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Abstract

Background: The falling cost of next-generation sequencing technology has allowed deep sequencing across
related species and of individuals within species. Whole genome assemblies from these data remain high time- and
resource-consuming computational tasks, particularly if best solutions are sought using different assembly strategies
and parameter sets. However, in many cases, the underlying research questions are not genome-wide but rather
target specific genes or sets of genes. We describe a novel assembly tool, SRAssembler, that efficiently assembles only
contigs containing potential homologs of a gene or protein query, thus enabling gene-specific genome studies over
large numbers of short read samples.

Results: We demonstrate the functionality of SRAssembler with examples largely drawn from plant genomics. The
workflow implements a recursive strategy by which relevant reads are successively pulled from the input sets based
on overlapping significant matches, resulting in virtual chromosome walking. The typical workflow behavior is
illustrated with assembly of simulated reads. Applications to real data show that SRAssembler produces homologous
contigs of equivalent quality to whole genome assemblies. Settings can be chosen to not only assemble presumed
orthologs but also paralogous gene loci in distinct contigs. A key application is assembly of the same locus in many
individuals from population genome data, which provides assessment of structural variation beyond what can be
inferred from read mapping to a reference genome alone. SRAssembler can be used on modest computing resources
or used in parallel on high performance computing clusters (most easily by invoking a dedicated Singularity image).

Conclusions: SRAssembler offers an efficient tool to complement whole genome assembly software. It can be used
to solve gene-specific research questions based on large genomic read samples from multiple sources and would be
an expedient choice when whole genome assembly from the reads is either not feasible, too costly, or unnecessary.
The program can also aid decision making on the depth of sequencing in an ongoing novel genome sequencing
project or with respect to ultimate whole genome assembly strategies.
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Background
Advances in next-generation sequencing (NGS) approaches
have dramatically changed access to genome data, not only
with respect to reference sequencing for many species,
but increasingly for population studies of genomic variation
(e.g., [1–3]. Applications of NGS include the creation of
detailedmaps of genetic variation [4–6], DNAmethylation
[7, 8], and transcription factor binding sites [9, 10].
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Because NGS relies on extensive sequence coverage
with small reads, accurate assembly of the reads into large
contigs, scaffolds, and pseudochromosomes is an intrin-
sic part of the approach, and many NGS assembly tools
have been developed for this purpose. Based on de Bruijn
graphs [11], programs like Velvet [12], ABySS [13], ALL-
PATH [14], and SOAPdenovo2 [15] have been shown
to effectively handle millions of short reads. Currently,
research on genome assembly focuses on reducing error
rates and increasing contig sizes, usually evaluated by N50
(at least half the assembled nucleotides are part of contigs
of length N50 or longer) [16]. Strategies to improve quality
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include gene-boosted [17] and homology-guided assem-
bly [18], which use existing information from related
sequences to improve assembly results.
Despite advances in assembly software, assembling the

massive amount of short read data necessary for de
novo genome assembly is still a difficult technical task
[19]. For eukaryotic genomes, de novo assembly typ-
ically requires high-performance computing resources
with large memory and fast processors. Even with such
extensive resources, it may take hours or days for comple-
tion of a single assembly attempt. If the resulting assembly
is not satisfactory, parameter adjustments for subsequent
runs and comparative evaluation of different draft assem-
blies are typically required. All of these challenges must
ultimately be overcome to get a reliable whole-genome
assembly.
However, whole-genome assembly is not necessarily

the immediate, nor the only, goal of genome-wide NGS
approaches. Because of the cost-effectiveness of NGS
technologies, a research group may well choose genome-
wide NGS for a species even if they are interested in
only a subset of the species’ genes: for example, homologs
of genes already identified in other species as being
involved in a specific biochemical pathway or cellular
structure. Alternatively, researchers can take advantage
of the petabases of sequencing reads already present in
the International Nucleotide Sequence Database Collab-
oration Sequence Read Archive (SRA) [20], which may
include read deposits of interest for which no publicly
available whole genome assemblies are available. Pre-
assembly stages of massive read collections will also likely
be a component of data release from large-scale sequenc-
ing projects such as the Earth BioGenome Project [21]. In
these cases, it becomes expedient to restrict the assem-
bly to the genic regions of interest; that is, instead of
assembling the entire genome, assembling only the reads
which correspond to annotated homologous genes of
interest. By limiting the assembly to specific genomic
regions, required resources and running time can be dras-
tically reduced, and interpretation of output can be eas-
ily focused on the desired comparison of homologous
regions. In pursuit of this goal, we have developed the pro-
gram SRAssembler (Selective Recursive local Assembler).
SRAssembler uses a protein or DNA sequence from a

