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Abstract

Background: Short tandem repeats (STRs) serve as genetic markers in forensic scenes due to their high
polymorphism in eukaryotic genomes. A variety of STRs profiling systems have been developed for species including
human, dog, cat, cattle, etc. Maintaining these systems simultaneously can be costly. These mammals share many
high similar regions along their genomes. With the availability of the massive amount of the whole genomics data of
these species, it is possible to develop a unified STR profiling system. In this study, our objective is to propose and
develop a unified set of STR loci that could be simultaneously applied to multiple species.

Result: To find a unified STR set, we collected the whole genome sequence data of the concerned species and
mapped them to the human genome reference. Then we extracted the STR loci across the species. From these loci,
we proposed an algorithm which selected a subset of loci by incorporating the optimized combined power of
discrimination. Our results show that the unified set of loci have high combined power of discrimination, > 1 − 10−9,
for both individual species and the mixed population, as well as the random-match probability, < 10−7 for all the
involved species, indicating that the identified set of STR loci could be applied to multiple species.

Conclusions: We identified a set of STR loci which shared by multiple species. It implies that a unified STR profiling
system is possible for these species under the forensic scenes. The system can be applied to the individual
identification or paternal test of each of the ten common species which are Sus scrofa (pig), Bos taurus (cattle), Capra
hircus (goat), Equus caballus (horse), Canis lupus familiaris (dog), Felis catus (cat), Ovis aries (sheep), Oryctolagus cuniculus
(rabbit), and Bos grunniens (yak), and Homo sapiens (human). Our loci selection algorithm employed a greedy approach.
The algorithm can generate the loci under different forensic parameters and for a specific combination of species.
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Background
Short tandem repeats (STRs), also referred to as sim-
ple sequence repeats or microsatellite loci, are DNA
fragments made up of tandem repeats of 1–6 bp
sequence units [1, 2]. STRs are ubiquitous in eukaryotic
genomes and are highly polymorphic. They are widely
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adopted as genetic markers in human [3] and non-human
forensic applications such as individual identification
[4, 5], paternity testing [6, 7], and kinship analysis [8].
DNA profiles can provide valuable clues and evidence
during investigations of crime scenes. In previous stud-
ies, a number of STR profiling systems have been devel-
oped for various animal species including dog [9, 10], cat
[11, 12], horse [13, 14], etc. However, to maintain one
DNA profiling system for each species can be tedious and
costly. In previous studies [15–17], panels of cross-species
STR markers were developed among some closely related
species. Given the fact that mammalian animals share
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large proportions of DNA sequences [18, 19], it is sensible
to expect that a unified set of DNA markers may exist and
the set can be identified from the shared sequence regions,
and hence, a unified STR profiling system is possible for
multiple species.

In this study, we aim to develop a unified set of STR
loci for ten species, namely Sus scrofa (pig), Bos taurus
(cattle), Capra hircus (goat), Equus caballus (horse), Canis
lupus familiaris (dog), Felis catus (cat), Ovis aries (sheep),
Oryctolagus cuniculus (rabbit), and Bos grunniens (yak),
and Homo sapiens (human). Our objective is to identify a
minimum set of STR loci satisfying the forensic parame-
ters from the shared genome regions among these species.
Previous studies have utlized high-volume data from the
shotgun sequencing technology in forensic analysis to
search the new forensic DNA markers [20, 21]. While our
targeted species belong to different families or different
orders, and it is challenging and time-consuming to obtain
the their shotgun data. Therefore, we proposed a model
based on whole genome sequence data.

In this work, we downloaded the whole genome
sequence (WGS) data of the multiple species. Then, we
mapped the sequencing data with BWA [22] to the human
genome (hg19) [23]. After that, we obtained the possi-
ble STR sites in each species using the software package
lobSTR [24]. Last, we performed a greedy locus selection
algorithm with the incorporation of the forensic parame-
ters to identify a unified set.

