724 1.050

Metabolic trait 790 646 10 0.738 0.779 0.863

Anthropometric 
trait

2090 1771 15 0.460 0.637 0.691

Cardiovascular 
trait

728 604 15 0.555 0.675 0.625

Intelligence 181 177 4 0.180 0.395 0.405

Disease
Metabolic 

disease
331 269 4 0.470 0.825 0.907

Cancer 670 570 15 0.490 0.689 0.723

Neurologic 372 333 7 NA 0.493 0.718

Autoimmune 1383 1184 18 0.425 0.820 0.701

Eye disease 229 202 5 0.330 0.630 0.663

Cardiovascular 
disease

301 259 7 0.380 0.694 0.660

Psychiatric 678 611 11 0.540 0.552 0.642
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analyzed. Second, full STRING data (henceforth, “STRING”) was used to maximize the 
use of PPI information at the expense of potential noise. The advantage of using com-
plete data is that more trait-associated genes will have PPI information and, hence, can 
be analyzed. The disadvantage, however, is that the results may be less reliable due to 
the presence of noisy PPIs with low confidence scores. Third, BioGrid PPI data, which 
has been curated to keep only high-confidence interactions, was used. The use of differ-
ent data sources (STRING and BioGrid) and filtering (full or filtered STRING data) was 
intended to increase the generalizability of our conclusions.

Degree distribution as a measure of coherence

A typical network consists of nodes connected by edges [21]. In genomics, nodes typi-
cally represent genes and edges correspond to some measure of interactions, e.g., gene 
co-expression or interactions between protein products [37, 38]. In terms of phenotypes, 
an intuitive expectation is that they will be represented by coherent networks of func-
tionally related genes, similar gene expression profiles, shared genomic variants, higher 
PPI interactions, and higher co-morbidity [16, 17, 38–42], reviewed in [24, 43]. In terms 
of graph theory, a coherent network is a community consisting of a group of nodes that 
are relatively highly connected to each other but sparsely connected to other nodes in 
the global network [31, 44].

Numerous network properties have been defined to describe network structures 
[23, 38]. A degree of a node, or connectivity, is one of the most fundamental charac-
teristics defining the number of other nodes connected to a given node. A collection of 
degrees of all network nodes forms a degree distribution. Comparing degree distribu-
tions among networks is an intuitive way to gain an understanding of network similari-
ties and differences in terms of connectivity (aka coherence) of the corresponding genes 
[15, 21]. We hypothesized that comparing degree distributions of networks formed by 
phenotype-associated gene sets may inform us about similarities and differences among 
phenotypes in terms of coherence estimates, informing us about the underlying molecu-
lar mechanisms.

Internal versus external degree distributions as a measure of coherence

Given that phenotype-specific networks occur within the global network of PPIs, we 
developed a metric of coherence based on the level of gene interactions. This metric is 
inspired by previous work showing that communities within a large network have high 
internal but low external levels of interactions (degrees) [45, 46]. Thus, for each pheno-
type-associated PPI network, we considered the relationship between its internal and 
external degree distributions. The internal degree distribution is defined by considering 
gene-specific edges within an isolated network formed by phenotype-associated genes. 
The external degree distribution is defined by considering gene-specific edges to other 
genes in the whole PPI network. Intuitively, a highly coherent network is expected to 
have a large number of internal edges but a relatively small number of external edges. An 
extreme example of high coherence would be a fully internally connected network with 
zero interactions with external genes. Conversely, a low-coherence network is expected 
to have a relatively low number of internal edges similar to the number of external edges.
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To compare coherences, we estimated coherence as the slope of a line through a scat-
terplot of internal versus  external degree distributions. That is, we visualized internal 
(X-axis) versus  external (Y-axis) degrees for each phenotype-specific gene on a single 
plot and fit a regression line through it, enforcing the fit through the origin. A network 
with the highest coherence (full internal connectivity, zero external connections) would 
be represented by a horizontal line. Conversely, a network with the lowest coherence 
(zero internal connectivity, full external connectivity) would be represented by a vertical 
line. Consequently, slopes of internal versus external degree distributions of phenotype-
specific networks would represent the corresponding levels of coherence. In summary, 
comparing internal versus  external degree distributions represents a viable metric to 
quantify and compare the molecular coherence of phenotype-associated networks.

