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Abstract

Background: The European Community has adopted very restrictive policies
regarding the dissemination and use of genetically modified organisms (GMOs). In
fact, a maximum threshold of 0.9% of contaminating GMOs is tolerated for a “GMO-
free” label. In recent years, imports of undescribed GMOs have been detected. Their
sequences are not described and therefore not detectable by conventional
approaches, such as PCR.

Results: We developed DUGMO, a bioinformatics pipeline for the detection of
genetically modified (GM) bacteria, including unknown GM bacteria, based on
Illumina paired-end sequencing data. The method is currently focused on the
detection of GM bacteria with – possibly partial – transgenes in pure bacterial
samples. In the preliminary steps, coding sequences (CDSs) are aligned through two
successive BLASTN against the host pangenome with relevant tuned parameters to
discriminate CDSs belonging to the wild type genome (wgCDS) from potential GM
coding sequences (pgmCDSs). Then, Bray-Curtis distances are calculated between
the wgCDS and each pgmCDS, based on the difference of genomic vocabulary.
Finally, two machine learning methods, namely the Random Forest and Generalized
Linear Model, are carried out to target true GM CDS(s), based on six variables
including Bray-Curtis distances and GC content. Tests carried out on a GM Bacillus
subtilis showed 25 positive CDSs corresponding to the chloramphenicol resistance
gene and CDSs of the inserted plasmids. On a wild type B. subtilis, no false positive
sequences were detected.

Conclusion: DUGMO detects exogenous CDS, truncated, fused or highly mutated
wild CDSs in high-throughput sequencing data, and was shown to be efficient at
detecting GM sequences, but it might also be employed for the identification of
recent horizontal gene transfers.
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Background
A genetically modified organism (GMO) is a living being “in which the genetic material

has been altered in a way that does not occur naturally by mating and/or natural re-

combination” (European Commission, 2001) [1]. We call the host genome the wild, ori-

ginal genome to which a genetic modification was made to build a GMO. In this

article, we focus on GMOs resulting from the integration of exogenous genes into the

host genome. European legislation requires the presence of GMOs in food products to

be reported when they represent more than 0.9% of the ingredients [2]. This regulation

requires that all GMOs or products sourced from GMOs must be declared to the Euro-

pean authorities, the modifications of their nucleic acid sequences have to be recorded

in appropriate databases, and a detection method based on standard molecular tech-

niques (e.g., PCR) must be provided. The GMOMETHODS [3], Eugenius [4], and

GMO-Amplicon [5] databases list the GMOs authorized on the European market and

their associated detection methods. In addition, Morisset et al. 2014 [6] developed a

software program called GMOseek to optimise routine GMO testing in the laboratory,

thus helping decision-making at all phases of analysis. More recently, with the develop-

ment of high-throughput whole genome sequencing (WGS) [1, 7–10], bioinformatics

analyses of the sequencing datasets based on alignment similarities [1, 7, 8] have been

developed to characterize referenced GMO elements.

Willems et al. 2016 [11] proposed a statistical framework based on next generation

sequencing (NGS) to predict the number of reads required to detect insert sequences,

and thus confirm their integration into the host genome. All these tools facilitate detec-

tion work in routine laboratory testing, as long as the desired insert sequence is known.

However, undescribed GMOs are also produced. For these, the sequence inserted into

the host genome is completely unknown (not provided by GMO designers). Therefore,

they are difficult to detect by the previously described methods. We must distinguish 3

types of unknown GM, those with only suppressed genes, those made by punctual mu-

tations with CRISPR/TALEN technics, and finally those consisting of exogenous CDS

insertion, CDS truncation or fusion with exogenous CDS. To detect this third, and

most frequent, category of unknown GM, we propose a new bioinformatics tool called

DUGMO, currently tailored to analyses of bacterial genomes.

Each species has its own vocabulary that can support statistical analyses. The most

studied vocabulary property is codon usage [12], but longer words are used in statistical

methods to decipher motifs with biological functions [13], to detect horizontal gene

transfer [14], or to identify species-specific viral sequences [15] for instance. No appli-

cation using these types of properties has been used in the context of GMO detection

to date. DUGMO fills this gap.

DUGMO machine learning steps use two sets of CDSs. The first set corresponds to

CDSs of the host genome with an extremely precise vocabulary definition. The second

set corresponds to known GMO CDSs with a very wide range of vocabularies, only

sketching possible diversity. To detect GM insert, DUGMO will report as GM all CDSs

of the prediction set whose vocabulary differs from the one of the host genome.