The obtained locus set contains much less loci than
the total number of the loci from individual species. The
acquired loci set also demonstrates a lower random-match
probability and a higher combined power of discrimina-
tion when applied to each species. Our statistical results
show that the ultimately unified loci set has the combined
power of discrimination (CPD, C(L)) larger than 1 − 10−9

for each involved species, and random-match probability
at most 6.30×10−8. Furthermore, our proposed loci selec-
tion algorithm can also be applied to individual species.
The experimental results showed that, in comparison with
other previous report work, the proposed method is capa-
ble to generate more efficient loci for the given species.
Using the C

′(L) and R(L) values in 13 CODIS loci as
benchmarks, the proposed algorithm generated eight loci
to meet the criteria with lower C

′(L) and R(L), indicat-
ing that the selected loci are more sensitive for individual
identification.

Methods
Datasets
We downloaded next-generation sequencing (NGS) data
of the ten species from NCBI (Sus scrofa: SRP028348;
Bos taurus: SRP039339; Capra hircus: SRP102144,
SRP108014; Equus caballus: SRP061963, SRP067684,
ERP010944, ERP011292; Canis lupus familiaris:

SRP035294; Felis catus: SRP061392, SRP093-936; Ovis
aries: SRP013208; Oryctolagus cuniculus: SRP053211,
ERP111038; Bos grunniens: SRP059061), and data from
1000 Genome project [25] for human being. The involved
species belong to different families or even different
orders.

In order to obtain the candidate STR loci in the shared
genomic region of involved species, we aligned WGS
reads in the samples to hg19 and processed the aligned
data with lobSTR. According to the outputs of lobSTR, we
estimated allele frequencies as well as genotype frequen-
cies of sites in each species, which were used to estimate
forensic parameters described in the following sections.

Problem statement
In this work, we call the multiple species, which we want
to search the unified STR locus set from, as an integrated
pseudo species. Given the genome data of multiple species,
the main purpose here is to obtain a small set of STR
loci from the shared genome region among the species to
achieve individual identification; that is, we want to find
a set of STR loci with the cardinality minimized. In addi-
tion, these loci should satisfy the criteria specified by the
forensic parameters for both an individual species and the
integrated pseudo species.

Call rate
In each species, the call rate at each locus (denoted as η�)
is the percentage of the individuals covers the locus in the
sample data. The call rate is restricted by the pre-specified
threshold δη so that the selected loci Lk could be observed
in the majority of the individuals in a species.

Parameters for high distinguishing power
First, within each species, a valid locus should satisfy the
constraints set by four forensic parameters: the power of
discrimination (PD), the probability of matching (PM), the
power of exclusion (PE), and heterozygosity (HE) [26]. The
constraints set by the parameters to ensure that only loci
with high distinguishing power on individuals would be
considered. Denote PD, PM, PE, and HE of the locus �

of the species s as D�,s, M�,s, E�,s, H�,s, respectively. Let
thresholds of the four parameters as δd, δm, δe, and δh, the
selected loci set Ls of each species s should satisfy

⎧
⎪⎪⎨

⎪⎪⎩

D�,s ≥ δd
M�,s ≤ δm
E�,s ≥ δe
H�,s ≥ δh

, � ∈ Ls (1)

Moreover, since multiple species are considered here,
we need to define the PD for the integrated pseudo species
at each locus. At locus �, denote PD for the integrated pseudo
species as D�, then the calculation of D� is defined as
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Fig. 1 Impact of sample size on allele detection and major forensic parameters (PD, HE, MPF)

D� = 1 −
∏

s
M�,s = 1 −

∏

s
(1 − D�,s). (2)

Combined power of discrimination (C(L))
C(L) is also a common parameter to evaluate the capabil-
ity of individual identification of a locus set. Denote C(L)
for species s as Cs. Then,

Cs(L) = 1 −
∏

�∈L
M�,s = 1 −

∏

�∈L
(1 − D�,s). (3)

The cumulative product of PM refers to the combined
probability of matching (CPM) and maximizing the value
of C(L) is equivalent to minimizing the value of CPM(1 −
C(L), denote it as C′(L)).
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Also, we also define the CPD for the integrated pseudo
species. Similar to the definition above, for the integrated
population, C(L) is defined as

C(L) = 1 −
∏

�∈L
(1 − D�) (4)

We aim to find a locus set L to satisfy Cs(L) ≥ δc for
each individual species as well as optimize the value of C
for the integrated pseudo species.

