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Abstract

Background: As the barriers to incorporating RNA sequencing (RNA-Seq) into biomedical studies continue to
decrease, the complexity and size of RNA-Seq experiments are rapidly growing. Paired, longitudinal, and other
correlated designs are becoming commonplace, and these studies offer immense potential for understanding how
transcriptional changes within an individual over time differ depending on treatment or environmental conditions.
While several methods have been proposed for dealing with repeated measures within RNA-Seq analyses, they are
either restricted to handling only paired measurements, can only test for differences between two groups, and/or
have issues with maintaining nominal false positive and false discovery rates. In this work, we propose a Bayesian
hierarchical negative binomial generalized linear mixed model framework that can flexibly model RNA-Seq counts
from studies with arbitrarily many repeated observations, can include covariates, and also maintains nominal false
positive and false discovery rates in its posterior inference.

Results: In simulation studies, we showed that our proposed method (MCMSeq) best combines high statistical
power (i.e. sensitivity or recall) with maintenance of nominal false positive and false discovery rates compared the
other available strategies, especially at the smaller sample sizes investigated. This behavior was then replicated in an
application to real RNA-Seq data where MCMSeq was able to find previously reported genes associated with
tuberculosis infection in a cohort with longitudinal measurements.

Conclusions: Failing to account for repeated measurements when analyzing RNA-Seq experiments can result in
significantly inflated false positive and false discovery rates. Of the methods we investigated, whether they model
RNA-Seq counts directly or worked on transformed values, the Bayesian hierarchical model implemented in the
mcmseq R package (available at https://github.com/stop-pre16/mcmseq) best combined sensitivity and nominal
error rate control.
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Background

As the cost of sequencing decreases, the complexity
and size of RNA sequencing (RNA-Seq) experiments are
rapidly growing. In particular, paired, longitudinal and
other correlated study designs are becoming common-
place [1, 2]. Longitudinal studies of how gene expression
changes over the disease course and under differing treat-
ment and environmental conditions are critical to under-
standing how disease evolves in individual patients and
for developing accurate biomarkers of disease progres-
sion and treatment response. However, the most popular
RNA-Seq data analysis tools are not equipped to analyze
correlated and longitudinal data [3].

Failing to account for correlation between repeated
measurements can result in misleading inferences [4].
For example, when estimating changes in gene expression
over time, if there is strong within-subject correlation,
estimated standard errors will be too large if correlation
is ignored, reducing power to detect differential expres-
sion. As well-developed statistical methods and software
tools are lacking, some have proposed analyzing corre-
lated RNA-Seq data with DESeq2 or edgeR by including
all levels of the clustering variable as fixed effects in the
regression model [3, 5]. In this case, the number of param-
eters necessary to account for correlation is equal to the
number of subjects or clusters. This may result in a model
that is too complex for the number of observations in the
study, leading to overfitting. When overfitting is present,
some of the findings of the analysis come from fitting
noise, resulting in spurious associations that cannot be
reproduced in future studies [6]. Cui et al (2016) also
noted that this strategy led to inflated false positive rates
[3]. In addition, if a regression parameter for each sub-
ject is included in a model, other effects of interest, such
as group differences at individual time points, may not be
estimable. Consequently, a method that can analyze RNA-
Seq data in a flexible manner while including covariates
and accounting for repeated measures is needed.

As RNA-Seq data are over-dispersed counts, traditional
linear mixed models, which assume a normal distribution,
are inappropriate. In non-correlated settings, RNA-Seq
data are typically modeled using a negative binomial (NB)
distribution in a generalized linear model framework [7,
8]. Since estimation of the dispersion parameter can be
unstable or biased, particularly for data with low mean
counts and small sample sizes [9-13], specialized RNA-
Seq analysis packages, such as DESeq2 and edgeR, shrink
estimates of dispersion parameters for individual genes
towards a common estimate [14—16].

The NB generalized linear mixed model (NBGLMM) is
an extension of NB regression that allows for the inclu-
sion of random effects to account for correlation between
observations [4, 17], and would seem a natural choice
for the analysis of correlated RNA-Seq data. However,
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NBGLMMs do not have closed form solutions, and thus
numerical optimization algorithms must be used to max-
imize the likelihood to obtain parameter estimates [17].
With small to modest sample sizes, achieving a reliable
level of convergence can be even more problematic than in
traditional NB regression. There are also concerns about
inflated false positive rates for both NB generalized linear
models (NBGLM) and NBGLMMs, since standard errors
for regression coefficients are estimated assuming that the
NB dispersion parameter is known rather than estimated
from the data [18].

There have been several recent developments in the
analysis of correlated RNA-Seq data. For studies of
related individuals, MACAU (Mixed model Association
for Count data via data AUgmentation) [19] uses a Poisson
mixed model to account for relatedness and population
structure within an RNA-Seq experiment by allowing the
user to supply a known kinship matrix. Since the corre-
lation structure is specified a priori, this method is not
designed to analyze data from longitudinal studies where
the expected correlation among samples is unknown.
PLNSeq [20] conducts differential expression analysis on
RNA-Seq data generated from correlated samples, assum-
ing the marginal distribution of the read counts is the
compounding of the Poisson and the lognormal distribu-
tions; however, the method cannot adjust for covariates
and can only be used to analyze data from single group
study designs. The authors have also published a similar
model using a Poisson Gamma formulation of the NB [21].

PairedFB is a Bayesian model that can test for differen-
tial expression between two groups when there are paired
observations [22]. However, this model is limited to paired
observations and does not allow for additional covari-
ates. ShrinkBayes is another Bayesian approach which
uses a NB hierarchical model to account for clustering
and to share information across genes when estimating
dispersion parameters [23]. Spike and slab shrinkage
priors are used in an attempt to control false discovery
rates (FDRs). The main drawbacks of this approach are
that it is computationally intensive, it can be difficult for
those unfamiliar with the method to develop reasonable
priors (e.g. choose the form of prior for NB dispersion
parameter) or make other modeling choices, and others
have noted inflated error rates in some applications [22, 24].
The VarSeq method from the tcgsaseq R package uses
a variance component score test to identify gene sets
whose expression varies over time and can account for
repeated measures [25]. While it is possible to apply these
tests to individual genes, the method was developed and
validated specifically for gene sets and testing character-
istics for performing gene-wise tests is unknown. Lastly,
tools from the 1imma R package, which was originally
developed for the analysis of microarray experiments
but can be applied to RNA-Seq data via the VOOM
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transformation, have also been proposed for situations
with repeated measures [26-28]. In this process, the
average correlation between repeated or clustered obser-
vations across all genes is computed, and this value is then
accounted for during the linear model fits in a standard
limma analysis. While mixed models are fit to estimate
the duplicate-correlation measure, final inference is
performed using standard limma regression models.

In this work, we propose to model correlated and
longitudinal RNA-Seq data using a simple Bayesian NB
hierarchical model. This model allows for the inclusion
of random effects that can be used to account for cor-
relation between samples, which may occur in studies
where subjects are followed over time, in studies of related
individuals, such as paired siblings, or when multiple
samples are taken from the same subject (for example,
RNA-Seq on paired blood and biopsy samples). We use
non-informative priors with large variances, making prior
selection straightforward. If desired, information can be
borrowed across genes when developing the prior for the
dispersion parameter in a way that mimics the informa-
tion sharing in edgeR and DESeq2. Unlike frequentist
methods of estimation, estimates of variability for param-
eters and statistical tests account for the fact that dis-
persion parameters are estimated, resulting in better con-
trolled false positive rates than frequentist NBGLMMs.
We calculate a contour probability from the posterior dis-
tribution, a corollary to a two-sided p-value, which can
undergo common FDR corrections. These methods are
implemented in the mcmseq R package, which fits mod-
els with a Markov-chain Monte Carlo (MCMC) algorithm
that has been optimized in C++ and can be run in parallel
to speed computation time. We illustrate our methods in
the analysis of publicly available longitudinal whole-blood
RNA-Seq data from subjects with latent tuberculosis (TB)
infection.