DUGMO detects sequences of unknown exogenous inserts of a genetically modified

(GM) bacterium. It uses high-throughput sequencing data that are previously cleaned

and sorted thanks to a dedicated pipeline and two BLASTN alignments on the host

pangenome (section 2.2). After the cleaning and sorting steps, a databank of known
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GMO inserts is cleaned to remove wild CDSs of the species (section 2.2). The proposed

tool is based on statistical calculation of distances (section 2.3) associated with an auto-

mated learning step (section 2.4). GMOs resulting from small modifications by deletion

or substitution will not be taken into account. GMOs resulting from methodologies

such as CRISPR-CAS9 [16] can only be detected if they incorporate at least one ex-

ogenous CDS or involve gene truncation or fusion. Both chromosomal integration and

plasmid insertion are detected.
Results
Datasets

A GM strain of B. subtilis has been sequenced at the Bavarian Health and Food Safety

Authority (LGL) in Germany in the Hi-seq 1500 system [17, 18]. This dataset is called

‘Data1’ in the following. The paired Hi-seq 2500 sequencing data of the wild type

B. subtilis 9407 strain used are available on the NCBI Sequence Read Archive (SRA)

under accession number SRR8935610. This dataset is called ‘Data2’ in the following.

The paired Mi-seq sequencing data of the three GM strains of Escherichia coli [19]

used are available on the NCBI SRA under accession numbers SRR9304542,

SRR9304539, and SRR9304540. These three genomes come from the same strain but

each one has a distinct plasmid containing the parE gene from one of three different

species: Agrobacterium tumefaciens, Mycobacterium tuberculosis and Streptococcus

pyogenes. At the time of writing this article, the NGS datasets used are the only ones

publicly available clearly described as GM bacteria. Two reference genomes, B. subtilis

str. 168 (NC_000964.3) and E. coli str. K-12 substr. MG1655 (U00096.3) were also used.

Two pangenomes were constructed, one for B. subtilis composed of 37 strains, and one

for E. coli composed of 45 strains. Pangenomes were constructed manually to encom-

pass the full range of analysed species and are available in the “testdata” directory of

the DUGMO git repository. For B. subtilis, we took a known pangenome [20] and

enriched it with wild strains from various environments available on the NCBI (list of

accession numbers given in the Additional file 1, section 2). For E. coli, the 5 main

species subgroups [21] were considered and enriched with newer complete PacBio

genomes and plasmids from various environments available on the NCBI (list of

accession numbers given in the Additional file 1, section 3). A databank of GMO

coding sequences (CDSs) provided by the JRC and supplemented by insert CDSs of

bacterial GMOs from the literature was created (list specified in Additional file 2,

related literature references given in Additional file 3). This databank currently

does not include GM CDSs of bacteria analysed in this paper. DUGMO requires

paired Illumina sequencing data of a single bacterial species; it does not deal with

metagenomic or multigenomic data. The JRC sequences included in the GM data-

bank provided in this paper are obtained by PCR simulation screening of public

nucleotide sequence databanks including patents and available whole plant ge-

nomes [22].
Cleaning pipeline for raw data, host pangenome and known GMO databank

The objective of this section is to describe the production of three sets of data: host

genome CDSs, potential GM CDSs, and known GMO CDSs. To create these datasets, a
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pipeline was implemented to clean the raw data of the suspected GM bacterium by

eliminating all sequences belonging to the reference genome. This step is frequently

used in the processing of high-throughput sequencing data (e.g., refer to Baron et al.

2018 [23] to remove chromosomal reads to assemble E. coli plasmids). This pipeline

sorts CDSs into two categories: CDSs of potential GMO inserts and CDSs belonging to

the wild type genome. Several steps are required (Fig. 1). First, the raw sequencing data

of the potential GM bacterium are assembled twice with Shovill 1.0.4 [24] with the trim

option, once on the whole genome, and once focusing on plasmids (plasmid option of

SPAdes 3.13.1 [25]). Scaffolds with a coverage depth of less than 3 are eliminated; this

threshold is intended to remove potential contamination of the bacterial genome, such as

contamination by another sequenced library or by the matrix in which the bacteria are lo-

cated. These two results of assembly are annotated with Prokka 1.12 [26] with the use-

genus option to predict CDSs. These CDSs are merged and filtered out for duplicated se-

quences. In parallel, the raw sequencing data of the potential GM bacterium are

“trimmed” using Trimmomatic software 0.39 [27], and aligned by Bowtie2 2.3.4.3 [28]

with the reference genome. Then, the non-aligned reads (including any GMO inserts) are

aligned with the CDSs predicted in the previous Prokka CDSs using BWA MEM 0.7.17

[29]. A consensus of the covered CDSs is deduced from the BWA aligned reads using

Samtools 1.9 [30]. At the end of these steps, the CDSs present in this BWA alignment

consensus and containing the potential GM insert sequences are retained as potential

GM CDSs. The remaining CDSs are kept as CDSs related to the host genome.