Networks of KEGG/REACTOME pathways and GO Cellular component collection 

versus randomly selected genes serve as references for high versus low coherence, 

respectively

The coherence of phenotype-associated gene sets should be measured with respect 
to the realistic references of high and low coherence. To establish a reference of high 
coherence, we considered networks from collections of the Molecular Signatures Data-
base (MSigDB v6.2) [32]. MSigDB contains sets of genes having various types of func-
tional relationships. We found that pathways from the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) [47] had the smallest average slope corresponding to the highest 
level of coherence (Additional file 2). Networks assembled from Gene Ontology-Cellu-
lar Component (GOCC) collection and REACTOME pathways followed, representing 
alternative sources of networks with high coherence. This is expected as genes expressed 
in the same cellular components (GOCC genes) or participating in the same metabolic 
pathways (REACTOME genes) are presumed to interact more frequently. In our study, 
KEGG networks were used in parallel with GOCC and REACTOME (referred hereafter 
as MSigDb networks) as a reference for high coherence. Conversely, as a reference for 
low coherence, we randomly sampled genes from a pool of genes in a given PPI data-
base. These random gene lists represent expected network coherence arising by chance. 
The slopes of MSigDb and random networks represent reference levels for high and low 
coherence, respectively.

Network size and configuration hinders direct comparison of degree distributions

Direct comparison of degree distributions of the networks formed by phenotype-spe-
cific genes is hindered by the fact they depend on network size and configuration [48]. 
An intuitive example is to consider a ring and a fully connected network of size 10 and 
20 nodes, respectively (Fig. 1). The degree distributions of ring networks can be directly 
compared regardless of network size (vectors of “2” of length 10 and 20, respectively, 
Fig.  1a). Although the fully connected networks are similar in that they are fully con-
nected (i.e., similarly coherent), their degree distributions differ (all nodes in the 10-node 
network have a degree “9”, while all nodes in the 20-node network have degree “19”, 
Fig. 1b). These observations highlight the difficulty in comparing degree distributions of 
phenotype-associated gene networks due to two facts: (1) the network sizes differ, and 
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(2) the network configuration (e.g., fully connected, ring, or intermediate connectivity) 
is unknown.

To observe whether network properties affect coherence estimation in experimen-
tal settings, we investigated the effect of network size on the slopes of KEGG and ran-
dom networks. We observed substantial negative correlation between network sizes 
and the slopes of KEGG and random networks (Pearson Correlation Coefficient (PCC) 
− 0.58/− 0.86, respectively, Fig.  2, Additional file  2). Similarly, slopes of the pheno-
type-specific networks and sizes of the corresponding confidence intervals negatively 
correlated with the number of genes in the networks (Average PCC − 0.49/− 0.70, 

Fig. 1  Degree distributions are affected by network size and configuration. Degree distributions of a ring 
networks and b fully connected networks containing 10 and 20 nodes. While degree distributions of similarly 
coherent ring networks can be directly compared, degree distributions of fully connected networks depend 
on network size

Fig. 2  Network size is inversely associated with coherence. Slopes of internal versus external degree 
distributions (aka coherence) for KEGG and random networks are plotted against network size
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respectively, Additional files 3, 4). This is expected as network size affects internal degree 
distributions and the corresponding slopes on the internal versus external degree plots, 
with the larger networks allowing for a more precise estimation of slopes (smaller confi-
dence intervals). These observations confirm the notion that coherence estimation using 
internal versus external degree distributions should be controlled for network size.

Network size‑independent estimation of coherence

Given the dependence of degree distributions on network size, we designed a simple 
strategy to account for it. Briefly, for each phenotype-specific network of a given size, 
we created size-matched references of high and low coherence. Specifically, we selected 
30 MSigDb networks (10 from KEGG, GOCC, and REACTOME collections) and 100 
random networks matched in size to the corresponding network of phenotype-specific 
genes. Consequently, we use median slopes of internal versus external degree distribu-
tions created by these size-matched references to normalize the slopes of phenotype-
specific networks to the [0, 1] range (see Methods), where 0/1 correspond to random/
high coherence, respectively. We found that the use of size-matched references indeed 
alleviates the dependency of coherence on network size (Average PCC = 0.01, Additional 
file 4) and allows for direct comparison of normalized coherences across phenotypes. A 
schematic overview of our method is shown in Additional file 5.