Methods

MCMSeq: a Bayesian NBGLMM for RNA-Seq data

Similar to other commonly used RNA-Seq analysis tools,
we model the observed data with a NB distribution using a
log link function. To account for correlation, we allow ran-
dom effects to be included in the model in a NBGLMM
framework. Let Y,; be the expression of gene g from
subject i at time point or observation j, then

Yo ~ NB (i otg)
log (14gi)) = XijBg + Zijbgi + pij (1)
bei ~ N (0,%)
where jig; is the mean expression of gene g € {1,---, G}
in subjecti € {1,---,I} at observationj € {1,--- ,n;} and

ay is the dispersion parameter for gene g, which is related
to the variance of Yg; by Var(Ygi,-) = Jgij + O‘gl{éiy Bg is
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a p x 1 vector of fixed effect regression coefficients for
gene g, X;; is a 1 x p row vector of fixed effects covari-
ates for subject i at observation j, bg; is a g x 1 vector of
random effects for gene g and subject i, Z;; isa 1 x g row
vector of random effect covariates for subject i at obser-
vation j, and p;; is an offset for subject i at observation j,
which can be used to account for differences in sequenc-
ing depth between samples. A graphical representation of
the hierarchical model is presented in Fig. 1. We assume
that for each gene, the subject-specific random effects
(e.g. random intercepts, random slopes or time effects
for individuals or clusters) are normally distributed with
mean 0 and variance X,. In addition to accounting for
repeated measures made on subjects in longitudinal stud-
ies, random effects can be used to account for correlation
in other study designs, such as studies of related family
members or paired siblings or studies in which RNA-
Seq is performed on multiple types of samples (e.g. blood
and biopsied tissue) from the same subject. This flexible
framework also allows for the inclusion of both categor-
ical and continuous covariates, where the latter can be
modeled in a number of different ways (e.g. linear relation-
ships, higher order polynomial terms, or even regression
splines).

Prior specification

We fit the NBGLMM as a Bayesian hierarchical model
using MCMC. The Bayesian NBGLMM is completed by
specifying priors (and hyper-priors) for B¢, 3, and aj:

S, ~ TWWU, V)
log (ag) ~ N (Ag, B)

where M, is a vector of length p containing the prior
means for the regression coefficients for gene g, T is a p
X p covariance matrix, MVN is the multivariate normal
distribution, and ZWV is the inverse Wishart distribution
with g x g scale matrix U and V' > g — 1 degrees of free-
dom. Ay is the prior mean of the log normal distribution
for the dispersion parameter for gene g and B is the prior
variance, which is common across genes.

In practice, we set the first element of M, (the prior
mean for the intercept) to be the log of the mean number
of counts across samples for that gene; all other elements
of Mg are set to 0. This prior is uninformative, as it
assumes that observations come from a common distribu-
tion with a single mean and that there are no differences
between groups or time points. For T, we use a diago-
nal matrix with s> on the diagonal, and choose s?, the
prior variance, to be large. We have used a prior variance
of 72 = 49 for all analyses in this paper. The influ-
ence of these hyperparameters on inference is well known.
Choosing non-zero means for regression coefficients is
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Fig. 1 Directed acyclic graph of the MCMSeq Model. Squares represent observed data, while circles represent model parameters to be estimated.
Diamonds represent prior parameters and hyper-parameters. Solid arrows indicate stochastic dependence, while dashed arrows indicate

uncommon and we do not recommend it; this could result
in increases in type 1 errors for truly null genes and could
also increase type 2 errors for differentially expressed
genes if the differential expression is in the opposite direc-
tion of the assumed prior mean. For the prior variance
T, choosing smaller values increases the influence of the
prior on inference; assuming the priors for the regres-
sion coefficients are centered at zero, this could lead to a
loss of power. The influence of prior hyper-parameters on
inference diminishes with increasing sample size.

We specify U as a g x g identity matrix and V =
q + 1. For models including a single random effect for
each subject (i.e. ¢ = 1 as in our simulation study using
a random intercept for each subject), we assume X, has
an inverse gamma prior with parameters U and V. The
prior becomes more diffuse and uninformative as U and
V' decrease; therefore, we set these parameters to small
values (e.g. 0.01) in order to be uninformative. We investi-
gated the influence of choice of U and V in our simulation
study in Supplementary materials Section 2.3.5 and found
values of 0.1, 0.01, 0.001 all maintained false discovery
rates at or below their nominal levels; however, the most

informative prior (value of 0.1) resulted in a loss of power
for between subject tests and slightly inflated type 1 error
rates for within subject and interaction tests. Therefore,
we recommend values of 0.01 and smaller.

To stabilize estimation of the dispersion parameter at
small sample sizes, we share information across genes
when specifying the log normal prior for the dispersion
parameter in a similar spirit to the dispersion estima-
tion in the DESeq2 pipeline [15]. First, for each gene,
we calculate the average log(CPM) across samples and
a naive method-of-moments estimate of the dispersion
parameter. The naive estimate is calculated by first scaling
the data to the median library size and then calculating
the mean, mg, and variance, v, of the scaled counts for
each gene. The naive dispersion estimate for each gene is

Vg;l;"g . Locally weighted polynomial regression
g

given by
(LOESS) is then used to model the relationship between
the log of the method-of-moments dispersion estimates
and the average log(CPM). A, is then set to the expected
log(dispersion) at the average log(CPM) for gene g based
on the LOESS regression. B is set to (k - 7)? where k is
an inflation factor and 7 is the residual standard deviation
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from the LOESS fit. The method-of-moments dispersion
estimates are over-estimates since they do not take into
account fixed or random effects that explain variability in
the data. Therefore, we typically choose k > 1 in order to
include a larger range of potential dispersion values in our
prior. In practice, we have found a k of 2 tends to work
well and use k = 2 for all analyses presented in this paper
(See Supplementary material Section 2.3.6 for simulation
studies showing the influence of k on testing characteris-
tics). Type 1 error rates and FDR increase with k, such that
values of k < 2 tend to be more conservative and values of
k > 2 are more liberal. As sample size increases, the dis-
persion prior has less influence and all values of k perform
similarly.

Posterior estimation and convergence criteria

Posterior estimation is performed with a hybrid
Metropolis-Hastings/Gibbs MCMC sampler (see
Supplementary materials Section 1.1 for detailed steps).
A weighted least squares (WLS) proposal, as introduced
by Gamerman [29], is used to jointly update B and by; o
is updated using a random walk proposal and %, can be
updated using an appropriate Gibbs step. In this frame-
work, the posterior distribution of regression coefficients
naturally incorporates the uncertainty associated with
simultaneous estimation of the dispersion parameter.
Access to the full posterior distribution also makes infer-
ence about quantities that involve complex combinations
of model parameters (e.g. the heritability calculation from
Rudra et al.) straightforward [30].

Convergence of the chain for each gene is examined in
two ways: acceptance rate and Geweke statistics compar-
ing the first 20% of the chain (after discarding burn-in)
to the final 50% of the chain [31]. For each gene, accep-
tance probabilities are computed for the vector of regres-
sion coefficients B, and the dispersion parameter ag; X,
is always accepted and thus ignored for this diagnostic.
Additionally, p-values for the Geweke statistics (i.e. t-
tests) are calculated for all model parameters, and are then
adjusted for multiple comparisons across genes using the
Benjamini-Hochberg method [32]. We deemed any gene
that had an acceptance rate <10% or an adjusted Geweke
p-vlaue <0.05 for any model parameter to be a conver-
gence failure. See Supplementary materials Section 1.3 for
more details.