A pangenome groups together the full range of genes present in the same species.

Two BLASTN 2.6.0 [31] alignments of the potential GM CDSs generated by the clean-

ing pipeline are performed on the pangenome of the potentially GM bacterium, one on

CDSs and one on whole genomes (Additional file 1, Fig. S1). The aim of these BLASTN

alignments is to carry out secondary sorting (the first was done by the cleaning pipe-

line) in order to separate the CDSs related to the host genome from potential GM

CDSs. The first BLASTN on pangenome CDSs removes CDSs belonging to the host

genome that are present in potential GM inserts (for parameters see Additional file 1,

section 4.1). The second BLASTN on the pangenome aims to remove CDSs predicted

by Prokka, but corresponding in our pangenome to non-coding sequences (for parame-

ters see Additional file 1, section 4.2). The CDSs aligned at least in one of the two
Fig. 1 Diagram of cleaning pipeline for raw data allowing preliminary sorting of the CDSs of the potential
GM genome
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BLASTN steps are added to the CDSs related to the host genome defined at the end of

the cleaning pipeline. The non-aligned CDSs are kept as potential GM CDSs.

After these two sorting steps, the databank of known GMO inserts is filtered to de-

fine a set of known GM CDSs used for distance calculation (section 2.3). A CDS is

qualified as GM only when considering it in a setting different from the genome in

which it is naturally present. When the aim is to identify whether a bacterium or an or-

ganism is a GMO or not, all CDSs naturally present in the genome of the species of the

suspected strain are eliminated from our databank of GMO CDSs using a BLASTN

alignment (for parameters see Additional file 1, section 4.3). In addition, the parts of

CDSs aligned during this BLASTN are also removed from the CDSs in the databank,

leading to a filtered bank of GMO CDSs. We computed median for each of the three

distances (P L3M1, P L4M2 and F L9M7 in section 2.3) of each host genome CDS and

the set of all host genome CDSs and called them respectively medL3M1, medL4M2

and medL9M7. Finally, CDSs of known GMO databank whose distances to the set of

all host genome CDSs verify (P L3M1 <medL3M1 and P L4M2 <medL4M2 and F

L9M7 <medL9M7) are discarded.

After the two sorting steps and filtering of the databank, we then produced three dis-

joint sets of CDSs in which each CDS is individually compared to the set of all host

genome CDSs: (a) the filtered bank of GMO CDSs, (b) the host genome CDSs, and (c)

the potential GM CDSs.
Vocabulary of the host genome and bray-Curtis (BC) distances

General information

To assess whether or not each potentially GM CDS is distant from the CDSs of the

host genome, a distance calculation is proposed with the idea that the greater the dis-

tance, the higher the probability that a CDS will be part of a GM insert. Our hypothesis

is that the insert CDS introduced into the unknown GMO should have a different “vo-

cabulary” from that of the genome at the source of the GMO. In fact, a genome has its

own vocabulary, made up of words. A word is a short sequence of nucleotides with a

predefined length, such as “ATGCCT”. The vocabulary, denoted by M, that is used in

our method can be either the set of all words of a given length l or a subset of these

words, specific to the host genome. In the second case, the word selection is made ini-

tially by using R’MES software [32] that searches for exceptional words in a given se-

quence, i.e. significantly over- or under-represented words with respect to a given

Markov model. For each word of a given length, R’MES computes a score of exception-

ality that measures the significance of the difference between its observed and expected

number of occurrences. For this, the distribution of the number of occurrences is ap-

proximated by Gaussian distribution, well adapted for frequent words.
Bray-Curtis (BC) distances

After comparing several alternative distances (Additional file 1, section 5), the most

relevant Bray-Curtis dissimilarity was selected. This dissimilarity index does not verify

the triangle inequality so it should not be called a distance. However, to facilitate un-

derstanding, the term “Bray-Curtis distance” will be used in this article. The Bray-

Curtis distance is initially an ecological distance [33] to evaluate the dissimilarity
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between two given samples in terms of the abundance of available species. This dis-

tance is equal to 1 when the two compared datasets have no common point, and 0

when they have identical compositions. Our aim is to compare a sequence S and a set

of sequences H based on their word compositions, via the following equation

BC S;Hð Þ ¼ 1−
2
P

m∈M f m; Sð Þ þ f m;Hð Þ½ �
P

m∈M f m; Sð Þ þ f m;Hð Þ½ � ð1Þ

where M is the set of the selected words of length l (in case of no selection, M is the

set of all the 4l possible words of length l in the alphabet {A,C,G,T}), m is one word in

M, f is a function set either to F (for frequencies; defined in the following Eq. (2)) or P

(for proportions; defined in the following Eq. (3)), and relates to the count of motif m

in the ad-hoc sequence. In practice, S is typically a CDS (potential GM or not) and H is

the set of deduced host CDSs, leading to a notable difference in the cumulated length

of these two sequence sets, and then in the order of magnitude of the counts in S and

H. To circumvent this problem, the Bray-Curtis distance is computed on normalized

counts, and two normalizations are considered, called in frequencies versus in propor-

tions, as explained below.