Random-match probability (RMP)
Random-match probability (RMP, R(L)), defined as the
probability that a randomly selected individual from the
population other than the suspect would have the given
DNA profile, is another criterion to evaluate DNA pro-
file systems. Such constraints are imposed to statistically
eliminate the fallacy that an irrelevant individual in the
population is matched to the given profile [26]. There-
fore, here we limit value of R(L) to be under 1/N where
N refers to the number of individuals in the population
on which we would like to apply our selected markers.
Denote the maximum profile frequency (MPF) at each
locus � of species s as F�,s. Then the Rs(L) of locus set L in
species s is calculated as

Rs(L) =
∏

�∈L
F�,s (5)

We want to find a locus set L such that for each species
s, Rs(L) ≤ 1

Ns
; that is, the cumulative product of is

set to be no more than the reciprocal of the population
size. Similarly, we can define the the maximum profile
frequency and the random-match probability for the inte-
grated pseudo species, and denote them as F� and R(L),
respectively.

The loci apply to both individual or the integrated
pseudo species; it is necessary to restrict R(L)s for both
in individual species and in the integrated pseudo species
below the threshold δr , the reciprocals of the population
sizes, for both a single species or the integrated pseudo
species.

Locus selection
First, we aligned raw sequencing data to the reference
of the human genome, processed the data through lob-
STR workflow and obtained STR locus candidate set from
in the overlapping genomic area of the involved species.
We excluded loci on the sex chromosome, and mononu-
cleotide repeats, which are inapplicable in practical situa-
tions. Using loci retrieved by lobSTR, we estimated allele
frequency at each locus and used the frequencies to com-
pute PD, PM, PE, HE, as well as maximum genotype
frequency. Then we applied the thresholds specified in
Eq. (1) on PD, PM, PE, HE and call rate to filter the STR
loci.

The selected loci set should have the Cs(L) values no
less than δc for each species, and its Rs(L)s are no more
than δr for each species and an optimized C(L) for the
integrated pseudo species. The R(L) can be expressed as
the products of F� values, and C

′(L) can be expressed as
the products of PM values.

Next, we employ a greedy algorithm to find a unified
STR locus set from the filtered loci. We started from an
empty set of loci. At each iteration, we incorporate the
locus which reduces 1 − C (denote it as C

′) and R the
most into the set. As both C

′ and R are probabilities, we
choose the locus which decreases their product the most.
We repeat the process until the C

′ and R are below the
pre-specified thresholds. The algorithm is displayed as
(Algorithm 1). To initialize, we create two vectors vC and
vR, with initial values as 1. They will store the values of
M�,s) and F�,s of all loci in every species. vC(s) and vR(s) are
the M�,s and F�,s values of species s of the current identi-
fied loci. Once a species s has its C′

s(L) (or Rs(L)) reach the
given thresholds, we skip the species for later iterations.

Algorithm 1 Locus Selection
Input: Candidates loci set A including the PD(Ml,s), freq
of STR type(Fl,s) and each locus information
Output: A shared loci set L.

1: procedure LOCUSSELECTION(s, G, n)
2: L ← ∅
3: while C

′(L) > δc or R(L) > δr do
4: for l in A do
5: compute-the-decrease(l, M, F).
6: end for
7: let � be the l which has largest decrease.
8: L = L ∪ {�},A = A − {�}
9: end while

10: Return L.
11: end procedure

Input: Each candidates locus l including the PD(Ml,s),
freq of STR type(Fl,s) and locus information
Output: A decreasing fraction �.