Posterior inference and adjustments for multiple
comparisons

To perform posterior inference on individual regression
parameters (or linear combinations of regression parame-
ters), there are multiple potential approaches. One option
is to use Bayes factors to compare the likelihood of a given
parameter value in the prior versus the posterior distribu-
tion. A major drawback of this approach is that adjusting
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for multiple comparisons when using Bayes factors is not
well characterized. Alternatively, we use the contour prob-
ability originally proposed by Box and Tiao [33], which can
be thought of as the Bayesian corollary to a two-sided p-
value for the null hypothesis that a parameter 6 equals a
given value 6y (See Supplementary Fig. 1). Formally, the
contour probability p, is defined as

pe=1=P(p@|Y) > p©|Y)) 2)

Since the NBGLMM does not have a closed-form poste-
rior distribution, Monte Carlo estimation is required. One
strategy for computing p, in this scenario is to construct
a smoothed approximation of the posterior distribution
using kernel density estimation with the MCMC sample
{9(1), e ,9/‘}, and to then estimate p. as the proportion
of samples for which p (6p|Y) > p (9 &) Y). However, the
results are dependent on the choice of kernel function
and smoothing bandwidth [34, 35]. To avoid this problem,
we instead take a simplified approach by estimating the
contour probability as

1
pe=2-7 Zl(ew.é)<0 )

where I is an indicator function and 6 is the posterior
median of 6. That is, we estimate the contour probabil-
ity as twice the proportion of MCMC samples that lie on
the opposite side of 0 as the posterior median, which is
twice the posterior probability of the null in a one-sided
hypothesis testing framework (See Supplementary Fig. 2).

The final step is to account for multiple comparisons.
A common Bayesian FDR control approach is to con-
struct a set of features (i.e. genes) for which the aver-
age posterior probability of being differentially expressed
is above some threshold (or equivalently, that the aver-
age probability of being equally expressed is below some
threshold) [36]. In this context with contour probabil-

ities and a target FDR level «, the procedure would

entail sorting the gene-specific pgg) s for a given parame-

ter in ascending order, and then finding the cutoff point

* = }le?) <a

this strategy, but found it resulted in substantial FDR
inflation (see Supplementary Table 2), and thus quickly
abandoned it. Instead we apply a Benjamini-Hochberg
procedure for controlling FDRs to the contour probabil-
ities. While the Benjamini-Hochberg method was devel-
oped for application to p-values, the relationship between
one-sided posterior probabilities and one-sided p-values
has been discussed by Casella and Berger [37]. Moreover,
in our simulations, contour probabilities behaved very
much like traditional p-values for features that showed no
true differences; their distributions were nearly uniform
(Supplementary Fig. 3). We found this method controlled

max {l: % } We investigated using
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EDRs very well in our simulation studies and has been
used to generate all results presented in this paper. For
more details see Supplementary materials Section 1.2.

Implementation

The MCMSeq method is implemented in the mcmseq
R package, which contains a detailed vignette that illus-
trates these methods on a simulated data set. The package
is written in C++ via the Repp, ReppArmadillo, and
RcppParallel R packages, the last of which allows the
chains for each gene to be automatically run in parallel
to shorten computation time [38—40]. In the fitting func-
tion, users can specify all hyper-parameters in the priors,
though non-informative values that generally worked well
in the simulation studies and real data applications are
provided as defaults.

While MCMC samplers for Bayesian hierarchical nega-
tive binomial models can be developed and fit with other
packages or software, such as STAN [41], OpenBugs [42],
or SAS software’s MCMC procedure, these are general
Bayesian model fitting tools that have not been optimized
for high-throughput analysis of RNA-Seq data. As such,
the user would be required to write additional code to
specify the model, fit the model to each gene, and to
summarize results over all genes. In addition, since these
are general tools, samplers may not be the most efficient
for fitting NBGLMMs. For example, we explored fitting
our proposed model to a single feature in the N=3 sim-
ulated datasets using the rstan package [43]. This took
approximately 2.5 minutes; for a typical RNA-Seq dataset
of 15,000 genes, this would result in 620 hours of compu-
tation time, compared to approximately 30 minutes for the
same dataset using mcmseq. The mcmseq package makes
fitting Bayesian NBGLMMs more accessible by automat-
ing the process of model fitting and summarizing results
over tens of thousands of genes typically found in an
RNA-Seq analysis.

Simulation study

Data generation

To evaluate the testing characteristics of MCMSeq and
to compare to other potential analysis strategies, we per-
formed a simulation study. Datasets were simulated using
a two group design (e.g. treatment and control) with
paired observations (e.g. baseline and follow-up) on each
subject. Count data were simulated from a NB distribu-
tion as follows:

Yoj ~ NB (/‘gij’ “g)
log (Mgi/’) = ,BgO + ,BgllTi + ﬂgZIFi/ + ﬁgi%lTiIsz + bgi
by ~ N (0,02) @)

Page 6 of 20

where I, is an indicator function that equals 1 if sub-
ject i is in the treatment group, Ir; is a similar indica-
tor for if observation j is the follow-up, and b is the
random intercept for gene g and subject i. Simulated
data sets were generated with a combination of null and
differentially expressed (mixed effect sizes) features, as
summarized in Table 1. In order to mimic real data as
much as possible, values for 40, o, and ngb were drawn
from an empirical distribution of mean counts per million
(CPM), dispersion (ag), and random intercept variance

(crgzb> observed across human samples in several real

RNA-Seq data sets that had repeated measures [1, 2]
(Supplementary materials Section 2.1).

Methods compared and implementation

We analyzed each simulated data set using the methods
described in Table 2 (see also Supplementary materials
Section 2.2). Genes were filtered from the analysis if >75%
of the samples had less than 1 CPM (i.e. at least m sam-
ples must have a CPM > 1 where m is the number of
samples in the smallest experimental unit of interest). We
also tested the sensitivity of our simulation results to addi-
tional filtering schemes and found similar testing char-
acteristics and relative performance of the methods. See
Supplementary materials Section 2.3.7 for full details. To
account for differences in library size between samples, we
used the default median of ratios method for DESeq2 and
the trimmed mean of M values for edgeR. For MCMSeq,
CPGLMM, NBGLMM and ShrinkBayes, we took the nat-
ural log of the DESeq2 median of ratios values as an offset.
VarSeq, limma, and LMM use transformed counts and do
not require an offset. For edgeR and DESeq2, models were
fit ignoring correlation (dropping the random effect terms
from Eq. 4) and accounting for correlation by replacing the
random effects by; from Eq. 4 with fixed effects (edgeR*
and DESeq2*). This requires removing both the inter-
cept (By0) and the main effect of treatment (1) from
the model, as they are not estimable. For all other meth-
ods, both fixed and random effects were included in the
model as specified in Eq. 4. A summary of the practical
and theoretical advantages and disadvantages for each of
the methods and their software implementations can be
found in Supplementary Table 1.