BC distance in frequencies

The f function in Eq. (1) is set to

f m; Sð Þ ¼ F m; Sð Þ≔ C m; Sð Þ
P

w∈MC w; Sð Þ ð2Þ

where C(m,S) denotes the number of occurrences – or count – of word m in sequence

S, and w is every word in M. In other words, f(m,S) is the normalized frequency of m

in S. For this calculation of Bray-Curtis distance, only the nucleotides at the third pos-

ition of the codons of the CDSs used are considered, denoted by CDS3. The justifica-

tion for the concatenation of the third position of the codons is given in the Additional

file 1, section 6. The CDS3 set allows us to consider words of size n containing the use-

ful information of words of size 3n in the entire CDSs.

BC distance in proportions

The f function in Eq. (1) is set to

f m; Sð Þ ¼ PH m; Sð Þ≔C m; Sð Þ �
P

w∈MC w;Hð Þ
P

w∈MC w; Sð Þ : ð3Þ

In other words, f(m, S) is a normalization of the count of m in S equivalent to

consider m in a sequence as large as the cumulated length of H. Note that with this

definition, when S = H, we get f(m, H) = C(m, H).

Preliminary results

In an initial step, the BC distances are computed both in frequencies and in propor-

tions, with words of length l from 3 to 9, maximum Markov models of order k = l-2

and different ratios of selected words. These combinations of parameters are tested on

our datasets Data1 and Data2, in which the GM bacterium status is known (section

2.1) to better separate the host CDSs from the GM CDSs in terms of distance. Three
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different combinations are chosen to be used jointly in the machine learning step

described below:

(P L3M1): BC in proportions for all 3-letter words under Markov model of order 1.

(P L4M2): BC in proportions for all 4-letter words under Markov model of order 2.

(F L9M7): BC in frequencies for the 10% most over-represented 9-letter words under

Markov model of order 7.

P L3M1 was chosen because this calculation characterizes the three-letter words of

the CDSs, which is specific to the host genome vocabulary, including codon usage.

F L9M7 uses long over-represented words (due to the concatenation of the third

position of the codon) to make the words found in the compared CDS very specific

(because of length) and fitted to the host genome codon usage (considering only third

letters of CDS 27-letter words). P L4M2 allows us to characterize CDS by using small

and therefore more frequent words distinct from codon usage, in order to obtain a

more accurate distribution of words on the CDS.

These Bray-Curtis distance computations (P L3M1, P L4M2 and F L9M7) are per-

formed on each of the three sets of CDSs obtained at the end of the cleaning pipeline

(section 2.2), as summarized in Fig. 2, in order to prepare the machine learning step

(next paragraph). Note that only CDSs with a length greater than or equal to 27

nucleotides are used, because of the minimum length of the word size considered in

the calculation of the Bray-Curtis distance in frequencies.
Fig. 2 Bray-Curtis distances in proportions (L3M1, L4M2) and frequencies (L9M7) applied to obtain learning
and prediction data used in the machine learning step
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Prediction of GM inserts with a machine learning procedure and selection of the method

Methods

Our aim is to target true GM insert CDSs. To this end, a large number of classification

methods were applied, within a machine learning procedure (caret 6.0_81 package in R

3.5.1 [34]), and the most efficient method in terms of predicting GM CDSs was se-

lected. The 12 classification methods used were: 4 parametric methods: Generalized

Linear Model (logit), Stepwise Linear Discriminant Analysis (stepLDA), Stepwise

Quadratic Discriminant Analysis (stepQDA) and Partial Least Squares (plsda); 8 non-

parametric methods: Neural Networks (nnet), Support Vector Machines with Radial

Basis Function Kernel (svmRadial), K-Nearest Neighbours (knn), as well as 5 based on

decision trees: Classification Tree (Rpart), Random Forest (RF), Bagging Classification

(Treebag), Extreme Gradient Boosting Tree (xgboost), and the supervised classification

algorithm C5.0. In this process, a K-fold cross-validation procedure was used. It con-

sists in splitting the whole dataset into K subsets, namely a calibration set (consisting of