1: procedure COMPUTE-THE-DECREASE(l, M, F)
2: Initialize vC and vR as vector of ones
3: � ← 1
4: for each s do
5: if vC(s) ≥ 1 − δc then
6: � = � × Ml,s
7: end if
8: if vR(s) ≥ 1 − δr then
9: � = � × Fl,s

10: end if
11: end for
12: Return �

13: end procedure
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Fig. 2 The distribution of call rate

Sample size determination
According to Hale et. al [27], most of the informative alle-
les, alleles at a frequency of ≥ 0.05, could be captured by
30 samples, thus the estimated allele frequencies from 30
samples can represent the population allele frequencies.
Here, we utilized the data of the Phase 3 publication of the
1000 Genomes Project, and randomly sampled different
numbers of individuals from the data set. The statistical
results showed that with 25 or more samples, at least 90%
of alleles at each site can be detected, and that the differ-
ence between the estimated and theoretical values of PD,
HE and MPF is small–less than 0.1.

Results
Performance on pseudo species consisting of 10 species
Prior to the locus selection process, we conducted exper-
iments to examine impact of different sample sizes on

Fig. 3 Distribution of PD of remaining loci (ηl ≥ 0.5)

the detection of alleles as well as estimation of the
involved forensic parameters. We chose the data in the
1000 Genomes Project. We sampled different numbers
of individuals from this population and estimated num-
ber of alleles detected at each site, as well as the forensic
parameters (PD, HE, MPF) involved in individual iden-
tification. As shown in Fig. 1, with 25 or more samples,
over 90% of alleles can be detected and meanwhile, the
difference between the estimated and theoretical val-
ues of forensic parameters are small. Therefore, using
25–30 samples will also be able to generate sensible
estimations.

After processing data through lobSTR, 119,717 loci were
detected with reference to human genome of all 23 chro-
mosome pairs. The initial distribution of call rate among
STR loci is shown in Fig. 2 .

First, we filtered out loci that were observed only in
single species, 7784 STR loci remains. Next, we excluded
mononucleotide repeat loci as well as loci on sex chro-
mosomes, and 4614 loci remain. After we dropped loci
with call rate less than the threshold δη and filtered out
loci that failed to satisfy any of the thresholds of foren-
sic parameters (δd = 0.6, δm = 0.4, δe = 0.3, δh = 0.5),
we obtained 1268 loci subjected to further processing.
The distribution of PD and genotype frequency among
remaining loci is shown in Figs. 2 and 3. To be noted,
in Fig. 3 the y-axis refers to the joint PD defined in
(2), while in Fig. 2, the y-axis represents a subtraction
of the cumulative value of genotype frequency at each
locus. The red lines Figs. 2 and 3 stand for our desired
thresholds for these two parameters in the loci selection
algorithm.

We applied the selection algorithm on STR sites of the
concerned species. We set the threshold for C(L) at 0.9999
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Table 1 Forensic parameters of selected loci

