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Abstract

Background: MicroRNAs are a class of important small noncoding RNAs, which have
been reported to be involved in the processes of tumorigenesis and development by
targeting a few genes. Existing studies show that the imbalance between cell
proliferation and apoptosis is closely related to the initiation and development of cancers.
However, the impact of miRNAs on this imbalance has not been studied systematically.

Results: In this study, we first construct a cell fate miRNA-gene regulatory network.
Then, we propose a systematical method for calculating the global impact of miRNAs
on cell fate genes based on the shortest path. Results on breast cancer and liver cancer
datasets show that most of the cell fate genes are perturbed by the differentially
expressed miRNAs. Most of the top-identified miRNAs are verified in the Human
MicroRNA Disease Database (HMDD) and are related to breast and liver cancers.
Function analysis shows that the top 20 miRNAs regulate multiple cell fate related
function modules and interact tightly based on their functional similarity. Furthermore,
more than half of them can promote sensitivity or induce resistance to some anti-
cancer drugs. Besides, survival analysis demonstrates that the top-ranked miRNAs are
significantly related to the overall survival time in the breast and liver cancers group.

Conclusion: In sum, this study can help to systematically study the important role of
miRNAs on proliferation and apoptosis and thereby uncover the key miRNAs during
the process of tumorigenesis. Furthermore, the results of this study will contribute to
the development of clinical therapy based miRNAs for cancers.
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Background
MicroRNAs (miRNAs) are small non-coding RNA molecules, they can regulate the ex-

pression of most genes in human [1]. The miRNAs can lead to the translation repres-

sion or the degradation of their target mRNAs, and thus affect the production of the

corresponding proteins [2–5]. One single miRNA can involve in the regulation of mul-

tiple genes, and one specific gene can be disturbed by several miRNAs. To study the

biological functions of miRNAs in cells, predicting the targets of miRNAs is an import-

ant topic. So far, quite a few databases, such as Targetscan [6], miRDB [7], miRanda [8]

and mirTarbase [9], have been built to collect miRNA-gene interactions based on bio-

logical experiments and/or computation methods.

MiRNAs are extensively involved in a variety of human pathological conditions, such

as cancer, Parkinson’s disease, HIV infection, and diabetes [10–12]. For Example, miR-

21 could suppress colorectal cancer cells growth by negatively regulating SAV1 while

miR-92a could promote cell proliferation, migration, and invasion in hepatocellular car-

cinoma [13]. To link miRNA with human diseases, the Human microRNA Disease

Database (HMDD) curates experiment-supported evidences for human miRNA and

disease associations [14]. Currently, the HMDD has collected 35,547 miRNA-disease

association entries including 1206 miRNAs and 893 diseases.

Since biological experiment verification is both expensive and time-consuming, some

computational methods have been proposed to predict the potential miRNA-disease as-

sociations. Peng et al. proposed a rank-based method to detect the differentially

expressed miRNAs in individual breast cancer patients [15]. Jiang et al. developed a

model to predict the most potential miRNA candidates involved in diseases, by assum-

ing that functional-related miRNAs are more likely to be associated with phenotypically

similar diseases [16]. Chen et al. presented a random walk method, RWRMDA, to pre-

dict novel miRNA-disease associations based on the miRNA functional similarity net-

work [17].

MiRNA-targeted therapy has become a potential treatment for various complex dis-

eases. For example, SPC3649 is the first small molecule developed targeting miR-122 to

treat hepatitis C infection [18, 19]. Streptomycin is another miRNA-targeted drug to in-

hibit the overexpression of miR-21 in breast, ovarian, and lung cancers [20]. Jamal et al.

proposed a method to predict small molecules targeting miRNA by using Naïve Bayes

and Random Forest [21]. Qu et al. predicted small molecule–miRNA associations by inte-

grating similar networks between different small molecules, miRNAs, and diseases [22].