K-1 subsets) and a validation set (the K remaining subset). In a first step, the calibration

set is used to select the parameters of the model and its fitting ability. In a second step,

this model is validated on the prediction set to get its prediction ability. This calibration

and prediction processes were repeated K times. The parameters of each machine

learning method were optimised following a 10-fold cross-validation procedure. The

performances of these methods were compared on the basis of a 2-fold cross-

validation, in which data were previously stratified and centred. It is worth noting that

stratified sampling provides homogeneous distribution of GM CDSs in the sampled

data.
Criteria to compare methods

B. subtilis GM (Data1) was used to select the best predictive method, four performance

criteria were proposed: false negative rate, specificity, sensitivity [35], and false positive

rate. Among these four criteria, the most crucial one was that the method should not

predict a GM insert CDS as a host genome CDS (i.e., no false negatives). The importance

of the variables of each method were also calculated. For each method, the ROC curve

and the importance of each variable usage among the six available variables were

calculated (Additional file 1, section 7).
Data

The learning data were the CDSs of the host genome and the databank of filtered

known GMO CDSs (Fig. 2a and b). CDSs encoding RNAs were deleted from these

learning data. The prediction data were the candidate GM CDSs (Fig. 2c) that did not

align with the pangenome (Section 2.2). The associated variables were the Bray-Curtis

distances in proportions L4M2, L3M1 and in frequencies L9M7, the length of the CDS,

the average AH(S) of the exceptionality scores provided by R’MES in the host genome

for L4M2 and L9M7 (see Eq. 4), the count density per nucleotide in the CDS for 4 and

9-letter words (sum of the counts C(m,S) of all selected words m, divided by the length

of the CDS S) and the CDS GC content. The count density per nucleotide is a way of

measuring the proportion of the host exceptional words in the CDS. The average of
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exceptionality scores is a measure of exceptionality of the words found in the CDS,

considering host CDSs composition

AH Sð Þ ¼
P

m∈MK m;Hð Þ � C m; Sð Þ
P

m∈MC m; Sð Þ ð4Þ

where K(m,H) is the R’MES exceptionality score of one word m in the host CDSs H.

Results

The results, illustrated in Fig. 3, were obtained from the 12 classification methods run

50 times and applied to the learning data (Fig. 2a and b) of the B. subtilis GM bacteria

(Data1). These process redundancies ensured robustness of results, some methods be-

ing non-deterministic.

The RF, C5.0, Treebag, and xgboost methods gave the best results on calibration and

prediction. For calibration purposes, the RF, Treebag and C5.0 methods had a sensitivity

and specificity of 1, a false positive and a false negative rate of 0. The xgboost method

obtained 0.99 in sensitivity and specificity, and a false positive and a false negative rate of

0.01. For prediction purposes, RF and C5.0 had a sensitivity and a specificity of 0.98, with

a positive and a false negative rate of 0.01. The Treebag and xgboost methods had a

sensitivity and a specificity of 0.97 with a false positive and a false negative rate of 0.015.

For the logit method, the prediction data and the calibration data had the same results.

The logit method had a sensitivity of 0.95 and a specificity of 0.94, with a false positive

rate of 0.05 and a false negative rate of 0.04.

Following our performance criteria (i.e., false negative rate, specificity, sensitivity and

false positive rate), the non-redundant union of positive results of RF and logit methods

was retained for the automatic learning step. Then, global sensitivity and specificity of

the program were deduced (Additional file 1, section 7.1). The most important vari-

ables for predicting CDSs with the Random Forest method were the GC content and

the Bray-Curtis distance in proportions L4M2, and with the logit method, Bray-Curtis

distances in frequencies L9M7 and proportions L3M1 (Additional file 1, section 7.2).

They have complementary selection criteria according to their variable importance, and

do not belong to the same method family.

Application of DUGMO on real data

DUGMO was developed using the data from B. subtilis (i.e., Data1, Data2). Validation

was conducted on E. coli genomes. Table 1 summarizes DUGMO results on the two

B. subtilis genomes (i.e., Data1, Data2) and on the three E. coli genomes. The GM

CDSs on GM B. subtilis (Data1), correctly predicted by DUGMO, are the main genes

located on the plasmids (riboflavin) and the gene conferring resistance to chloram-

phenicol. Combining the results of the RF and logit methods provides added value for

accurately identifying potential GM inserts. At the end of the automatic learning step

for the wild type B. subtilis (Data2), no CDS was predicted as a GM insert (see line GM

B. subtilis and Machine learning column in Table 1). With the GM E. coli carrying

genes of A. tumefaciens, M. tuberculosis or S. pyogenes, the results contained respectively

5, 4 and 5 CDSs predicted as GM inserts. However, one false positive was found in the

results of E. coli carrying genes of S. pyogenes. The CDS found corresponds to an

annotated aslA gene present in E. coli strongly truncated in our strain (984 nt instead of