We compare the performance of these analysis strate-
gies in terms of type 1 error rate, FDR, and power (recall)
for three statistical tests. First, Bg1 + Bg3 = O tests
for differences in expression between the treatment and
the control group at follow-up. We refer to this as a
“between-subject” test, as inference involves only inde-
pendent observations. Second, By + B3 = O tests for a
change in expression over time in the treatment group.
We refer to this as a “within-subject” test as inference
involves the paired observations. Lastly f,3 = 0 tests



Vestal et al. BMC Bioinformatics (2020) 21:375

Table 1 Summary of simulated datasets
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Number of datasets
Number of features per dataset

Sample sizes

Model parameters

Bg1: Difference in log(expression) between
treatment and control at baseline

Bg2: Change in log(expression) over time
in the control group

Bg3: Difference in change in log(expression)
over time between the treatment and

control groups

Bo, g, 05,

Additional comparisons

Bg1 + Bg3: difference in log(expression)
between control and treatment at
follow-up

Bg2 + Bg3: Change in log(expression)

over time in the treatment group

10

15,000

3,5,and 10 per group
(6, 10 and 20 total)

0 (all features)

0 (all features)

0 (80% of features)
EST (10% of features), -ES (10% of features)

Drawn from an empirical distribution based on human

samples in real RNA-Seq data sets with repeated measures

0 (80% of features)

ES (10% of features), -ES (10% of features)

0 (80% of features)
ES (10% of features), -ES (10% of features)

TES is drawn from a Gamma distribution with mode of log(2) and a standard deviation of 0.5

if there is a difference in the change in expression over
time between the treatment and control groups. We refer
to this as an “interaction” test, which depends on both
between- and within-subject information. For each sim-
ulation scenario, we calculate type 1 error rate, FDR,
and power for each contrast within each dataset and
then average across the 10 datasets. We evaluate these
characteristics over a range of significance thresholds
(Table 3). To evaluate power and FDR, we first applied a
Benjamini-Hochberg correction to the p-values for each
contrast within each dataset[32]. However, this correc-
tion was not applied to results from ShrinkBayes, as
ShrinkBayes reports Bayesian FDR values rather than
p-values.

Real data analysis

We apply the analysis strategies described above to a
publicly available longitudinal RNA-Seq dataset of 112
whole blood samples from 40 subjects in recent contact
with patients with active TB infection (GEO Datasets:
GSE107994, GSE107993). The cohort was recruited
between September 2015 and September 2016 at the
Glenfield Hospital, University Hospitals of Leicester NHS
Trust, Leicester, UK. The study design and methods have

been described in detail elsewhere [1]. Subjects were fol-
lowed for a median of 86 days and had a median of 3
observations per subject.

Over the course of the study, 9 subjects developed active
TB infection and were classified as TB progressors (TBP).
Of the remaining 31 subjects, 16 tested positive on the M.
tuberculosis antigen-specific interferon-gamma (IFN-y)
release assay (IGRA) and were classified as having latent
TB infection (LTBI). The remaining 15 subjects tested
negative on the IGRA and were classified as controls. Pre-
vious analyses of the data evaluated a risk score based on
a panel of 20 genes designed to distinguish LTBI from
TBP and found that among subjects that remained healthy
over the course of the study, risk scores were stable over
time, while for most subjects that developed active TB,
risk scores increased over time. In addition, it was noted
that at baseline (first study observation after recruitment)
the risk score was, on average, slightly elevated in the LTBI
and TBP groups compared to the control group [1].

Data pre-processing and implementation

Count tables and metadata were downloaded from the
GEO DataSets website. The data included 17,793 genes
with at least 1 non-zero count. Before analysis, we filtered
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Method

R-Package

Description

Reference

MCMSeq

CPGLMM*

mecmseq

cplm

Bayesian negative binomial hierarchical model, assuming the following
hyper-parameters: T = 7214, where Iy is a 4 x 4 identity matrix, U =

V' =001, Ay = centered on empirical prior as described in 2.3,8 =4 - (ré
Chains were run for 30,000 iterations and 10% was discarded as burn-in.

Compound Poisson generalized linear mixed model fit using maximum

likelihood.
DESeq2* DESeq2

DESeq?2 analysis using default settings. To account for correlation, [15]

subjects are included as fixed effects in the model by replacing the

random effects in Equation 4 with fixed effects.

DESeq2 DESeq?2

DESeq?2 analysis using default settings, including only fixed effects in [15]

Equation 4. Correlation is ignored.

edgeR* edgeR

edgeR analysis using default settings. To account for correlation, [14]

subjects are included as fixed effects in the model by replacing the

random effects in Equation 4 with fixed effects.

edgeR edgeR

edgeR analysis using default settings, including only fixed effects in [14]

Equation 4. Correlation is ignored.

limma limma

Count data were transformed for analysis with limma using voom. [26]

The duplicateCorrelation function using subject id as the blocking [27]

factor was used to account for correlation.

LMM lmerTest

Data were first transformed using DESeq2's variance stabilizing [45]

transformation. Linear mixed models, which assume a normally

distributed errors, were then fit to the transformed counts.

MACAU MACAU2

Poisson GLMM with random effects to account for over-dispersion and [19]

correlation among observations. A known covariance matrix must be supplied;

we used the covariance of the centered and scaled gene expression matrix as

shown in the third example of [19].

NBGLMM glmmADMB
maximum likelihood.

ShrinkBayes ShrinkBayes

Frequentist negative binomial generalized linear mixed model fit using [46]

Bayesian hierarchical model using shrinkage priors to control false [23]

VarSeq#

tcgsaseq

discovery rates. We used a negative binomial distribution for the count
data and shrinkage priors for all model parameters involved in statistical
tests. All other parameters were set to default values.

Model free method for identifying gene sets whose expression changes
over time. Counts are transformed to log(CPM) for analysis. The

asymptotic test was used to generate p-values.

(25]

"Results presented in Supplementary materials, Section 2.3

out lowly expressed genes using the same general strat-
egy as for the simulated data. Here, this meant all genes
that did not have greater than 1 CPM in at least 9 of the
112 samples (9 was the sample size in the smallest exper-
imental group of interest) were dropped, which reduced
the total number of genes analyzed to 15,993.

The goal of our analysis is to compare longitudinal
changes in gene expression between subjects that develop
active TB infection and others. As the number and tim-
ing of observations differed greatly between subjects, we
chose to include time as a continuous predictor in our
models. Since there were relatively few observations per
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Table 3 Testing characteristics compared

Characteristic Description Significance Thresholds P-Value

Type 1 Error Rate Nalse positives 0.0001,0.01,0.05, 0.1 Unadjusted

N null genes
(False Positive Rate)

N false positives
N significant genes
N true positives
N Differntially Expressed Genes

False Discovery Rate

Power (Recall)

for unadjusted p-values
0.01,0.05,0.1
0.01,0.05,0.1

FDR Adjusted
FDR Adjusted

subject, with 80% of all subjects having 3 or fewer obser-
vations and with 20% of controls, 56% of progressors and
44% of LTBI having 2 or fewer observations, we decided
to model time using a linear effect. For studies with larger
numbers of repeated measures, regression splines or poly-
nomials could be used to model potentially non-linear
changes over time. We included group by time interac-
tions in the model to allow the 3 groups to have different
changes in expression over time, in addition to different
expression at baseline. We used the following basic regres-
sion model:

log (i) = Beo + BalL, + Bealp, + 5)
ﬁg?,tj]’ + ,Bgél-tijILl. + IBgStijIP,' + bgi —+ ,OL]

where ; is the number of days since baseline for subject
i at observation j, I, is an indicator function that equals
1 if subject i is in the LTBI group, Ip, is a similar indica-
tor for if subject i is in the TBP group, bg; is the random
intercept for gene g and subject i, and p;; is an offset. In
this model, e represents the mean expression of gene g
in the control group at baseline, f1 is the log(fold change)
comparing the LTBI group to the control group at base-
line, and B, is the log(fold change) comparing the TBP
group to the control group at baseline. 3 is the change in
log expression per day for the control group, B4 is the dif-
ference in the change in log(expression) per day between
the LTBI and controls groups, and S5 is the difference
in the change in log(expression) per day between the
TBP and controls groups. Additional contrasts of inter-
est include By3 + B4 (change per day in the LTBI group),
Be3 + Bgs (change per day in the TBP group), Be2 — Bl
(difference between TBP and LTBI groups at baseline),
and Bg5 — B4 (the difference in change per day between
TBP and LTBI groups). All models were fit as described in
the “Simulation study” section. The Benjamini Hochberg
method was used to adjust p-values for all methods except
ShrinkBayes, which reports a Bayesian FDR [32]. Num-
bers of models that failed to converge and number of
significant genes for regression coefficients and contrasts
of interest were compared between the analysis strategies.