In addition, the over- or under-expression of some miRNAs may affect the sensitivity

or resistance of some small molecules. For example, let-7b was found to have resistance

to cisplatin, which is widely used to treat various cancers including breast, lung, and

liver cancers [23]. Some databases, such as ncDR [24], mTD [25] and Pharmaco-miR

[26], curated quite a lot resistance-related non-coding RNAs (ncRNA). For example,

the current version of ncDR includes 5864 validated relationships between 145 com-

pounds and 1039 ncRNAs (877 miRNAs and 162 lncRNAs). These datasets will help to

decipher the molecular mechanism of drug response, screen disease markers in clinical

therapy, and promote the targeted research towards ncRNA related drugs.

The inhibition of mRNAs led by miRNAs influences the balance in oncogene and

tumor suppressor genes (TSGs) expression in a complex way. Some genes can regulate

miRNAs expression by binding to promoter regions; and in turn, the disrupted
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miRNAs can regulate other genes. These interactions provide a medium for miRNAs

exerting epigenetic control upon cell cycle, apoptosis, proliferation and other crucial

biologic processes [27, 28]. As the imbalance between proliferation and apoptosis has

been known as one of the fundamental features in tumorigenesis [29, 30], understand-

ing how miRNA impacts the two processes can shed light on deciphering tumorigen-

esis by answering the query: ‘what’s the role of miRNA in tumorigenesis?’ Mendell

et al. showed that miR-17 clustering was associated with cell proliferation and cell cycle

dysregulation [31]. Chang et al. reported that the P53 gene was able to activate the

miR-34 family that affects cell apoptosis and proliferation [32, 33]. Lv et al. demonstrated

that miRNA-34a could decrease cells proliferation and chemoresistance by targeting

HDAC1 for ovarian cancer [34]. However, these studies only focused on a few individual

miRNAs which could not capture their concerted influence in a network view. Recently,

Zhou et al. proposed a network model “oncogene–miRNA–TSG network” to study the

domino effects of miRNAs on proliferation, apoptosis, and cell cycle [35].

In this study, we proposed a novel miRNA-gene regulatory network (miGRN) ap-

proach to investigate the role of miRNAs on proliferation and apoptosis. The proposed

miGRN is a cell fate gene regulatory network with their targeted miRNAs. The impacts

of miRNAs on proliferation and apoptosis are calculated by their signaling propagation

influence by employing the shortest pathways to the downstream cell fate genes. The

proposed method provides a more efficient way to determine the impacts of upstream

miRNAs on the cell fate genes comprehensively. Our results show that those genes

relevant to proliferation and apoptosis are dramatically affected by the differentially

expressed miRNAs that may attribute to the imbalance of the two biological processes.

Correlation analysis also indicates that the top-ranked miRNAs can exert a negative

regulation on the cell fate genes. Our functional analysis shows that the top-ranked

miRNAs involve several cell fates related biological processes and interact closely ac-

cording to their functional similarities. Furthermore, we find that some top-ranked

miRNAs may also affect the sensitivity (or resistance) to anticancer drugs. To the best

of our knowledge, this is the first systematic investigation of the important role of miR-

NAs on proliferation and apoptosis. It will shed light on how to determine the critical

miRNAs on behalf of proliferation and apoptosis and screen the potential target miR-

NAs for clinical therapy of cancers.

Results
Datasets

MiRNA/mRNA expression datasets

We downloaded the MiRNA/mRNA expression datasets of breast cancer and liver can-

cer from TCGA (http://tcga-data.nci.nih.gov/tcga/). Table 1 lists the number of samples

in the two datasets.

Table 1 The miRNA/mRNA datasets for breast cancer and liver cancer

Cancer type miRNA samples (Cancer/Control) mRNA samples (Cancer/Control)

Breast cancer 1189 (1085/104) 1211 (1098/113)

Liver cancer 424 (374/50) 423 (373/50)
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MiRNA-mRNA interactions

We first downloaded the miRNA-mRNA interactions from Targetscan7.0 [6] which in-

clude 14,441,602 conversed and non-conserved interactions between the 2603 miRNAs

and 19,325 mRNAs. To reduce the false-positive relations, we only retain these re-

corded in at least one of miRDB5.0 [7] and miRanda2010 [8]. Finally, we obtained 2,

050,006 miRNA-gene interactions.