related species as a query input to select and assemble
NGS reads from a sequencing project in a different species
or individual of interest (Fig. 1). Reads that are potentially
homologous to the query sequence are assembled into
contigs that serve as queries for the next recursive round
of searching the reads, representing an “in silico” chromo-
some walking strategy as originally developed for mining
the now outdated NCBI Trace Archive with the Tracem-
bler program [22]. The user specifies success criteria that
determine the break condition for the recursion, and at

the last stage, the original query is aligned against the
assembled contigs using spliced alignment software to
identify potential gene structures.
Searching for matching reads based on the sequence of

assembled contigs is a strategy also used by assembly gap-
filling software such as GapFiller [23]. Indeed, SRAssem-
bler could also be used for specific gap-filling simply by
providing the sequences surrounding the gap as a tar-
get. What distinguishes SRAssembler is the use of local
de novo assembly of matching reads rather than genome-
wide reference-based assembly, as well as the ability to use
cDNA and protein probes for targeted assembly.
SRAssembler will also be useful to explore parame-

ter spaces for whole genome assembly in a time-efficient
manner. For a set of genes strongly expected to be present
in a genome currently being sequenced, different assembly
parameters can be explored and evaluated as to com-
pleteness of assembly of this diagnostic set of genes.
The best parameter set can then be used for whole
genome assembly. Similarly, completeness of assembly
of such a gene set may also give insight into any addi-
tional sequencing needed for sufficient coverage of a novel
genome of unknown size. If all the diagnostic genes can
be locally assembled, then current coverage is likely ade-
quate, whereas incomplete assembly may indicate the
need for additional sequencing.
We illustrate the functionality of SRAssembler with

examples using both simulated and genuine sequencing
reads. We compare the efficacy of SRAssembler rela-
tive to whole-genome assembly and demonstrate that
SRAssembler can not only assemble the likely ortholo-
gous gene, but can also distinguish and recover related
paralogous genes using a single query. We show how the
tool can be used to study gene body and promoter region
variation using population genome data that are avail-
able merely as relatively low coverage, unassembled read
deposits.

Implementation
SRAssembler is implemented as a C++ program that
relies on a number of freely available external pro-
grams for string matching, assembly, and spliced align-
ment. Default minimal prerequisites are Vmatch [24],
SOAPdenovo2 [15], and GenomeThreader [25]. The pro-
gram can be compiled with any standard C++ com-
piler, or under openMPI for a multi-processor parallel
computing platform[26]. Because SRAssembler is imple-
mented within an object-oriented framework, advances
in alignment and assembly software can be easily incor-
porated as new options within the workflow. Currently
SRAssembler supports contig assembly with SOAPden-
ovo2 or ABySS, spliced alignment with GenomeThreader
or GeneSeqer [27], and de novo gene finding with
SNAP [28].
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In silico chromosome walking strategy
The basic strategy implemented in SRAssembler is
depicted in Fig. 1. Initially, NGS reads are aligned to
a query sequence using the fast string matching pro-
gram Vmatch. Query sequences can be either protein or
DNA sequences provided in FASTA format. If the query
sequence is a protein, the matching is to all possible
translations of the reads (Vmatch option -dnavsprot).
Retrieved reads from the initial matching are assembled

into contigs that become query sequences for subsequent
rounds of in silico chromosome walking. Thus, in each
round of the workflow, larger sets of presumed relevant
read are retrieved from the input and assembled until
one of alternative stopping criteria are met (see below),
at which point the assembled contig(s) will contain the
sought homologous gene or the program declares fail-
ure of the search within the given criteria. In cases when
read coverage is expected to be low or when only short
contigs were assembled in round 1 for later searches,
SRAssembler can be run with the command-line ‘-a’ flag
to set a later round to begin assembling found reads into
contigs. Until that round is completed, reads found by
SRAssembler will be used directly as queries, allowing

reads that could not be assembled into contigs a better
chance of finding overlapping reads.