Results derived from different PPI data are largely consistent

In addition to size dependency, coherence estimates depend on the choice of the PPI 
database used to build networks and estimate the corresponding internal versus external 
degree distributions. To evaluate the consistency of coherence estimates, we assessed the 
pairwise correlation of normalized coherences obtained using different PPI databases. 
Correlation between coherence estimates obtained using “STRING” and “STRING fil-
tered” was high (PCC = 0.80, Additional file  4). Expectedly, coherence estimates using 
Biogrid database were less similar to that of “STRING” and “STRING filtered”; however, 
the overall correlation remained high. Notably, coherence estimates using “STRING fil-
tered” database were most similar to that of “Biogrid” (PCC = 0.58), indicating that fil-
tering step indeed removes “noisy” PPIs and improves quality of coherence estimates. 
Overall, these results demonstrate consistency in coherence estimates using different 
PPI databases.

Networks with high/low coherence have distinct degree distributions

Our measure of network coherence is expected to be proportional to the level of internal 
and/or external degree distributions. To investigate the relationship between coherence 
and degree distributions, we selected phenotype networks with low and high coherence. 
The thresholds for low and high normalized coherence were selected as < 0.58 and > 0.85, 
corresponding to the first and third quartiles of the coherence range, respectively. The 
Biogrid-generated networks were omitted because they had insufficient number of 
genes to form well-defined degree distributions. Expectedly, the internal degree distri-
butions for high- and low-coherence networks were significantly different from random 
(Bonferroni-corrected two-tailed Wilcoxon p values < 5.30E−12), and these results were 
consistent when using different PPI databases (Fig. 3, Additional file 10). Similarly, the 
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internal degree distribution for high-coherence networks was significantly larger than 
that of low-coherence networks (p value = 2.01E−16/2.12E−4 for STRING/STRING fil-
tered databases, respectively). Similar observations were observed for external degree 
distributions of high- and low-coherence networks (Fig. 3, Additional file 10). In sum-
mary, these results support the notion that networks of high coherence have significantly 
more internal and external interactions as compared with low-coherence and random 
networks.

Metabolic and intelligence‑related traits as examples of networks with overall highest/

lowest coherence

We estimated coherence of 49 traits from five categories (Fig.  4, Additional files 3, 6, 
7). Among anthropometric traits, Weight and Body Mass Index had the highest level of 
coherence. Other examples of traits with high coherence include blood pressure-related 
traits (cardiovascular) and glucose-related traits (metabolic). Notably, the metabolic trait 
category had the highest overall coherence (mean coherence 0.86, Table  1), and these 
results were consistent when using other PPI databases (Additional file 1). Several nota-
ble examples of low coherence include Obesity-related traits, Height (anthropometric 
traits), and blood count-related traits (cardiovascular). Traits in the Intelligence category 
had low overall coherence (mean coherence = 0.41).

Metabolic diseases and cancer networks have high coherence

We further estimated coherence of 67 diseases from seven categories (Fig. 5, Additional 
files 3, 8, 9). Metabolic diseases had high overall coherence (average coherence 0.91, 

Fig. 3  Degree distributions differ for high/low-coherence networks. Internal and external degree 
distributions for high- and low-coherence networks and size-matched random networks. STRING and STRING 
filtered indicate the corresponding PPI database. Bonferroni-corrected Wilcoxon p values comparing the 
distributions are in Additional file 10
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Table 1), with “Obesity” and “Type 2 diabetes” being the most coherent (1.01 and 0.91, 
respectively). Similarly, the average coherence for cancer diseases was 0.72, with “Tes-
ticular germ cell tumor” and “Pancreatic cancer” being highly coherent (0.92 and 0.74, 
respectively).

Intermediate coherence of autoimmune, neurologic, and eye diseases

“Rheumatoid arthritis”, “Systemic Lupus Erythematosus”, and “Systemic sclerosis” were 
the most coherent in the “Autoimmune” category (0.86, 0.80, 0.79, respectively). On the 
other end of the coherence spectrum, “Allergic rinitis” and “Atopic dermatitis” were the 
least coherent (0.51, 0.60, respectively). The average coherence of autoimmune diseases 

Fig. 4  Coherence estimates of traits. Size of dots represents the level of normalized coherence (X-axis) for 
individual traits (Y-axis)