Perturbation on cell fate related genes

Figure 1 a shows the heatmap of top ranked differentially expressed cell fate genes. Ob-

viously, some cell fate genes are upregulated while others are downregulated in both

breast cancer and liver cancer datasets. It is the abnormal expression of these genes

that directly disturb the imbalance of cell proliferation and apoptosis

From the perspective of the miGRN, the abnormal expressions of those cell fate

genes are resulted from the abnormal expression fluctuations of the upstream genes

and miRNAs. In this study, we just focus on the impact of miRNAs’ perturbation on

them. Figure 1b shows the comprehensive influence Igene of the upstream miRNAs on

the 125 cell fate genes in the two datasets. As shown, some proliferation/apoptosis

genes are dramatically upregulated/repressed by the upstream miRNAs while others

have little influence. The significant impact of these genes by miRNAs is one of the

critical driving force to disturb their expressions.

The critical miRNAs influencing the cell fate genes

In order to investigate the critical miRNAs influencing cell fate genes, Fig. 2a presents

the average impact on proliferation genes and apoptosis genes and Log2FC of the top

50 miRNAs, and Fig. 2b is the heatmap of miRNAs between cancer and control sam-

ples by R program package “Pheatmap”. First, Fig. 2a shows that these miRNAs

Fig. 1 The heat map and global impact of cell fate genes. a The heat map of significantly expressed cell
fate genes; b the global impact on cell fate genes by miRNAs
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influence both the proliferation genes and apoptosis genes because of the multiple to multiple

regulations between miRNAs and genes. Secondly, the Log2FC values of miRNAs are negatively

correlated to their total impact on the two kinds of cell fate genes. That is to say, the cell fate

genes are generally repressed by the overexpression of miRNAs and activated by their under-

expression. Thirdly, 44 and 46 of the top 50 miRNAs are reported to associate with breast can-

cer and liver cancer respectively in the HMDD database [14]. This demonstrates that the

proposed method could identify the critical miRNAs influencing cell fate genes in cancers.

Table 2 lists the top 10 miRNAs in breast cancer and liver cancer. To the best of our

knowledge, all the top 10 miRNAs have been demonstrated to be associated with breast can-

cer and liver cancer via many biological experiments except for miR-665 in breast cancer. Al-

though no evidence supports that miR-665 is breast cancer related, its critical roles in other

cancers including liver cancer [36] and pancreatic cancer [37] indicate that miR-665 may be a

new potential biomarker or therapeutic target for breast cancer. Besides the miR-665, miR-

335 and miR-21 are also the common miRNAs in the top 10 for breast cancer and liver can-

cer. MiR-335 and miR-21 are confirmed to be associated with advanced clinical stage, lymph

node metastasis and patient poor prognosis in both breast cancer and liver cancer [38–40].

Discussion
Biological function analysis of miRNAs

We further take a biological function enrichment analysis of the top 20 miRNAs on cell

proliferation, apoptosis, cell death, cell differentiation and cell cycle by an online tool

Fig. 2 The top 50 miRNAs in breast cancer and liver cancer. a The scatter diagram of the average impact
on cell fate genes and Log2FC; b The heatmap of the top 50 miRNAs
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MISIM [41], which provides functional analysis of miRNAs for complex diseases. Figure 3a

shows these miRNAs are significantly enriched in the five functions with p-values less

than 0.005. More importantly, there are 4(6) onco-MiRNAs and 4(5) tumor suppressor

miRNAs for breast cancer (liver cancer) in the top 20 miRNAs. This means that the iden-

tified top 20 miRNAs play important roles in cell proliferation, apoptosis and cell cycle

and have critical influence on tumorigenesis. We also find some of these miRNAs in-

volved in many other important biological functions, such as hsa-mir-21, hsa-mir-203a,

and hsa-mir-145.

MISIM also integrates the co-expression similarity, co-GO similarity, co-literature

similarity, and co-similar disease similarity. Figure 3a shows the comprehensive func-

tion similarity network of the top 20 miRNAs by MISIM. These miRNAs are closely

correlated with an average degree larger than 11, and many of the correlation coeffi-

cients are larger than 0.5 (red color). The function similarity network further reveals

these miRNAs might interact in a highly coherent way to disturb the proliferation and

apoptosis functions.