Functional enrichment analyses

To better understand the genes that significantly changed
over time in the TBP group, we performed functional
enrichment analysis on the differentially expressed genes

(DEGs) identified with the MCMSeq method using Pan-
ther 14.0 with the GO Biologic Process Complete anno-
tation database. We used a 0.05 FDR level to identify GO
terms that were significantly enriched. We further filtered
results to include only GO terms with at least 50 genes, >
10% overlap of the GO terms with the DEG list, and a raw
p-value of less than 0.001.

In addition, cross-sectional microarray [47, 48] and
RNA-Seq studies of whole blood gene expression [49],
have identified sets of genes with differential expression
between LTBI and active TB groups. To understand if
these genes also show changes over time in subjects that
develop active TB, we performed an enrichment analysis.
Fisher’s exact test was used to determine if the cross-
sectional gene sets were over-represented in the MCMSeq
DEG list for changes in expression over time in the TBP
group. To calculate the expected number of overlapping
genes, we multiplied the number of DEG’s by the size of
the gene set and divided by the total number of genes
analyzed (15,993).

Results

Simulation results

Convergence

Across all sample sizes, NBGLMM and LMM methods
had substantial proportions of models that failed to con-
verge (Table 4), ranging from =~ 4% to =~ 20% of all
genes tested at a given sample size. DESeq2 ignoring cor-
relation had minor convergence issues at smaller sample

Table 4 Number of models that failed to converge out of the
150,000 simulated genes in the null + mixed effect size simulation

Method N=3 N=5 N=10
MCMSeq 184 335 1,526
DESeq2* 0 0 0
DESeq2 1,295 979 0
edgeR* 0 0 0
edgeR 0 0 0
limma 0 0 0
LMM 32,060 23,300 14,150
MACAU 39 5 2
NBGLMM 6,113 9,992 11,995
ShrinkBayes 0 0 0
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sizes. MCMSeq had minor issues at the largest sample
size, but the number of genes affected was < 1%. Features
that failed to converge in both MCMSeq and DESeq2
ignoring correlation shared similar characteristics: small
counts, large dispersion, large random intercept variance,
repeated zero values, and fewer unique count values. The
NBGLMM had the opposite pattern, with the genes that
failed to converge tending to have larger counts, smaller
dispersion, and smaller random intercept variance. For the
LMM, there were no obvious distinguishing features of the
genes that failed to converge (Supplementary Table 3).
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Type 1 error rates

In Fig. 2, we compare type 1 error rates between analysis
strategies using just the null genes (also see Supplemen-
tary Fig. 6 and Supplementary Table 4). ShrinkBayes was
not evaluated in terms of type 1 error, since it only reports
Bayesian FDR’s. Estimated error inflation is based on aver-
ages across the 10 simulated data sets, with each data
set tending to produce consistent results (see Supple-
mentary Fig. 5). For “between-subject effects;” such as
differences between groups at a single time point, MCM-
Seq and the LMM on transformed counts have observed

N=3 N=5

AN A

—

Between Subject Effect: Difference between Treatment
and Control at Follow Up

N=10

N

0
-2- /
—4-

0001 001 005 01 0.001 001

- o=

p —

1

N=3 N=5

C—

0.1 0001 001 005 01

Within Subject Effect: Difference between Follow-Up
and Baseline in Treatment Group

N=10
——— DESeq2
— — DESeq2*
edgeR
~ edgeR*

Ril=a PR S IS == limma

' N

~ ~2— o
0—‘7

> S

2~

0001 001 005 01 0.001 001

Log, of Relative Type 1 Error Rate (Observed / Nominal)

~~ T3

N=5

— , 3---3 LMM

- MCMSeq
——— NBGLMM

0.1 0001 001 005 01

Interaction: Difference in Change Over Time between
Treatment and Control Groups

N=10

0.001  0.01 0.05 0.1 0.001  0.01

(—=- L ==
0.1 0.001  0.01 0.05 0.1

Nominal Test Level

Fig. 2 Relative type 1 error rates (false positive rates) for the 3 tests of interest. Relative rates are plotted on the log, scale, for the 4 different testing
thresholds at each of the 3 sample sizes examined. Values greater than 0 indicate type 1 error rates higher than nominal levels (e.g. a value of 1
means the observed rate was double what one would expect), while values less than 0 indicate conservative behavior (e.g. -1 means observed rate
was half of what is expected). Values in the figure are based on the average rate calculated across the 10 data sets simulated at each sample size.
Supplementary Fig. 5 shows the variability in observed rates for each of the methods. Results are consistent across the data sets, indicating the
mean of the results is an accurate reflection of each method's performance
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rates at or slightly below the nominal levels. Conversely,
the NBGLMM and DESeq2 (ignoring correlation) have
inflated type 1 error rates. For these methods, type 1 error
rate inflation worsens with smaller significance thresh-
olds, though this behavior is attenuated with increasing
sample size. edgeR ignoring correlation maintains 0.05
and 0.1 significance levels, but has inflated type 1 error
rates for 0.001 and 0.01 levels. MACAU had significant
inflation at » = 3 and n = 5, but was overly conservative
at n = 10. At n = 3, limma performed reasonably well,
but as the sample size increased, the type 1 error inflation
worsened to the point of being one of the most inflated
methods at n = 10.

For “within-subject effects,” such as changes over time
within a single group, NBGLMM and DESeq?2 including
subject as a fixed effect have severely inflated type 1 error
rates. Conversely, edgeR and DESeq2 ignoring correla-
tion are overly conservative, with observed rates below
the nominal level. edgeR including subjects as fixed effects
shows a mix of conservative and anti-conservative behav-
ior. Again, MACAU has inflated rates at smaller sample
sizes but is overly conservative at n = 10. The pattern
for limma is similar to the between-subject test, with
observed rates slightly inflated at » = 3, but worsen-
ing behavior with increasing sample size. MCMSeq and
LMM were consistently closest to nominal levels out of
all the methods. Again, increasing sample size typically
improved performance across all methods (limma being
the noticeable exception), and brings the type 1 error
rates very close to nominal levels for the MCMSeq and
LMM methods. Overall, similar results were seen for the
interaction term.

The results for CPGLMM and VarSeq are presented
only in the supplementary materials as the results for the
CPGLMM were virtually identical to the NBGLMM, and
VarSeq either found no significant features or had highly
inflated error rates.