CHR POS RUL HE PD

chr17 7787390 2 0.814716312056738 0.935450047622492

chr14 57279935 2 0.827094474153298 0.932795344883323

chr11 57467882 2 0.828629032258065 0.932229995727539

chr1 207997377 2 0.785381285381285 0.923859365077692

chr11 46142707 2 0.8 0.917120154272911

chr16 4322949 2 0.782472613458529 0.913962030606996

chr15 98292738 2 0.777777777777778 0.901665702815812

chr3 119541091 2 0.780241935483871 0.900781631469727

chr15 73889791 5 0.767195767195767 0.891822417742607

chr2 39201053 2 0.747619047619048 0.881054955418381

chr2 241696826 3 0.747619047619048 0.875768032693187

chr12 118588317 5 0.758241758241758 0.873070486988594

chr9 14086350 4 0.734042553191489 0.86962890625

chr6 163992752 6 0.719774011299435 0.868980555555556

chr5 124081853 2 0.733333333333333 0.863633976401387

chr8 22619315 2 0.701149425287356 0.856881481481481

chr18 72357594 2 0.683257918552036 0.856743570778334

chr2 135703320 3 0.711693548387097 0.851266860961914

chr2 36777760 6 0.68974358974359 0.8426265625

chr17 49255307 3 0.727272727272727 0.842592592592593

chr3 114173776 2 0.727272727272727 0.842592592592593

chr3 137413014 2 0.666666666666667 0.821603869787472

chr16 22092942 2 0.692307692307692 0.814504373177843

chr3 114033630 3 0.674645390070922 0.810491491247107

chr4 54876122 6 0.634765294711289 0.808673104516968

chr1 176522684 2 0.712121212121212 0.805266203703704

chr22 36140123 4 0.67032967032967 0.786182840483132

chr1 27108339 5 0.62145390070922 0.77700524691358

chr3 160219801 2 0.591666666666667 0.757476806640625

chr4 17885278 2 0.546654861535651 0.68947775749674

chr3 187439732 2 0.533333333333333 0.6144

and R(L) at 10−7 for every individual species and gen-
erated a set with 31 loci for ten species. Table 1 shows
forensic parameters of selected loci with highest PDs,
and Table 2 shows assessment of selected loci on their
combined power for individual identification as well as
paternity testing on each species population. The gen-
erated loci set has C(L)s higher than 1 − 10−9, R(L)s
less than 10−7 for every concerned species, suggesting
its power for distinguishing individuals randomly chosen
from a related species. Also, to consider the possible use
of generated loci set in paternity testing, we evaluated the
combined power of exclusion (CPE) within each species
population. We can observe that CPEs are higher than
0.99 for every species group.

Table 2 Evaluation of selected loci on each species

Species R(L) C(L) CPE

cat 5.0615 × 10−10 0.99999999999993383 0.99978049249880108

cattle 1.0536 × 10−8 0.99999999998633915 0.99794653711292580

dog 3.9239 × 10−10 0.99999999999975098 0.99970843603702098

goat 2.3005 × 10−8 0.99999999997592071 0.99857509526114097

horse 5.0166 × 10−8 0.99999999977198839 0.99625817962597518

human 3.3695 × 10−8 0.99999999999140876 0.99933064560113372

pig 6.2908 × 10−8 0.99999999985080279 0.99713785294534030

rabbit 4.4219 × 10−10 0.99999999999992795 0.99980453489094234

sheep 5.0696 × 10−10 0.99999999999990974 0.99975253609811832

yak 1.9169 × 10−9 0.99999999999823685 0.99931237001520157

In addition, our algorithm can be applied with differ-
ent thresholds and on a different number of species. We
applied the selection algorithm on 10 species with C(L)
threshold ranging from 1 − 10−3 to 1 − 10−7 and R(L)

threshold from 10−3 to 10−10. As shown in Table 3, at a
given C(L) threshold, the number of loci would increase
with descending threshold of R(L); conversely, when the
threshold of R(L) is set, the number of loci may slightly
increase or remain unchanged when more rigorous C(L)

threshold is given. Moreover, we examined the value of
R(L) that different number of loci could achieve among
ten species. (Figure 4) It can be seen that to satisfy R(L)

upper bounded at 10−5 in each species, at least 21 loci
are required. At given C(L) and R(L) threshold, the num-
ber of loci generated among different number of species is
shown in Fig. 5. It can be seen that when R(L) threshold is
settled, the increment of species number will not result in
continuously growing of loci number, indicating that our
proposed algorithm is effective when more species groups
are involved.