Preprocessing reads
Input read files can be in either FASTQ or FASTA format
and single-end or paired-end. If a read library is paired-
end, the reads must be in two sorted files rather than
a single interleaved file. Although SRAssembler accepts
single-end reads, paired-end reads typically provide bet-
ter results because they allow reads not matching exons to
be found more quickly. SRAssembler supports assembly
from multiple read libraries simultaneously.
SRAssembler can take advantage of multiple processors

to parallelize the search for new reads using the Message
Passing Interface (MPI) protocol. To facilitate this, input
reads data are split into several chunks. Each chunk is
indexed by Vmatch, allowing very fast searching of the
reads for matches to query contigs. These processed reads
can be used again for subsequent SRAssembler runs.

Read assembly
At the end of each workflow round, after searching for
new reads with Vmatch, SRAssembler assembles all the

Fig. 1 SRAssembler workflow. The pipeline takes as input a query sequence and DNA sequencing read files, which are split into smaller files in a
preprocessing step, allowing for parallelization of alignments. In the initial round, SRAssembler aligns the processed reads against the query (DNA or
protein) sequence to identify reads that could potentially contribute to a homologous contig. Matched reads are then assembled into contigs,
which are used as queries in the next round of searching the read libraries. The reads found in recursive rounds are reassembled, extending the
edges of the contigs until no further matching reads are found or until user criteria for success are met (usually a finite number of rounds or
complete coverage of the query). In the final round a spliced alignment program aligns the original query to the final contigs, predicting contigs
that are good matches for the query and their homologous gene structure(s)
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reads it has found so far into new contigs. By default,
SRAssembler invokes SOAPdenovo2 for the assembly
step. The ABySS assembler may be used instead at the
user’s discretion. During the assembly step, the assem-
bler is run multiple times with different k-mer values (the
default setting uses 15, 25, 35, and 45). The contigs of
each assembly are compared to the query sequence using
spliced alignment software (by default, GenomeThreader,
with the option of GeneSeqer also available). The k-mer
size that produces the greatest spliced alignment length
is considered to be the best k-mer of that round, and the
contigs produced by that k-mer will become the query
sequences for the next round. Before the contigs are used,
very short contigs (by default shorter than 200 bp) are
removed, and low complexity regions of the remaining
contigs are masked with NCBI’s DustMasker [29].

Cleaning non-matching contigs and reads
Periodically (every four rounds, by default), assembled
contigs and found reads will be culled of non-matches,
which can slow SRAssembler and impact the results.
During these “cleaning rounds,” assembled contigs are
matched against the original protein or DNA query using
Vmatch, and any contigs that do not have at least par-
tial matches to the query are discarded. This can hap-
pen, for example, when the queries contain repetitive
sequences that would match elsewhere in the genome
apart from their occurrence in the gene of interest. After
non-matching contigs have been removed, all of the reads
that have been found so far are matched to the remaining
contigs, and any reads that do not match (and therefore
were not assembled into the matching contigs) are also
discarded. SRAssembler will also perform cleaning at the
end of a round that produces a number of contigs higher
than a threshold (default 500 contigs). This is to prevent
slowdown caused by the assembly of a highly duplicated
region leading to an excess of contigs and reads unrelated
to the query.
Cleaning non-matching contigs and reads improves the

speed of SRAssembler and can prevent extraneous reads
from interfering with the assembly of high quality con-
tigs that match the query. However, the cleaning can also
remove useful reads that would have been assembled into
a matching contig in a later round, potentially preventing
a hit contig from being extended. Adjusting the frequency
of cleaning can be useful when attempting to extend a
hit contig to more completely cover a region of interest,
or when trying to find or complete additional paralogous
sequences.

Contig maximum length
If an assembled contig is larger than the predefined max-
imum contig size (default 10,000 bp), that contig will be
removed as a query for future rounds. The head and tail

of these contigs are trimmed to make their size equal to
the defined maximum contig size, and then are copied
to the candidate-long-contig file. In the next round, any
additionalmatching reads found by Vmatch using the con-
tigs that did not exceed the maximum length are added
to the pool of found reads. If long contigs assembled in
this round match the candidate long contigs from the
previous round (that is, the long contigs from the pre-
vious round are assembled again even with the addition
of new reads), those candidate long contigs are moved
to the permanent long contig file. The pool of matched
reads is aligned to the permanent long contig file and any
matching reads are removed from the pool in order to
speed subsequent assemblies and prevent the long contigs
from being extended any further. These long contigs are
retained until recursion stopping criteria are met and are
included in the final contig file.