False discovery rates
Figure 3 compares the relative FDR (again averaged across
the 10 simulated data sets) between the methods. In gen-
eral, the patterns of behavior for FDRs mimic what was
observed for type 1 error rates; if a method has inflated
type 1 error rates, it also has inflated FDRs. Also similar
to the type 1 error results, most methods tend to be closer
to the nominal rates with increasing sample size (also see
Supplementary Figs. 7-8 and Supplementary Table 5).
When testing within-subject and interaction effects,
DESeq2 and edgeR ignoring correlation are conserva-
tive, especially at the larger sample sizes. However, when
including subjects as fixed effects, DESeq2 has severely
inflated FDRs, while edgeR displays inflation at n = 3 per
group, but conservative behavior at n = 10 per group.
At all sample sizes and testing thresholds, the observed
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FDRs for the NBGLMM were inflated. ShrinkBayes is
conservative at small sample sizes, but has FDR infla-
tion at 10 subjects per group, showing worse performance
with increasing sample size. MACAU has similar behav-
ior to its type 1 error profile, with FDR inflation at n = 3
and very conservative behavior at the largest sample size.
Again, limma performs best at » = 3 and has worsen-
ing FDR inflation with increasing sample size. The LMM
and MCMSeq again came closest to the nominal levels
with both tending to be slightly conservative at the lower
sample sizes.

Power

Power (recall) for the various methods can be seen in
Fig. 4 (see also Supplementary Figs. 9-10 and Supplemen-
tary Table 6). For between-subject tests with 3 subjects
per group, MCMSeq has the lowest power to detect
DEGs, which is expected given its conservative perfor-
mance in terms of FDR and type 1 error rate for between
subject effects. However, as sample size increases, MCM-
Seq’s performance substantially improves, having higher
power than the LMM, ShrinkBayes and NBGLMM meth-
ods at 10 subjects per group, despite the fact that
ShrinkBayes and the NBGLMM have inflated type 1
error and FDRs. At 10 subjects per group, the meth-
ods with higher power than MCMseq fail to con-
trol type 1 error rates and FDRs at their nominal
levels.

For within-subject tests, ShrinkBayes has the lowest
power, followed by edgeR ignoring correlation and the
LMM. The conservative behavior of edgeR may be driven
by failing to account for the paired structure of the data,
while the poor performance of the LMM may be driven by
the large number of models that failed to converge. For the
interaction test, at 3 and 5 subjects per group, ShrinkBayes
has the lowest power, but at N=10 per group has the high-
est power (though FDR was also very inflated). The power
for MACAU remains relatively constant across the vari-
ous sample sizes, increasing only marginally from n = 3
to n = 10. For limma, power is typically about average
for all of the methods, in spite of having significant type
1 error and FDR inflation at N = 5 and N = 10. For
both the within subject and interaction tests, the rela-
tive performance of the MCMSeq method improves with
increasing sample size. Again, at 10 subjects per group,
the only methods with higher power than MCMseq fail to
control type 1 error rates and/or FDRs at their nominal
levels.

Figure 5 shows the relationship between FDR and power
for the various methods in the n = 5 simulated datasets
at the commonly used 0.05 FDR level (See Supplementary
Fig. 11 for N = 3 and N = 10). Here we see that for each
type of test, MCMSeq has the highest power of the meth-
ods that maintain the nominal FDR level. Again, the only
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Between Subject Effect: Difference between Treatment
and Control at Follow Up
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Fig. 3 Relative FDRs for the 3 tests of interest. Relative rates are plotted on the log, scale, for the 3 different testing thresholds at each of the 3

sample sizes examined. Values greater than 0 indicate FDRs higher than nominal levels (e.g. a value of 1T means the observed rate was double what
one would expect), while values less than 0 indicate conservative behavior (e.g.
figure are based on the average rate calculated across the 10 data sets simulated at each sample size. Triangular plotting symbols indicate that no

-1 means observed rate was half of what is expected). Values in the

methods that have higher power also have substantially
inflated FDRs.

Real data results

Model convergence and stability

The NBGLMM had the largest number of models that
failed to converge (~8.4%), followed by the LMM (~2.5%).
Convergence rates were higher in the TB dataset com-
pared to our simulation studies. This difference is likely

due to the larger number of observations (112) and sub-
jects (N=40, median of 3 observations per subject) com-
pared to our simulations, which included a maximum of
40 observations. To explore this, we subsampled 2 obser-
vations from 5 subjects in both the Control and Latent
groups in the TB dataset to create a scenario similar to
our 5 subject per group simulations. We found that con-
vergence rates were similar to our simulation study, with
18.1% of LMMs, 17.6% of NBGLMMs, 0.4% of DESeq
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Fig. 4 Statistical power (recall) for the 3 tests of interest. Values in the figure are based on the average power calculated across the 10 data sets

models, and < 1% of MCMSeq models failing to converge.
For MCMSeq, we also ran the sampler four separate times
to evaluate the consistency of the results, as this method
is based on a stochastic estimation process. In general,
we found the results were highly consistent between the
multiple runs, as the Spearman correlation of p-values
was at least 0.9996 between any combination of runs, and
typically over 99% of differential expression calls for the
contrasts we tested were congruent. More details can be
found in Supplementary Tables 10 and 11.

Number of significant genes
For brevity, we focus our discussion on the edgeR, edgeR*,

limma, LMM, MCMSeq, NBGLMM and ShrinkBayes
methods; however, full results for all methods can be
found in the Supplementary materials (Supp. Table 9).
CPGLMM results were similar to the NBGLMM. VarSeq
and MACAU did not find any differentially expressed
genes for any of the contrasts testing for changes over time
or differences in changes over time between the groups.
The numbers of significant genes at the 0.05 FDR level
identified using each analysis method are presented in
Table 5. For between-subject contrasts, such as differ-
ences between groups at baseline, edgeR and ShrinkBayes
found the highest number of significant genes, followed by
the NBGLMM and limma. This is not surprising as these
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Fig. 5 Scatter plot of power versus observed FDR for the 3 contrasts of interest in the n = 5 simulated datasets. Significance was determined at the
0.05 FDR level. Points that lie to the left of the dashed vertical line represent methods that have an observed FDR less than the nominal rate of 5%,

methods had inflated FDR for between subject effects in
our simulations, even at the largest sample size. LMM and
MCMSeq found over 50% fewer DEGs between the TBP
and LTBI and TBP and control groups compared to these
methods. Previous analyses of a 20 gene TB risk score
showed no or small differences between TBP and LTBI
and TBP and control groups at baseline [1].

For within-subject tests of changes in gene expression
over time, changes in gene expression were expected
in the TBP group, which developed active TB over the
course of the study. Expression was expected to be rela-
tively stable in the control and LTBI groups. As expected,
most methods identified few or no genes that signifi-
cantly changed over time in both the control and LTBI
groups. However, ShrinkBayes found nearly 3,000 genes
with significant changes over time in these groups. For
the TBP group, ShrinkBayes found the largest number
of significant genes, with over 5,000 more DEGs than
NBGLMM and limma, which had the next highest num-
bers. In our simulation studies, the NBGLMM and limma
had inflated FDRs, even at 10 subjects per group. The
large number of additional significant genes found with
ShrinkBayes may reflect the pattern of increased FDR with
increasing sample sizes noted in the simulation study. For
the TBP group, edgeR identified fewer genes than the

MCMSeq and LMM methods. edgeR ignoring correlation
identified fewer genes than when subjects were included
as fixed effects, which also aligns with our simulation
results showing that failing to account for correlation
caused DESeq2 and edgeR to produce conservative results
for tests of within-subject effects. The results for the inter-
action effects (differences in change over time between
groups) largely follow the same patterns as the within
subject tests for change in gene expression over time.

We also calculated pairwise Jaccard indices and Kappa
agreement statistics to compare the similarity of differ-
ential expression calls between methods (Supplementary
materials Section 3.2). MCMSeq had the highest agree-
ment with LMM, followed by CPGLMM and NBGLMM.
MCMSeq had the lowest agreement with VarSeq and
MACAU, which did not find any genes with signifi-
cant changes in expression over time or with differential
changes over time between groups.