Table 3 Number of loci selected under different thresholds of
R(L) and C(L)

1 − 10−3 1 − 10−4 1 − 10−5 1 − 10−6 1 − 10−7

10−3 12 12 14 17 17

10−4 16 16 16 17 17

10−5 21 20 20 21 21

10−6 27 27 27 25 25

10−7 31 31 31 31 31

10−8 36 36 36 36 36

10−9 41 41 41 41 41

10−10 46 46 46 46 46
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Fig. 4 R(L) achieved by different number of loci

Our method beats CODIS on human
The Federal Bureau of Investigation (FBI) has published
thirteen core loci for the Combined DNA Index System
(CODIS)[28] in 1997, which have been used as domi-
nant DNA markers in human profiling. Here, we retrieved
the thirteen loci from 320 individuals of Chinese popu-
lation in 1000 Genome Project. We computed the C(L)

and R(L) of CODIS based on the data. To evaluate the
performance of the proposed algorithm, we used the
calculated values of C(L) and R(L) as thresholds, and
applied the algorithm on the same population. Eight loci
were selected by our algorithm to satisfy both thresholds.
The fewer number of loci suggests that our algorithm
is effective in searching for loci to meet given thresh-
olds. As shown in Table 4, the selected loci has higher
C(L) and lower R(L) than the CODIS loci. To further
evaluate the efficacy of the proposed algorithm in loci
selection, we generated sets containing different number

of loci for the same Chinese population. For each gener-
ated loci set L, we simulated profiles of 10,000 individuals
at each selected locus, and computed the values of R(L).
The results are shown in Fig. 6. With more loci cho-
sen by the proposed algorithm, the value of R(L) would
decrease accordingly. When a locus set with 13 loci was
generated, the R(L) became much smaller than CODIS,
suggesting the much lower probability of occurrence of
random matching cases. Therefore, it can be concluded
that the greedy strategy implemented in the proposed
algorithm - to assign priority on loci with high PD and low
MPF - is capable to generate a small locus set to achieve
pre-specified CPD and RMP on target population.

To better evaluate the capability of using the selected
loci in paternity test, we conducted simulations of trio
paternity testing cases and for human population. We gen-
erated sets containing different number of loci - ranging
from 8 to 20, where the 8-loci set was generated when the

Fig. 5 Number of loci generated for different number of species
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observed values of C(L) and R(L) of CODIS were used as
the thresholds in our selection algorithm. We computed
the combined paternity index (CPI) [29] as the evalua-
tion metric. We simulated 1000 true trio families (where
the man and woman are true biological parents of the
child) as well as 1000 false trio families (where the man
is a random male chosen from the population) and cal-
culated the paternity index (PI) and CPI for families. As
shown in Fig. 7, we took the logarithm of CPI values.
In true trio cases, where CPIs are usually higher than 1,
larger CPI indicates the corresponding loci set can provide
higher paternity probabilities, and thus more reliable in
practical use; while in false trio cases, where CPIs become
usually lower than 1, smaller value implies the less proba-
bility of false exclusion. It can be seen that, in comparison
with CODIS, the 8 loci obtained by our algorithm at same
thresholds have higher CPI at true trio case and lower CPI
at false trio case. Moreover, when increasing the number
of loci selected by our algorithm, the normalized curves
go further from the y-axis, suggesting the growing reli-
ability of the selected loci in paternity testing. To sum
up, in both terms of individual identification and pater-
nity testing, our proposed algorithm is capable to select
efficient loci to generate an optimized loci set for a given
population.

Our method beats Kemp’s on pseudo species consisting of
cattle, goat, and sheep
In the work of Kemp et al. [16], a panel of 97 microsatellite
markers was developed jointly for cattle, goat, and sheep.
Here we extracted samples of cattle, goat, and sheep to
form a pseudo species, and applied the selection algorithm

Table 4 Forensic parameters of selected loci and loci in CODIS

Our CODIS

Nloci 8 13

R(L) 4.51 × 10−11 8.42 × 10−10

C
′(L) 1.35 × 10−14 4.58 × 10−13

on this newly integrated population. With the threshold
for C(L) and R(L) at 0.9999 and 10−7 respectively, 18 loci
were selected for the three species. As shown in Table 5,
the generated loci set L has low R(L) (under 10−7), high
C(L) (greater than 1 − 10−9) and CPE (greater than
0.996), indicating the power of selected loci in identity and
paternity testing.