Fig. 3 Results of 12 classification methods performed on 50 simulations using the learning data of the
B. subtilis GM bacteria (Data1). Calibration and prediction results come from the two-fold
cross-validation procedures
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Table 1 DUGMO results for two B. subtilis genomes (i.e., Data1, Data2) and three E. coli genomes

Machine Learning

Learning data Prediction
data

DUGMO final results

Number of
host genome
CDSs (1)

Number of
known GMO
CDSs (2)

Number of
potential GM
CDSs (1)

True
positives
(3)

False
positives
(3)

Max false
negatives
(3) (4)

True
negatives
(3)

GM B. subtilis
(Data1)

4102 2714 39 25 0 12 2

Wild type B. subtilis
(Data2)

3941 2724 4 – 0 – 0

E. coli with genes
of A. tumefaciens

4033 2588 6 5 0 0 1

E. coli with genes
of M. tuberculosis

4018 2589 5 4 0 0 1

E. coli with genes
of S. pyogenes

4015 2587 6 5 1 0 0

(1) After two BLASTN alignments on pangenomes without RNA. (2) After filtering out CDSs of the known GMO databank
that are too close to the host species (paragraph 3 of section 2.2). (3) In “potential GM inserts”. The “DUGMO final results”
column details the results obtained after combining the results of the RF and logit methods, using the data from the
learning data and prediction data columns. (4) Estimation of the maximum number of false negatives: the true number
cannot be deduced because of the unknown origins of CDSs, potentially from the Bacillales family. (-) Does not apply
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1650 nt or more for those of the pangenome). In the case of incorporation of a highly

truncated protein from a protein family poorly represented in the host genome, this

sequence may be considered a GM insert. DUGMO makes it possible to target the insert

CDSs if the unknown genome submitted is in fact a GM bacterium.

To complete the evaluation of our tool, DUGMO was tested on 6 additional other

wild type bacteria: Campylobacter jejuni, Lactococcus lactis, Listeria monocytogenes,

Mycobacterium tuberculosis, Salmonella typhimurium and Staphylococcus aureus to

check that almost no false positive was present in the results. Then, DUGMO was eval-

uated on 45 additional tests on synthetic GM samples based on these six bacteria with

seven external genes including five genes from these exogenous bacteria, one human

gene and one rice gene. Each gene was inserted between two CDS in a reference

genome. Then, ART 2.5.8 [36] was used on each modified genome using art_illumina

progam with parameters: -ss HS25, −p, −l 150, −f 11, −m 200, −s 10 to create synthetic

illumina sequencing data. All the pangenomes used in these tests can be used by users

for GM analyses. The pangenomes are provided and the results are detailed in

Additional file 1, section 8.

Among the 6 tests on wild type bacteria, we obtained only one false positive, a M. tu-

berculosis gene that we strongly suspect to come from a recent horizontal gene transfer.

Indeed, it does not have megablast [37] alignment with a better identity than 94.7% in

all genomes of actinomycetes found in NCBI wgs database (01/05/2020). Among the 45

synthetic GM tests, we obtained as few as one false positive, probably due to the open

S. aureus pangenome and to the environmental and similar genome characteristics of

the inserted C. jejuni gene (details in Additional file 1 section 8.6).

Then, we assessed the limits of the method with specific synthetic data. We evaluated

the robustness of the method to dicodon optimisation. For this purpose, a B. subtilis

gene encoding a riboflavin synthase, optimised for E. coli dicodon usage, was randomly

inserted into the reference genome of E. coli. Illumina sequencing data were then

generated from this genome with ART with the parameters previously described. This
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procedure was run 10 times. In all cases, DUGMO detected the optimised B. subtilis

gene as a GM insert, thus proving the method’s insensitivity to dicodon optimisation,

therefore codon optimisation.

To evaluate the proportion of substitution needed to make a wild type gene detectable

by DUGMO, we artificially introduced substitutions in a wild type gene of B. subtilis. Two

wild genes were tested independently, a short (417 nucleotide sequence) and a long

sequence (1317 nucleotides). The Surfactin long gene and CadI short gene from the wild

type B. subtilis genome underwent n random substitutions, avoiding mutation events that

would be too easily detectable by DUGMO such as substitutions in the start codon, the

stop codons,and those that introduce an early stop codon in the sequence. Each modified

gene was then replaced into the wild type B. subtilis assembly. Finally, Illumina sequencing

data were generated using ART [36] software as described above. This process was

repeated 10 times. The DUGMO results indicate that beyond 9% mutations, a mutated

CDS is detected as GM.