Fig. 5  Coherence estimates of diseases. Size of dots represents the level of normalized coherence (X-axis) for 
individual diseases (Y-axis)
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was high, 0.70 (Table 1), with all autoimmune diseases, except “Allergic rinitis”, having 
coherence estimates > 0.60 (Additional file  3). Diseases in the “Neurologic” category 
were similarly highly coherent (average coherence 0.72). However, the average coherence 
of neurologic disorders using STRING database was 0.49, suggesting that, with larger 
number of networks being estimated the overall coherence of neurologic diseases is low. 
“Alzheimer’s disease” and “Parkinson’s disease” were the most coherent (0.88 and 0.84, 
respectively), while “Migraine” was the least coherent (0.54). Diseases in the “Eye dis-
ease” category were more heterogeneous, with coherence ranging from 0.35 for “Corneal 
astigmatism” to 1.01 for “Refractive error”. The average coherence of diseases in the “Eye 
disease” category was relatively high (0.66).

Psychiatric and cardiovascular diseases as examples of low coherence

Diseases in “Psychiatric” and “Cardiovascular” categories showed the lowest average 
level of coherence (0.64 and 0.66, respectively, Table 1). The corresponding coherence 
estimates were highly heterogeneous. Among cardiovascular diseases, “Coronary artery 
disease” showed the highest level of coherence (0.83), while “Hypertension” had the low-
est coherence (0.53). Among psychiatric disorders, “Smoking behavior” and “Alcohol 
dependence” had high coherence (0.87 and 0.82, respectively). Notably, coherences of 
“Schizophrenia” and “Major depressive disorder” networks (0.52 and 0.33, respectively) 
were at the lower end of coherence estimates among all phenotypes. Other psychiatric 
disorders, such as “Bipolar disorder”, “ADHD”, showed intermediate coherence estimates 
(0.76 and 0.55, respectively).

Coherence of most phenotypes is significantly larger than random networks

Given the wide range of phenotype-specific coherence estimates, a natural question 
is whether they are significantly larger than the coherence of random networks. We 
assessed the significance of coherence estimates using a permutation test (see Meth-
ods), individually for each PPI database. Permutation p-values obtained using Biogrid 
and STRING filtered databases were highly correlated (PCC = 0.64, Additional file 4), as 
would be expected for high-quality PPIs. Permutation p-values using STRING databases 
were predominantly significant (p value < 0.001) due to a large number of PPIs that ena-
bled phenotype-specific networks to be consistently different from random. Permutation 
p-values inversely correlated with coherence estimates (average PCC = − 0.23), as would 
be expected for less coherent networks that resemble random networks. This depend-
ency was especially pronounced for database-specific estimates, e.g., Biogrid coherence 
and p-value estimates correlated with PCC = − 0.69 (STRING filtered PCC = − 0.53, 
Additional file 4). These observations confirmed that coherence and p-value estimates 
remained consistent when using different PPI databases.

The majority of phenotype-specific networks (~ 85%) were significantly more coher-
ent than random networks (STRING filtered p value < 0.001, Additional file 3). Among 
less significant phenotypes were “White blood cell count” (p value = 0.085) and other 
blood count-related phenotypes, “Corneal astigmatism” (p value = 0.04), “Major depres-
sive disorder” (p value = 0.03). When using Biogrid databases, “Educational attainment”, 
“Myopia (pathological)”, and “Celiac disease” were among the non-significant pheno-
types (p values 0.30, 0.20, 0.16, respectively). Interestingly, “Schizophrenia” network, 
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despite being among the least coherent, was consistently significantly different from ran-
dom (p value < 0.0001). Overall, the significance estimation of coherence supports our 
observation that phenotype-specific networks in “Intelligence” and “Psychiatric disease” 
categories generally have low coherence that is frequently statistically insignificant. In 
summary, these results confirm our ability to identify coherence of phenotype-specific 
networks and test their significance over random networks.

Coherence captures distinct network properties than modularity

Our study considers a network of phenotype-associated genes in its entirety. However, 
networks may be comprised of interacting modules, i.e., relatively isolated subnetworks 
[9]. Such subnetworks, while highly coherent by themselves, would have relatively low 
coherence overall due to the limited number of interactions among them (canonical def-
inition of subnetwork). Consequently, a network with low coherence may consist of sev-
eral modules and have high modularity. In turn, a network with high coherence may be 
represented by a single module and, consequently, have low modularity. Our assessment 
of network modularity using STRING and STRING filtered PPIs revealed a negative 
association of modularity with network size, that is, the larger the network is, the less 
modular it becomes (Additional files 3, 4). We also did not observe a measurable asso-
ciation between modularity and coherence. Notably, network modularity using BioGrid 
PPIs showed a moderate positive association with network size and coherence, implying 
that, as networks get larger, they become more modular and yet highly coherent. Investi-
gation of individual phenotype-specific networks built using BioGrid PPIs revealed they 
are expectedly smaller than networks build using STRING PPIs, making modularity esti-
mates imprecise. In summary, our results did not reveal a consistent association between 
coherence and modularity, suggesting these metrics capture distinct network properties.