Conclusion
In this study, we developed an algorithm based on whole
genome sequencing (WGS) data to generate a unified STR
loci set for multiple species. The algorithm was designed
to search for minimum number of loci to optimize the
combined power of discrimination (C(L)) for each species
as well as the integrated population. For each individual
species, the selected loci should have C(L) no less than δc
(here we set δc = 0.9999) to ensure their efficacy to dis-
tinguish one individual from another, and random-match
probability ( R(L)) no greater than δr to control the fallacy
that two randomly selected individuals would have same
profiles at given loci.

We included 10 species in this study, namely, Sus scrofa
(pig), Bos taurus (cattle), Capra hircus (goat), Equus
caballus (horse), Canis lupus familiaris (dog), Felis catus

Fig. 6 Box plot for common logarithms of RMPs on 10,000 simulated individuals with CODIS and loci selected with proposed method
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Fig. 7 Normalized probability distributions of common logarithm of CPI in trio paternity testing in human

(cat), Ovis aries (sheep), Oryctolagus cuniculus (rabbit),
Bos grunniens (yak), and Homo sapiens. To obtained all
possible STR sites at the common genome region among
involved species, we mapped raw sequencing data of
individual samples concerning the human genome. We
implemented the proposed selection algorithm on STR
sites owned by at least two species and finally gener-
ated 31 loci at R(L) (≤ 10−7) for all concerned species.
Under this threshold, the generated loci set has C(L)s
greater than 1 − 10−9 and R(L)s no greater than 10−7,
which collectively demonstrate its capability of individual
identification in every involved species population. Fur-
thermore, we assessed the capacity of using selected loci
in paternity testing by their combined power of exclusion
(CPE). The generated loci set could achieve CPEs greater
than 0.99.

In addition, we evaluated our proposed algorithm by
applying it on different selection thresholds and varying
number of species. It turns out that the loci number may
increase to satisfy more rigorous R(L) threshold, whereas
with settled R(L) threshold, the number of loci would
not continue to increase significantly when more species
are involved. Thus it can be concluded that the algorithm
proposed here can find loci that commonly have high
power of discrimination in involved species and generate
a loci set to satisfy the criteria of C(L) and R(L) with a
minimized number of loci.

With the data from 1000 Genomes Project, we com-
puted the C(L) and R(L) of 13 CODIS loci, used the

Table 5 Forensic parameters of loci selected for cattle, goat, and
sheep

Species R(L) C(L) CPE

cattle 3.8319 × 10−8 0.999999999815 0.996642777607

goat 3.4890 × 10−8 0.999999999908 0.998089765874

sheep 4.6930 × 10−10 0.999999999995 0.999261605878

values as thresholds in our proposed loci selection algo-
rithm, and obtained eight loci that could satisfy the crite-
ria. This loci set generated by our method not only have
fewer number of loci, but also demonstrate higher C(L)
and lower R(L) in the concerned population. In addition,
in the respective simulated 1000 cases of true trio and false
trio paternity tests, the generated 8-loci set demonstrated
higher reliability than CODIS in terms of the combined
paternity index (CPI). Therefore, it can be concluded that,
given either a specific or several separated population(s),
the proposed algorithm has the capability to generate an
optimized loci set that can be utilized in both identity test-
ing and paternity testing with minimized number of loci.
We also compared the study of Kemp et al. [16] on cat-
tle, goat and sheep. Kemp identified 97 loci for individual
identification across the three species. Through our algo-
rithm optimized, 18 loci are satisfactory for this task. To
summarize, our algorithm can be used for individual iden-
tification (on human) or across groups. After comparison
with existing research, our results are better than previous
studies.
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