Survival analysis of the critical miRNAs

The validation of prognostic biomarkers is an important clinical issue. Lanczky et al.

developed an integrated online bioinformatics tool miRpower to validate the prognostic

relevance of miRNAs in various cancers including breast and liver cancers [42]. To

evaluate the prognosis performance of the top-ranked miRNAs by our method, we sub-

mit the top 3 miRNAs respectively in breast cancer and liver cancer to the online tool.

The results show that all the top 3 miRNAs in both cancers are significantly correlated

to the overall survival time except for hsa-miR-335 in liver cancer (Fig. 4). This demon-

strates that using our method is an effective way to find cancer prognostic biomarkers.

Drug sensitivity/resistance analysis

Because of the regulation of miRNAs to some important drug targets, it has been

proved that some noncoding RNAs (ncRNAs) including miRNAs are able to promote

sensitivity or produce resistance on some drugs. Among the top 50 miRNAs, 30 miR-

NAs can affect drug sensitivity/resistance for breast cancer, and 29 miRNAs for liver

Table 2 The top 10 miRNAs in breast and liver cancers

Breast cancer Liver cancer

Rank miRNA log2FC PMID Rank miRNA log2FC PMID

1 hsa-miR-335-5p −1.97 21,289,068 1 hsa-miR-26b-5p −1.10 26,891,666

2 hsa-miR-204-5p −3.97 26,191,195 2 hsa-miR-335-5p −0.67 25,804,796

3 hsa-miR-21-5p 2.25 24,980,553 3 hsa-miR-424-5p −2.61 26,315,541

4 hsa-miR-200c-3p 2.06 22,144,583 4 hsa-miR-195-5p −1.79 23,468,064

5 hsa-miR-145-5p −2.44 26,715,279 5 hsa-miR-93-5p 1.41 22,773,266

6 hsa-miR-129-5p −2.06 22,907,300 6 hsa-miR-490-3p −4.95 30,007,991

7 hsa-miR-429 3.06 29,702,103 7 hsa-miR-21-5p 1.47 23,355,454

8 hsa-miR-155-5p 1.22 22,105,810 8 hsa-miR-483-3p −3.07 24,127,413

9 hsa-miR-665 −2.05 NULL 9 hsa-miR-34a-5p 1.04 28,277,300

10 hsa-miR-200b-3p 2.08 30,342,533 10 hsa-miR-665 −1.61 30,237,408
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cancer. Therefore, these top miRNAs not only play an important role in the dysregula-

tion of cell fate genes but also influence the effect of anticancer drugs. The detailed ef-

fects of these miRNAs are included in the supplementary file.

Doxorubicin, Cisplatin, and Docetaxel are three common clinical chemotherapy

drugs used to treat many cancers including breast cancer, liver cancer, and stomach

cancer. Doxorubicin is an anthracycline, it can slow or stop the growth of cancer cells

by blocking an enzyme called topoisomerase 2. Usually, the combination of Docetaxel

and Doxorubicin is used as first-line chemotherapy for breast cancer [43]. Cisplatin

kills the fastest proliferating cells via interfering with DNA replication. In ncDR, the

three drugs are influenced by a relatively large number of critical miRNAs. Figure 5

shows their abnormal expression and influence on drug sensitivity/resistance, which in-

dicates that these miRNAs affect the sensitivity/resistance of drugs in a complex way.

Some may promote the sensitivity of a drug while others may induce resistance to a

drug. And one miRNA may have different effects on different drugs, such as hsa-miR-

429, hsa-miR-155-5p, and hsa-miR-155-5p. Consideration of these miRNAs impact on

the drug may help to design a more efficient strategy in clinical treatment. For example,

the intervention of the most critical miRNA by either miRNA mimics or inhibitor will

both alleviate its dysfunction on cell fate genes and promote the sensitivity of a drug.