Discussion
We propose a method to detect undescribed GM bacteria. DUGMO is intended to as-

sess the presence of bacterial GM following purification of bacteria, as processed in

Paracchini et al. [18]. Once a suspected GM is confirmed by DUGMO, PCR targeting

the sequence identified by DUGMO can be employed for routine detection of GM in

food or environment samples. DUGMO uses both pangenome and genome species

properties to feed machine learning and distinguish GM CDSs from host CDSs. The

robustness of the pangenome relies heavily on its completeness achievement, and also

on accurate genomes attribution to their respective species when they are submitted to

public databanks. Species attribution is most often deduced from 16S RNA leading to

frequent errors in attribution and then resulting potentially in mixed species pangenomes

[38]. The introduction of synthetic strains in the pangenome may also lead to biased

statistical properties, due to inconsistent BLAST matches in the host CDSs sorting steps

(section 2.3). This highlights the urgent need for tools dedicated to the assessment of the

completeness of a pangenome [39].

Recently, Berbers et al. [40] described a revision of an unauthorized GM B. subtilis

strain 2014–3557 with one pGMrib plasmid and a 53 kb chromosomal insertion, firstly

described (Data1) by Paracchini et al. [18] with four plasmids pGMBsub01–04. For sake

of clarity, in following results, we provide within parentheses gene names used in Para-

cchini et al.. The GM B. subtilis contains one incorporated plasmid pGMrib, designed

for vitamin B2 production (riboflavin) and several chromosomal modifications. First,

the cat gene conferring resistance to chloramphenicol is inserted into the chromosomal

recA gene. Second, a 53 kb insertion occurs within the scpA gene. Within this integra-

tion, several occurrences of the full ribDEAHT and partial ribDEA operons show high

similarity to the rib operon of Bacillus amyloliquefaciens. In addition, multiple copies

of beta-lactamase and kanamycin resistance genes are found in the 53 kb insertion.

Lastly, a bleomycin resistance gene is present.

Both the cat and recA portions of the chromosome are detected as GM CDSs by

DUGMO. One B. subtilis gene is discarded by the machine learning step, the chromo-

somal RNA polymerase delta subunit. DUGMO distinguishes the GM B. amyloliquefa-

ciens scpB CDS of the chromosomal insert from the wild B. subtilis scpB of the pGMrib
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plasmid. The pGMrib plasmid (plasmid visualization in Additional file 1, section 9) in-

cludes two portions. The first one has a pure B. subtilis ribDEATH operon that is rec-

ognized and discarded by DUGMO and includes sipS (lepB) and GAY71_RS22375

(gerPA). The second one carries bacilli genes conferring resistance to erythromycin. In

this second portion, nine genes are recognized as GM by DUGMO (GAY71_RS22270

(repS), bin3 / GAY71_RS22275 (beta), soj (delta), zeta, GAY71_RS22265 (copS),

GAY71_RS22365 (ORF psi), GAY71_RS22350 (ORF phi), GAY71_RS22355 portion

(ORF chi), and GAY71_RS22370 (hyprORF-t)), while the other ten are discarded

(GAY71_RS22250 (eta), GAY71_RS22255 (theta), GAY71_RS22260 (iota), topB /

GAY71_RS22280 (gamma), GAY71_RS22290 / GAY71_RS22330 (omega), GAY71_

RS22295 / GAY71_RS22325 (epsilon), erm(B), GAY71_RS22315 with additional portion

from nucleotides 14,107 to 14,138 (ermC), GAY71_RS22340 (tau-gamma) and GAY71_

RS22345 (ypsilon)). Among them, the ermC and tau-gamma genes are discarded at the

BLASTN steps on the pangenome; interestingly, these genes have a nucleotide se-

quence very close to the CDSs of B. subtilis and are included in host CDSs learning

data. Most of the other discarded CDSs match best with enterococci genes, which are

gram+ bacilli phylogenetically close to B. subtilis. Part of pGMrib (pGMBsub04 of

Paracchini et al.) is thought to derive from the patented pMX45 plasmid for which only

B. subtilis origins and genetic engineering methods are mentioned [18]. However, some

plasmids have a very wide host range and asserting their origin is not always possible.

In this case, the genetic distance of these ten genes, if they were not of B. subtilis origin,

does not allow their discrimination. Interestingly, an additional CDS, not described in

pGMrib (pGMBsub04 portion) is found twice by DUGMO, once on the plasmid and

once on the chromosome. This CDS is present at positions 2652 to 2822 in pGMrib,

included in GAY71_RS22250 (1 to 171 in the pGMBsub04 plasmid), and corresponds

to a hypothetical protein of an Enterococcus faecalis plasmid (accession number

AP018546.1). In addition pGMrib (pGMBsub03 portion) has two additional non

B. subtilis genes, part of GAY71_RS22445 (repB) and a shortened version of tet(L) (tetR)

found GM in DUGMO results. The 53 kb chromosomal insertion (pGMBsub01 por-

tion) carries genes of different origins (Bacillus amyloliquefaciens and Staphylococcus