Although our results did not show an association between coherence and modularity, 
our study is limited by using a single most common modularity measure [49]. Although 
numerous methods for module detection have been described [42, 50–52], compar-
ing modules between diseases is plagued by the size-dependend normalization issues 
described in the Results section. Our future direction includes the development of a 
strategy for normalization of modularity by network size and comparing it with normal-
ized coherence.

Discussion
We developed a general-purpose method to measure and compare the coherence esti-
mates of the molecular mechanisms in networks of genes. Intuitively, gene networks 
with high internal and low external number of interactions (degrees) would be consid-
ered highly coherent; consequently, coherence is defined as the slope through the inter-
nal and external degree distribution scatterplot. We normalized coherences (slopes) to 
the range of high and random coherence, exemplified by MSigDb and random networks. 
To decouple coherence from its dependence on network size, we used MSigDb and ran-
dom networks matched in size to phenotype-specific networks. Applied to the analy-
sis of 116 disease- and trait-associated gene sets, we found that metabolic diseases and 
traits had overall high coherence, while psychiatric and cardiovascular diseases generally 
had lower coherence. These results were consistent when using different PPI databases. 
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Our method allows one to quantify and compare the estimated coherence of molecu-
lar mechanisms across phenotypes, and will only improve as more PPI information 
becomes available.

The coherence measure allows us to gain insights into the genetic component of vari-
ous phenotypes, as revealed by the current state of the corresponding GWASs. The 
high coherence of metabolic diseases and traits arguably reflects the strong genetic 
component driving molecular mechanisms of metabolism-specific gene networks. On 
the contrary, the low coherence of a phenotype suggests either insufficient knowledge 
of genetics (as represented in current-generation databases) or the true lack of such a 
strong genetic influence, (and correspondingly, the heightened importance in these 
cases of non-genetic, and possibly environmental, factors. If the incoherence results 
from insufficient knowledge, this should be remedied as novel genes are identified 
through larger-scale GWASs and meta-analyses. Yet, the low coherence of a phenotype 
is expected to remain low with increasing gene discovery if, in contrast, the absence of 
coherence is due to the relative importance of non-genetic causes. Our results highlight 
the low coherence of the molecular mechanisms of intelligence-related traits and cardio-
vascular and psychiatric disorders, but our method alone cannot decide whether insuf-
ficient knowledge or the weakness of the genetic component ultimately explains the lack 
of internal connectivity characteristic of low-coherence traits.

Our approach is similar in spirit to the well-researched community detection problem 
[31, 44, 48, 53]. However, we approach this problem from a different angle by asking 
whether a given network as a whole can be considered a community within the global 
PPI network. This may be considered a drawback as it has been shown that many net-
works consist of miniature communities known as motifs [54], or graphlets [55]. While 
the investigation of motif enrichment [54] is a viable approach to characterize a network, 
our goal was to develop a unified measure of coherence that can be compared across 
phenotype-specific networks.

Our method relies on the ability to link the phenotype-associated genetic variants to 
genes thought to be affected by them. Typically, genes are linked to genetic variants by 
proximity (nearest gene), a strategy adopted by the NHGRI-EBI GWAS catalog [36]. 
However, > 88% of phenotype-associated genetic variants are located in regulatory ele-
ments outside of protein-coding regions [35]. The pilot project by ENCODE showed that 
fewer than 10% of all interactions between promoters and regulatory regions involved 
the closest promoter by linear distance [56], questioning the validity of nearest gene 
mapping strategy. The development of chromatin conformation capture technologies 
now allows for understanding long-distance interactions among genomic regions on a 
genome-wide scale [57, 58], helping to prioritize disease-associated gene-variant asso-
ciations [59]. Consequently, tools are being developed to consider long-distance inter-
actions when mapping SNPs to genes (3DSNP [60], FUMA [61], PINES [62], HUGIn 
[63]), and studies redefining disease-associated genes using long-distance interactions 
started to emerge [64]. Our future goal includes considering long-distance variant-gene 
interactions in defining phenotype-associated gene sets and comparing their network 
properties.