Conclusions
One fundamental principle of tumorigenesis is the dysfunction of the cell cycle, espe-

cially, the balance between proliferation and apoptosis is destroyed. As an important

regulator of genes, miRNAs have been proved to be involved in the tumorigenesis of

Fig. 3 Biological function analysis of the top 20 miRNAs. a miRNAs function enrichment analysis; b
functional similarity network between miRNAs
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various cancers. In this paper, we propose an efficient miGRN approach to study the im-

pact of miRNAs on the perturbation of proliferation and apoptosis. First, we manually ex-

tract 125 cell fate genes (including 97 proliferation genes and 28 apoptosis genes) from

the KEGG cancer-related pathways. Then trace back to the upstream of these genes, a cell

fate gene regulatory network is constructed. After mapping the differentially expressed

miRNAs, we calculate the impact of miRNAs on each cell fate genes by the shortest path.

Our results show that some of the proliferation genes and apoptosis genes are dramatically

upregulated/repressed by miRNAs, which contribute to the imbalance of proliferation and

apoptosis. Based on the impact of these miRNAs, it is confirmed that 90% of the top 50 miR-

NAs are verified to be related to the corresponding breast/liver cancer in the HMDD data-

base. MiRNAs function analysis indicates that the top-ranked miRNAs significantly relate to

cancer-associated biological processes and interact tightly based on their functional similarity.

Survival analysis further reveals that the top 3 miRNAs also highly correlated with the survival

time of prognosis. Finally, drug sensitivity/resistance analysis based on the ncDR indicates that

these miRNAs not only have a significant impact on the balance of the cell cycle but also im-

pact the efficiency of anticancer drugs. In sum, this study deepens the understanding of the

molecular mechanisms of miRNAs underlying tumorigenesis and may promote the study for

the prediction, diagnosis, and even therapy of cancer.

We should point out that there are some shortcomings in this study. The assumption

of the shortest path influence may be too simplistic for the real complex miRNA-gene

regulatory process. In addition, we do not take into account other non-coding RNAs,

such as lncRNAs, circRNAs, which have also been proved to play critical roles in gene

regulation. All these issues will be considered in our future work.

Methods
In order to study the perturbation of miRNAs on proliferation and apoptosis, we define

the cell fate genes as those directly connecting to biological functions such as

Fig. 4 Survival analysis of the top three miRNAs in breast cancer and liver cancer
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proliferation, apoptosis, anti-proliferation, anti-apoptosis, cell differentiation and cell

survival in KEGG (Kyoto Encyclopedia of Genes and Genomes) signaling pathway [44].

Specifically, we name the genes relating to the proliferation process as proliferation

genes, and those relating to the apoptosis process as apoptosis genes. Then we con-

struct a regulatory network of all the cell fate genes based on the KEGG pathway and

map the significantly differentially expressed miRNAs on it based on the miRNA-gene

interactions. Motivated by the signaling propagation idea in SPIA [45, 46], we calculate

the perturbation of these miRNAs to the downstream cell fate genes by the shortest

regulatory paths. Figure 6 shows the main workflow of this study.

Determine the cell fate genes

Atlas of Cancer Signalling Network (ACSN) is a global biological signaling map [47]. It

defines the following 14 pathways as cancer-related signaling pathways: Apoptosis,

PI3K-Akt signalling pathway, EGFR tyrosine kinase inhibitor resistance, p53 signalling

pathway, Jak-STAT signalling pathway, MAPK signalling pathway, Wnt signalling path-

way, Colorectal cancer, Adherens junction, Focal adhesion, VEGF signalling pathway,

cAMP signalling pathway, TGF-beta signalling pathway and Cell cycle signalling path-

way. Then we manually navigate these pathways in KEGG to identify cell fate genes.

Fig. 5 Drug sensitivity/resistance analysis. a Docetaxel and Doxorubicin in breast cancer; b Cisplatin and
Doxorubicin in liver cancer. The red (or green) oval represents the miRNA is up-regulated (or down-
regulated) in cancer samples. The red line denotes promoting drug sensitivity while the green line denotes
inducing drug resistance
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Figure 7 shows an example of the MAPK signaling pathway, where the red ovals are

the cell fate functions and the red rectangles point to them are the corresponding cell

fate genes. In total, we extract 125 cell fate genes including 97 proliferation genes and

28 apoptosis genes, all these cell fate genes are available in the supplementary file.