Enrichment analysis

Results from MCMSeq for the top GO terms are pre-
sented in Table 6 and full results can be found in the
Supplementary materials as a .csv file. We found 575 sig-
nificantly enriched GO terms at the 0.05 FDR level. After
filtering, 308 GO terms were identified as significantly
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Table 5 Number of significant genes by contrast in the tuberculosis dataset. 15,993 genes were included in the analysis. Genes were

called significant if the FDR adjusted p-value was <0.05

edgeR edgeR* limma LMM MCMSeq NBGLMM ShrinkBayes'
Number Failed to Converge 0 0 0 392 132 1348 0
Baseline Differences
Latent vs. Control 279 - 11 2 3 9 416,407
Progressor vs. Control 2221 - 1009 752 650 1130 1821,1013
Progressor vs. Latent 1643 - 552 299 256 667 1369, 708
Changes Over Time
Control 1 0 0 0 0 0 2977
Latent 2 0 0 0 3 2 3171
Progressor 664 790 2460 1413 1463 1878 7848
Differences in Changes
Over Time
Latent vs. Control 0 0 0 0 3 0 3331,3230
Progressor vs. Control 16 272 310 537 635 794 7199, 6429
Progressor vs. Latent 170 278 1852 825 852 1328 6681, 7390

TIn order to test all contrasts of interest, ShrinkBayes models were fit three times, using a different reference group each time. This resulted in some contrasts being evaluated
twice. As ShrinkBayes is a stochastic method, the number of significant genes can differ between model fits. We present the results from both models when tests were

performed multiple times

enriched. The results were enriched for genes relating to
immune response, pathways associated with myeloid cell
function or activation, T and B cell activation and more
general inflammation processes, and both Type I inter-
feron and interferon gamma signaling. Similar results have
been reported in cross sectional studies of TB infection
[1, 50, 51]. In addition, the MCMSeq results for lon-
gitudinal changes in expression in the TBP group were
enriched for genes associated with active TB infection in
cross-sectional studies, indicating that expression of many
of these genes is also changing within subjects as they
progress from latent to active TB.

Discussion

Longitudinal RNA-Seq experiments have the potential
to be a powerful tool for understanding how transcrip-
tional changes that occur over time are related to disease
progression, changes in treatment, or changes in environ-
mental exposures. However, currently available RNA-Seq
specific analysis tools are not equipped to handle the
modeling requirements necessary for these types of data.
Of the methods we tested, the LMM and MCMSeq per-
formed best in terms of maintaining type 1 error rates and
FDRs at or near their nominal levels for tests of between-
subject, within-subject, and interaction effects. In general,
MCMSeq tended to be slightly more conservative than the

LMM. At higher sample sizes both methods neared nom-
inal rates. Even though the LMM and MCMSeq methods
had similar type 1 error rates at 10 samples per group,
MCMSeq had much higher power. One concern using the
LMM is the large number of models that failed to con-
verge in our simulation study, even after filtering out lowly
expressed genes.

Of the methods tested that explicitly model RNA-Seq
counts, only MCMSeq was able to combine both good sta-
tistical power with control of error rates at the nominal
levels. In contrast, using both edgeR or DESeq2, which
are not designed to handle repeated measures, lead to
sub-optimal performance in terms of low power (ignor-
ing correlation in within-subject and interaction tests) or
inflated type 1 error rates and FDRs (including subjects
as fixed effects). While limma performed relatively well at
small sample sizes, false discovery and type 1 error rates
became increasingly inflated as sample size increased,
having one of the highest levels of error inflation in our
N = 10 simulations. VarSeq, a model-free method based
on a variance component score test that can accommo-
date repeated measures, was validated for testing gene
sets rather than individual genes. In our simulations, it
alternated between having low power to detect differential
expression and having very inflated error rates, depend-
ing on the combination of contrast tested and sample size.
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Description N Genes N Genes N Fold
in Set in DEG List Expected Enrichment

GO Terms

0019221 cytokine-mediated 659 110 42.28 26
signaling pathway

0043312 neutrophil degranulation 483 88 30.99 284

0045088 regulation of innate 434 75 27.84 2.69
immune response

0001817 regulation of cytokine 676 98 43.37 2.26
production

0002684 positive regulation of 1125 137 7217 1.9
immune system process

0010608 post-transcriptional 512 77 32.85 2.34
regulation of gene
expression

0016032 viral process 690 93 44.27 2.1

1903706 regulation of hemopoiesis 442 69 28.36 243

0051248 negative regulation of 1087 128 69.74 1.84
protein metabolic process

0033554 cellular response to stress 1662 175 106.63 1.64

0046649 lymphocyte activation 369 60 2367 253

0002683 negative regulation of 434 66 27.84 237
immune system process

0034660 ncRNA metabolic process 542 76 34.77 2.19

0034341 response to interferon- 182 38 11.68 3.25
gamma

Previously Published Gene Sets

Blankley 327 123 304 4.1

Kafouru 18 13 1.7 7.8

Zak 14 9 13 6.9

Top GO terms were selected as follows: the top 50 GO terms were selected by p-value
The list was then reduced to include only the most specific subclass in an ontology
All results included had BH adjusted p-values <0.0001

MACAU had inflated false discovery and type 1 error
rates at N = 3, but become overly conservative at larger
sample sizes.

Both the NBGLMM and CPGLMM consistently had
highly inflated type 1 error rates and FDRs when fit under
a frequentist paradigm. This could, in part, be a result of
the statistical tests for these models being designed for
larger sample sizes, while many of the other RNA-Seq spe-
cific methods we examined have some modifications due
to the expectation of low sample sizes. Lastly, ShrinkBayes
is similar to MCMSeq in that both take a Bayesian
approach to fitting hierarchical NB models. However,
ShrinkBayes had mixed behavior, with a lack of power at
the smallest sample size investigated that transitioned into

inflated FDRs at the largest sample size. The Bayesian FDR
used in ShrinkBayes was originally validated in a simu-
lation using a 2 group comparison with N=8 per group,
without correlation or repeated measures [23]. While the
Bayesian FDR may perform well in this scenario, it did
not maintain nominal FDRs in our simulations with paired
data, varying sample sizes, and differing effect sizes. Addi-
tionally, as others have noted, we encountered installation
and memory issues when attempting to run ShrinkBayes
on our personal computers (Windows desktop, Mac Pro
desktop, MacBook Pro laptops) [22]. We were able to get
the method to run on a Linux HPC, but were forced
to break the analysis up into smaller chunks. Implemen-
tation of the ShrinkBayes method was non-trivial given
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its computationally intensive nature, the large number of
modeling options, and the limited documentation for the
software package.

MCMSeq did struggle with power at the smaller sam-
ple sizes for the between-subject test. This is not unex-
pected as this type of test does not require the extra
complexity of the mixed model since there are no
repeated measures involved in this contrast. Of the meth-
ods examined, MCMSeq was best able to adequately
control type 1 error rates and FDRs while maintain-
ing good power for the tests that involved changes
over time.

The results from applying the various methods to the
TB data set largely mirror the behavior observed in the
simulations as the methods that generally had inflated
error rates tended to find the largest number of signifi-
cant features (e.g. CPGLMM, NBGLMM). Methods that
showed conservative behavior at larger sample sizes, such
as VarSeq and MACAU, failed to find any genes that sig-
nificantly changed over time. For the two methods that
were best able to maintain type 1 error rates in our sim-
ulation study (MCMSeq and the LMM), MCMSeq found
more significant genes for tests of changes over time and
differences in changes over time between groups, which
aligns with the results of our simulation study, where
MCMSeq had more power than the LMM.