The definition of coherence as the slope between internal versus external degree dis-
tributions makes our measure dependent on the choice of PPI data [65]. Our limited 
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knowledge of protein–protein interactions limits the coherence estimation to pheno-
types that have a sufficient number of genes with PPI annotations, especially for phe-
notypes with low numbers of associated genes. Furthermore, networks formed by 
phenotype-associated genes should be sufficiently diverse to avoid cases in which all 
genes in a network have the same degree. As the different PPI databases vary signifi-
cantly in the number of PPI annotations, some phenotype-associated gene sets have suf-
ficient PPI annotations only when using one but not the other database. This problem 
is best illustrated by the BioGrid PPI database that has considerably fewer PPIs; hence, 
fewer phenotypes could be analyzed. Although our results show good correspondence 
between coherence estimates when using different PPI databases, care should be exer-
cised when selecting the PPI database for network analyses [65].

The definition of high and random coherence also depends on the choice of PPI data. 
Therefore, we derived degree distributions for KEGG and random networks separately 
for each PPI database and implemented the max–min normalization of the coherence 
estimates. Intuitively, the max–min normalization converts the absolute measures of 
coherence (slopes of regression lines fit through the internal versus external degree dis-
tribution plots) that are dependent on the choice of PPI databases to the percentages 
of the full range of coherence (from high coherence defined by KEGG networks to low 
coherence defined by random networks) defined using a given PPI database. The pheno-
type-specific coherences expressed as a percentage of the full range of coherence can be 
directly compared across phenotypes and databases.

It should be noted that, although our measure of coherence does not depend on net-
work size, the size of the disease- or phenotype-associated gene networks still affects 
coherence estimates. Smaller networks may have insufficient interactions to form robust 
degree distribution. Our study required networks to have at least 10 interactions; how-
ever, a larger threshold may be considered. With the increasing number of genomic 
variants and the corresponding genes identified by GWA studies, our method will yield 
more precise coherence estimates.

In addition to internal versus external degree distributions, other gene-centric network 
metrics can be used to estimate coherence [48]. For example, the centrality measure has 
been used to demonstrate that highly central hub genes are functionally essential and 
highly conserved [66]. A large study of PPIs (BioPlex) compared centrality distributions 
among several disease categories. Cancers and immunological disease networks tended 
to have high centrality, while nervous system, congenital, neonatal, and hereditary dis-
ease networks had low centrality [67]. Metabolic pathways were shown to have more 
duplicated copies of highly central genes making the networks tolerant to loss-of-func-
tion mutations [66]. These observations of centrality measure parallel our estimations of 
network coherence. Our future work will incorporate centrality and other gene-centric 
network metrics into our framework to further refine our ability to compare the coher-
ence of phenotype-associated molecular mechanisms.

Conclusion
Our study investigated the coherence of the molecular mechanisms of genes associ-
ated with genomic variants of 116 phenotypes. We developed a network coherence 
measure driven by the relationship between internal and external connectivity (degree 
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distribution) that is robust to the difference in network sizes. Using well-curated lists 
of genomic variants and the associated genes, we built disease-specific networks using 
protein–protein interaction information from the STRING and BioGrid databases. We 
found a range of coherence estimates in each phenotype category, with metabolic phe-
notypes being the most coherent. Psychiatric disorders had low coherence, with schiz-
ophrenia and major depressive disorder being among the least coherent. In summary, 
we provide a general-purpose method for quantifying and comparing the coherence of 
molecular networks.

Methods
Data sources

Phenotype-associated gene lists were obtained from the NHGRI-EBI catalog of 
genome-wide association studies (GWAS catalog, gwascat v.2.14.0 R package) [35, 36]. 
“MAPPED_GENE” column was used to extract trait-associated genes. To organize 
traits into categories, Experimental Factor Ontology (EFO) IDs were extracted from the 
“MAPPED_TRAIT_URI” column. Categories were mapped to EFO IDs using the onto-
CAT v.1.12.0 R package and the EFO database (accessed 12/04/2018). In the case of a 
trait being mapped into two categories, the most representative category was manually 
assigned. Non-canonical gene names were converted to common gene symbols using 
alias2Symbol function from the limma R package. Gene names which could not be 
mapped to gene symbols were excluded from the analysis.