aureus). The S. aureus genes GAY71_RS12530 (bleR) and aadD1 (kanR) and the ribD,

ribA, ribT and scpB CDSs of the B. amyloliquefaciens ribDEATH operon are correctly

detected as GM CDSs by DUGMO. The gene of beta lactamase TEM-116 (ampR /

ampiR, six loci in chromosome, one in pGMrib), ribH and scpA CDSs align with the

pangenome CDSs in respect to BLASTN parameters, and are included in host CDSs

learning data, showing the limits of CDS categorisation for closely related species. This

probably also explains the non-detection of rep and ribE. Prokka annotation provides

two additional hypothetical CDSs, matching positions 4759–5103 and 10,112–10,201 of

the B. amyloliquefaciens ribDEATH operon (pGMBsub01 portion) (loci GAY71_

RS12515, GAY71_RS12560, GAY71_RS12605, GAY71_RS12650, GAY71_RS12725,

GAY71_RS12770 and GAY71_RS12480, GAY71_RS12690 respectively in the chromo-

some). The second is labelled GM and the first not.

DUGMO, on the E. coli strain carrying genes of S. pyogenes, found as a false positive

CDS that corresponds to a strongly truncated arlS CDS (coding for the arylsulfatase

protein), whose full-length version is naturally present in the E. coli genome. During

the analysis, the BLASTN on the pangenome CDSs step verify that the lengths of
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matching CDSs do not vary by more than 15%. For the other two E. coli genomes, car-

rying the genes of A. tumefaciens or M. tuberculosis, the arlS CDS is full length in the

assemblies and is not detected by DUGMO. The truncated arlS CDS in E. coli carrying

genes of S. pyogenes is localized at the end of a de novo contig, and the 15% missing

part is found in another contig. Therefore, DUGMO is able to detect CDSs that may

consist of a long deletion or insertion in a wild CDS. The mean coverage depth of data

for this sample is 41, while the coverage depth mean of the other two E. coli strains is

63 and 68, respectively. This example indicates that the assembly with an average over-

lap depth of 41 is partial and leads to a false positive, due to the truncation of a CDS.

On the other hand, data assemblies with a coverage depth mean greater than 60 do not

have gene truncation problem in our datasets. Most of bacterial assemblers recommend

a coverage depth between 80 [41] and 100 (N50 was shown to increase with the

coverage depth until a value of 100 for bacterial genomes [42]). A coverage depth of 60

is potentially the acceptable lower limit to obtain a complete assembly without CDS

truncation. These observations emphasize the need to obtain a good assembly, and

therefore a sufficient coverage depth. In a future version, DUGMO will be able to

accept assemblies, including long read assemblies, removing false positive cases due to

assembly truncations.

The process of GM bacteria analysis described by Paracchini et al. [18] required more

than one month of work (personal communication), while DUGMO needed three

hours with 10 threads of a core i7 CPU with 64 GB RAM. The speed of data processing

is a major advantage of this tool, which furthermore, does not require prior GMO ex-

pertise for end users except to validate the limited set of probable GM genes detected

in results. User must have Linux command line skills and have enough biological

knowledge to construct a pangenome. In addition, DUGMO has the potential for con-

tinuous improvement with the possibility, for the end users, to add new confirmed

GMO CDSs to the learning data, and new wild type genomes and CDSs in the

pangenome.

Conclusions
The proposed DUGMO tool combines a high-throughput sequencing data cleaning

pipeline with BLASTN alignments on pangenomes, and different Bray-Curtis dis-

tance calculations associated with a combination of machine learning methods, the

Random Forest and Generalized Linear Model, selected to be the most predictive

for GM bacteria data. The tool requires a reliable species-specific pangenome and

a reference genome, member of the suspected GM species. Tested on a GM

B. subtilis and three GM E. coli, DUGMO is able to detect exogenous or truncated

or fused GM CDS and generates few or no false positives and false negatives. This

tool is a proof of concept about the detectability of unknown, single, GM bacteria,

based on selected properties of the wild type genome. As DUGMO uses statistical

properties related to third positions of CDSs, specific to codon usage, it will not

detect GM bacterium with only tRNA or rRNA inserts. Conceptually, DUGMO is

made to find CDS that do not use the vocabulary of the host genome. DUGMO is

not able to distinguish horizontal transferred gene and GM gene. The usage of

DUGMO may be deflected to find in wild type bacteria a gene acquired by recent

horizontal gene transfer. This DUGMO usage was not tested. We plan to extend
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DUGMO to plant and animal GMO detection by adapting the parameters of

distance calculations. Finally, for the first time, DUGMO enables fast, systematic

detection of unknown GM bacteria in suspicious samples.
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