In our application, ShrinkBayes was an outlier, espe-
cially for the “changes over time” and “differences in
changes over time” contrasts. For changes over time in
both the control and latent groups, all of the other meth-
ods find no or very few genes showing significant changes.
However, ShrinkBayes finds about 3,000 genes for both
tests. The same is true for comparing the change over
time in the latent group to the change over time in the
control group. ShrinkBayes also finds several thousand
more significant genes than all the other methods for
changes over time in the TB progression group. This could
be a continuation of the behavior seen in the simula-
tion study where ShrinkBayes had significant FDR infla-
tion at the largest sample size, which is smaller than the
number of subjects in the TB dataset. However, as oth-
ers have noted, ShrinkBayes produces a large number of
integrated nested Laplace approximation (INLA) errors
during model fitting which the ShrinkBayes documenta-
tion instructs users to ignore [22]. Therefore, it is also
possible that these anomalous results are due to prob-
lems in model fitting. ShrinkBayes also showed incon-
sistent results in that the number of significant genes
for a given test depended on the parametrization. For
example, testing for baseline differences between treat-
ment and control groups in the TB data resulted in
963 significant genes for one parametrization and 1,561
for a different parametrization, a relative difference of
about 50%.
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While fitting the NBGLMM using MCMC in MCMSeq
is computationally intensive and run times are signifi-
cantly longer than using either edgeR or DESeq2 (1.4
and 2.3 minutes respectively to analyze all contrasts for
a single = 10 simulated data set), our implementa-
tion available in the mcmseqg R package (196 min) was
actually faster than fitting the frequentist NBGLMM (803
min) or the CPGLMM (492 min). It is also faster than
ShrinkBayes (474 min), which uses Laplace approxima-
tions rather than MCMC, but involves computationally
expensive steps needed to estimate the more complicated
priors utilized in their model. Moreover, the fitting func-
tion in mcmseq allows the user to specify contrasts so
as to test combinations of the regression parameters. The
frequentist NBGLMM and CPGLMM both had to be fit
multiple times to test all of the contrasts we were inter-
ested in for both the relatively simple design of the simu-
lated data sets and the more complicated study design of
the TB data. ShrinkBayes also suffers from this issue and
had to be fit twice for the simulations and three times for
the TB data, leading to much longer run times to complete
the whole analysis. Additionally, due to the way genes are
analyzed and summarized in parallel, MCMSeq does not
require large amounts of RAM to be run. For example,
the analysis of the TB dataset required only around 300
MB of RAM at its peak consumption (See Supplementary
Section 2.3.8 for more information).

In general, our results are consistent with another
recently published methodology for analyzing RNA-Seq
data with repeated measures [52]. Their strategy largely
mirrors our use of the VST paired with fitting normal
LMMs, with the major differences being the transforma-
tion used (VOOM versus the VST) and the specification
of the correlation structure (auto-regressive versus com-
pound symmetric as implied by the use of a random
intercept in our implementation). They also found that
methods that do not account for the correlation induced
by repeated measures could not match those that do.

One limitation of the current implementation of the
mcmseq R package is that only a single random inter-
cept can be included in the models. While a random
intercept is a relatively simple treatment of the correla-
tion structure, it is a quite commonly used convention
in the face of repeated measures, especially when the
number of repeated measures is small. While we recog-
nize this is a limitation of our current implementation,
accounting for correlation even with a simple random
intercept is an improvement over models that do not
account for correlation. We plan to add the capability to
include a random slope in the near future and will investi-
gate auto-correlation. Accounting for auto-correlation in
our GLMM framework will be a non-trivial extension,
since unlike linear mixed models for normally distributed
outcomes, there is not a covariance matrix for the errors



Vestal et al. BMC Bioinformatics (2020) 21:375

and correlation must be accounted for through specially
constructed random effect priors [53].

Model mis-specification is an issue for all RNASeq anal-
ysis methods, as omission of important fixed or random
effect covariates or incorrect distributional assumptions
can impact testing characteristics. Others have investi-
gated the impact of model mis-specification in log-linear
generalized linear mixed models for count data in a fre-
quentist context, and found that under-specification of
the random effects can result in underestimated standard
errors for fixed effects [54]. The magnitude of the under-
estimation is dependent on several factors, including the
sample size, random slope variance and the number of
repeated measurements per subject, with the amount of
underestimation increasing with increasing variance and
number of repeated measurements. In studies with a small
samples size and few repeated measurements, as is com-
mon in RNA-Seq, there is limited information to estimate
complex random effect or covariance structures, such
that using a simpler (e.g. random intercept only) random
effects structure may not have a substantial influence on
inference.

While in the future we intend to extend the package to
allow for multiple levels of clustering and additional ran-
dom effects, such as a random slope, the current version
should prove adequate for many studies with repeated
or paired measurements. We also hope to add features
allowing users to simultaneously test multiple fixed effects
regression parameters (i.e. ANOVA type tests). Another
limitation is the precision with which the MCMC p-value
(i.e. contour probability) can be calculated. Since a Monte
Carlo estimate is used to compute the tail probability, the
precision is determined by the number of MCMC iter-
ations that are run. We found that chains of length 30k
were generally sufficient for type 1 error and FDR con-
trol, but if greater accuracy is needed the only solution
is to run longer chains. Using normal approximations
for the posteriors of regression coefficients was investi-
gated, but this strategy was unable to maintain nominal
error rates, even at n = 10. We also explored using
Integrated Nested Laplace Approximations (INLA) as an
alternative approach to fitting the Bayesian hierarchical
model utilized in MCMSeq. Using the INLA R package
we found that both type 1 errors and FDR rates were
inflated, similar to the inflation we noted when using nor-
mal approximations based on the MCMC output. This is
not surprising as INLA is an approximate method as com-
pared to MCMC, which is asymptotically exact. While the
custom sampler implemented in the mcmseqg R package
was faster than INLA at the sample sizes we tested, we
are interested in further exploring both INLA and vari-
ational methods in future work. Though our motivation
for developing MCMSeq was to create a tool for ana-
lyzing longitudinal RNA-Seq experiments, we have also
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included functions in the mcmseq R package that can fit
NBGLMs that do not include random effects. In a simi-
lar set of simulations that did not include random effects,
we found that using MCMC to fit a NBGLM gave similar
improvements for maintaining nominal FDRs and type 1
error rates, likely due to incorporating uncertainty in the
dispersion parameter into the posteriors of the regression
coefficients (data not shown).

Conclusions

Failing to account for repeated measurements when
analyzing RNA-Seq experiments can result in signifi-
cantly inflated false positive and false discovery rates.
The most used RNA-Seq analysis software cannot
inherently account for repeated measures, and though
some workarounds have been proposed, our simula-
tions show they are not particularly effective. Ultimately,
the Bayesian hierarchical model underlying MCMSeq
was best able model RNA-Seq expression from study
designs with repeated/clustered measurements based
on its ability to combine good power with mainte-
nance of nominal false positive and false discovery

rates. Additionally, MCMSeq’s NBGLMM framework
is able to flexibly model mean expression with the
inclusion of covariates, and it can handle arbitrarily
many repeated measurements which can also vary in
number between individuals. Finally, the implementa-
tion found in the mcmseqg R package makes utiliz-
ing Bayesian NBGLMMSs more accessible by automat-
ing and parallelizing the process of fitting and sum-
marizing results from these models over the tens of
thousands of genes typically analyzed in an RNA-Seq

experiment.
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