Human protein–protein interactions (PPIs) were obtained from STRING data-
base v.11.0 [33] and BioGrid database v.3.5.174 [34]. The STRING data for the tax ID 
“9606” (human) was used, and Ensembl protein IDs were converted to gene names using 
BioMart. Either the complete dataset (11,761,040 entries) or data filtered by “combined_
score” > 500 (range 0–1000) (1,373,946 entries, the main PPI dataset) was used. The 
BioGrid data was filtered to include “TaxID interactor” type equal to “9606”, all “Interac-
tion Types” were included, totaling 465,660 interactions. These three PPI databases were 
used in parallel to evaluate disease coherence.

Phenotype-associated gene networks were formed by mapping trait-associated genes 
to PPIs. Genes without PPI annotations (e.g., C5orf4, LOC100507462), antisense tran-
scripts (e.g., CDKN2B-AS), readthrough (e.g., NPHP3-ACAD11), non-protein-coding 
transcripts (e.g., LINC00478) were excluded. Genes that do not have PPIs with each 
other but interact with other genes in the global PPI network were kept for external 
degree calculation. Non-Zero interacting genes were defined as genes having at least one 
interaction with other phenotype-specific genes. Consequently, phenotypes with less 
than 10 non-zero interacting genes were omitted. Additionally, phenotypes with genes 
having identical internal degrees (hence, no internal degree distribution) were filtered 
due to the inability to derive a fit through the internal versus external degree distribu-
tions (see below). These precautions were set to avoid situations where a small number 
of genes in a network can cause instability in the results.

Comparing internal versus external degree distributions as a measure of coherence

Phenotype-specific internal degree distribution was defined as the number of interac-
tions between phenotype-associated genes, or, more precisely, their interacting protein 
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products. Phenotype-specific external degree distribution was defined as the number of 
interactions between genes in a phenotype-associated network and all other genes in the 
PPI network. The internal versus external degree distributions were plotted on a scat-
terplot. The square root of the degree was taken for more informative representation. 
For each phenotype, the internal versus  external degree distribution plot was fit with 
a regression line through the origin to capture the slopes. Slopes were used as a meas-
ure of coherence. Lower slopes being associated with higher coherence, and vice versa. 
Degree distributions of the network nodes were obtained using the igraph R package v. 
1.0.1.

Normalization of coherence

To alleviate the dependency of degree distributions from the size of phenotype-associ-
ated gene sets and the content of a selected PPI database, we normalized slopes of phe-
notype-specific networks to the range of slopes formed by degree distributions of highly 
coherent and random networks. Specifically, we select 30 MSigDb networks (10 from 
KEGG, GOCC, and REACTOME collections, βmin median slope) and 1000 random net-
works ( βmax median slope) matched in size to the corresponding network of phenotype-
specific genes. For each phenotype i with slope βi , we calculate the normalized slope 
βi norm =

βi−βmax
βmin−βmax

 , which gives a measure of coherence on the range of [0,1]. Higher 
values indicate a higher level of coherence similar to that of MSigDb networks. These 
values represent normalized coherence and can be compared across phenotypes and PPI 
databases. In addition, for each coefficient βi , we extract confidence intervals and nor-
malize them as the coefficients themselves. Note the normalization step alters common 
interpretation of confidence intervals; therefore, results of the permutation test of slopes 
should be used to compare coherences.

Although using median slopes of MSigDb and random networks is expected to be a 
robust reference for high/random coherence, some phenotype-specific networks may 
have coherence larger than 1, that is, being more coherent than the median coher-
ence of MSigDb networks. These situations may occur in smaller networks that have 
a higher chance to contain genes with unusually high internal degree distributions. 
Such outliers would inflate coherence estimations. Similar outliers may be observed in 
larger networks. For these reasons, coherence estimates for excessively large networks 
(“Obesity-related traits”, 779 genes, “Height”, 418 genes) were excluded from calculating 
the correlation between coherences obtained using different PPI databases (Additional 
file 4).