Differential expression analysis

The differential expression analysis of both miRNAs and genes were carried out by an

R package “limma” [48]. The P-values were adjusted by the FDR method [49]. For the

miRNAs or genes with FDR < 0.05 and FC > 1.5 were regarded as significantly differen-

tially expressed miRNAs or genes. Specifically, the significantly differentially expressed

cell fate genes are identified from the 125 cell fate genes. In total, we got 558/442 dif-

ferentially expressed miRNAs and 93/69 differentially expressed cell fate genes for

breast cancer and liver cancer respectively.

Construct the miRNA-gene regulatory network (miGRN) of cell fate genes

The abnormal miRNA signals general transmit in a cascade way from upstream to

downstream genes. In order to study their impact on cell fate genes, we construct the

miGRN by digging interactions between miRNAs and cell fate genes. We integrated

GRAPH and miRNA-target databases to obtain regulatory relations between miRNAs

and genes or genes to accomplish it [50]. GRAPH is an R program package to collect

well-curated pathway data from authoritative databases such as Reactome [51], KEGG

[44] and BioCarta [52]. We first traced the 125 cell fate genes backward based on the

Fig. 6 The flow chart of the proposed method
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regulatory relations in GRAPH to obtain a gene regulatory network related to the cell

fate genes. Then, we mapped those significantly differentially expressed miRNAs onto

the network to form the final miGRN.

Evaluate the impact of miRNAs’ perturbation on cell fate related genes

Because of the complexity of gene regulations, the perturbation signaling of one up-

stream miRNA may propagate to a downstream cell fate gene in many paths. In [45],

Tarca et al. proposed a signaling pathway impact analysis (SPIA) to calculate the cas-

cade of perturbation signaling. It integrates the information from classic enrichment

analysis with those measuring the actual perturbation on a given pathway under a spe-

cific condition. The drawback of this method lies in that it needs complicate computa-

tions (e.g. matrix inverse and bootstrap) to model perturbations and assess the

significance of observed perturbations. As the perturbation signaling may decay along

its flowing path, we assume that the perturbation signaling propagates in the shortest

path and it decays linearly with the length of the shortest path. Such an assumption is

reasonable because information flow is more likely to follow the shortest path in a bio-

logical system given different paths are available for its least cost.

We define the impact of miRNA i on the gene j as

Iij ¼ Sij� log2 FCið Þ=Lij ð1Þ

where FCi represents the average fold change of the miRNA i in cancer samples ver-

sus control samples, Lij represents the length of the shortest from miRNA i to cell fate

gene j. The parameter Sij represents the regulatory mechanism (Promotion/Inhibition)

of miRNA i to the cell fate gene j on the shortest path. Sij is the product of the regula-

tory relationship between connected genes on the shortest path. It is noted that we as-

sumed that all miRNAs repress their target genes. As shown in Fig. 6, mir-5 can

influence the expression of cell fate Gene* by shortest path “mir (Inhibit,-1) Gene1

Fig. 7 MAPK signaling pathway [44]
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(Promote,+1) Gene*”. The Sij for mir-5 to Gene* can be computed by −1 × 1 = − 1,

which indicates that the expression of mir-5 will inhibit the expression of Gene*.

Given a gene j, the overall impact by upstream miRNAs can be calculated as

Igene − j ¼
X

i∈R j

Iij ð2Þ

where the Rj is the set of upstream miRNAs on the gene j. Igene − j > 0 indicates that

the cell fate gene j is promoted by its upstream miRNAs and Igene − j < 0 indicates that

the cell fate gene j is repressed by its upstream miRNAs.

Given a miRNA i, its overall impact on all cell fate genes can be calculated as

ImiR − i ¼
X

j∈Gi

Iij ð3Þ

where the Gi is the set of downstream cell fate genes influenced by miRNA i. ImiR −

i > 0 indicates that miRNA i promotes the expression of its downstream cell fate genes

and ImiR − i < 0 indicates that miRNA i represses the expression of its downstream cell

fate genes.
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