Permutation test of slopes

To test whether each slope is significantly different than random, we used a permuta-
tion test. For phenotype i with the gene network of size gi that contains ni number 
of non-zero interactions, we define βi as the slope derived by regressing the external 
degree distribution on the internal degree distribution. We then generate networks of 
randomly selected genes of size gi to ensure size-matched topology. Each random net-
work will have a relatively few number of non-zero interactions; therefore, we collect 
genes non-zero interacting genes from the size-matched random networks until we 
have ≥ ni of them, and combine them into a single random network. This procedure 
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is repeated until we have n = 10,000 random networks of size gi having ni non-zero 
interactions. For each random network j , we identify its slope βr representing the 
internal versus  external degree distribution regression line of random coherence. 
We calculate the permutation p-value as pi =

(
∑n

j=1 I(βrj>βi)+1

n+1
 [68]. Intuitively, this 

approach estimates whether the slope of the phenotype-specific network βi is con-
sistently larger than those of random networks. All analyses and visualizations were 
performed in the R/Bioconductor computing environment v.3.4.0 [69].

Modularity estimates

Network modularity was estimated using the standard method developed by Clauset 
et al. [49], implemented in the igraph::modularity function.

Supplementary information
Supplementary information accompanies this paper at https​://doi.org/10.1186/s1285​9-020-03821​-x.

Additional file 1. Summary statistics of the analyzed phenotype categories. Minimum, mean, median, maxi‑
mum of coherence estimates, the number of genes, SNPs, the total number of phenotype networks. Each worksheet 
corresponds to the PPI database used.

 Additional file 2. Summary of networks from MSigDB categories. Minimum, mean, median, maximum of 
the slopes, the number of genes, and the total number of networks are shown for each collection, along with the 
correlation between network size and slope. “CP:/KEGG/Reactome/Biocarta”—canonical pathways, “GOBP/GOMF/
GOCC”—gene ontology biological processes, molecular functions, cellular component, “TFT”—transcription factor 
targets, “CGN”—cancer gene neighborhoods, “CM”—cancer modules, “MIR”—microRNA targets, “CGP”—chemical 
and genetic perturbations.

Additional file 3: Phenotype-specific coherence estimates. The PPI database (STRING, STRING filtered, Biogrid) 
are specified in the corresponding column names. For each phenotype category, the results are sorted alphabeti‑
cally. In addition to the normalized coherence and the permutation p-values indicating significant difference of 
phenotype-specific coherence from random, modularity, untransformed slopes, and the corresponding lower and 
upper confidence interval bounds are shown. “NA” indicates the corresponding value cannot be estimated due to 
lack of sufficient number of genes annotated with PPIs.

Additional file 4: Normalization of coherence estimates alleviates its network size dependence. Red/blue gra‑
dient and numbers represent Pearson correlation coefficients for each pairwise comparison of the number of SNPs, 
genes, normalized coherence estimates, and the untransformed slopes and the sizes of their confidence intervals (CI) 
using the corresponding PPI databases.

 Additional file 5: Schematic overview of the coherence estimation method. To estimate the coherence of 
phenotype-associated genes, a database of protein–protein interactions (e.g., STRING) is used to derive the associ‑
ated network. In parallel, gene sets known to highly interact (e.g., KEGG canonical pathways) and random gene sets 
are used to derive size-matched references of high- and low coherence, respectively. The internal versus internal 
degree distribution plot enables estimating phenotype-associated network coherence with respect to the range 
of high- and low coherences (normalized coherence). A permutation analysis may be performed to assess whether 
coherence of the phenotype-associated network is significantly different from that of randomly sampled networks 
of the same size.

Additional file 6: Coherence estimates of traits using Biogrid as a reference PPI database. Size of dots repre‑
sents the level of normalized coherence (X-axis) for individual traits (Y-axis). Plots are faceted by categories. Missing 
entries indicate that, for a given trait, a network could not be built and the coherence cannot be estimated.

Additional file 7: Coherence estimates of traits using STRING as a reference of PPI database. See legend for 
Additional file 6.

Additional file 8: Coherence estimates of diseases using Biogrid as a reference PPI database. See legend for 
Additional file 6.

Additional file 9: Coherence estimates of diseases using STRING as a reference PPI database. See legend for 
Additional file 6.

Additional file 10: Bonferroni-corrected Wilcoxon p values comparing the internal and external degree dis‑
tributions of phenotype-specific networks having high (> 0.85) and low (< 0.58) normalized coherence. Each 
sheet corresponds to the type of degree distribution (internal and external), and the type of PPI database (STRING 
and STRINGfilt).
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