Stopping criteria
The recursion is terminated as soon as one of the follow-
ing criteria is met:
(1) Success – a hit contig is found. Here, a “hit contig”

is defined as an assembled contig that satisfies the current
user-set criteria for success: the contig length matches or
exceeds the minimum specified value (default 200 bp); the
spliced alignment similarity score of query versus contig is
greater or equal to the threshold set (default 0.5); and the
extent of the spliced alignment covers at least the specified
minimum fraction of the query (default 0.8).
Alternatively, the assembly attempts will be stopped

short of success in case of:
(2) No new reads can be found, meaning no contigs can

be further extended.
(3) A specified maximum number of iterations is

reached.
(4) All assembled contigs match or exceed the specified

maximum length.
To determine if criterion 1 is met, the spliced align-

ment program is used to map the original query onto each
round’s assembled contigs. Criterion 1 can be ignored
with the ‘-f ’ flag, forcing SRAssembler to complete the
user-specified maximum number of rounds, potentially
extending hit contigs beyond the boundaries of the
homologous gene. Alternatively, the ‘-E’ option can be
used to compel SRAssembler to complete extra rounds
after criterion 1 is met. These may be helpful if the user
wants to extend assembled contigs into regions flanking
the homologous coding region, but in some cases using
the ‘-f ’ or ‘-E’ options may lead to lower quality hit contigs,
as extraneous reads can disrupt assembly in later rounds.
When SRAssembler cannot find a contig that meets the

success criteria, it will run until one of criteria 2, 3, or 4 is
met. This can occur because the source of the reads does
not contain a homolog to the probe, because the success
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criteria are too stringent, or because of any of the various
factors that affect read assembly.

Final round
After recursion is terminated, the contigs assembled in
the final round that are longer than the minimum length
are reported in the “all_contigs.fasta” file. Spliced align-
ment of the contigs assembled in the final round is used to
create the “hit_contigs.fasta” that meet the user-specified
criteria (mentioned above), and the spliced alignment file
is available as “output.aln”. If the probe contains a common
protein domain, the “all_contigs.fasta” file may contain
contigs that include that domain, but they will not be
included in the “hit_contigs.fasta” file unless theymeet the
user-specifiable criteria for a good match. Optionally, an
ab initio gene finding program (currently SNAP is sup-
ported) will attempt to identify potential gene structure
in the hit contigs and produce “output.ano”, in addition to
and independent of the spliced alignment.

Results
SRAssembler can be installed from our github repository
https://github.com/BrendelGroup/SRAssembler, which
also includes the manual and detailed instructions for
installing prerequisite third-party software. Scripts to
download the data used and to perform all of the analyses
reported in this paper are included as Additional file 3.
The simplest way to run SRAssembler on any single or
multi-processor Linux system is via its containerized ver-
sion as a Singularity image [30], which has all prerequisites
bundled. The Singularity image of SRAssembler is avail-
able at Singularity Hub [31] at https://www.singularity-
hub.org/collections/1653. SRAssembler version 1.0.0 was
used for the experiments in this manuscript.

Assembly of homologous loci from simulated data
The goal of the SRAssembler strategy is to construct local
assemblies of NGS reads that encode putative homologs
of a query protein or cDNA sequence. Because of our
own expertise in plant genomics, our SRAssembler illus-
trations are mostly reported with plant genomic exam-
ples. The program is agnostic to the genomic sources of
the reads, although parameter settings may have to be
adjusted to fit characteristics of the genome.
To demonstrate the SRAssembler strategy, we used the

rice protein sequence Os07g26940.1 as a query to try to
assemble a contig containing the known homologous gene
At1g01230 from simulated sequencing reads from Ara-
bidopsis chromosome 1. We simulated paired-end NGS
sequencing using the SAMTools program wgsim [32].
The number of reads N was calculated as N = (length
of chromosome 1 x coverage) / (length of reads x 2).
Parameters were set as follows: base error rate 0.02,
mutation 0, and fraction of indels 0.10. Read length was

set to 70 bp, and insert size to 340 bp with standard
deviation 50 bp.
Figure 2 depicts the gene structure of At1g01230.1 and

a spliced alignment produced by GenomeThreader of the
Os07g26940.1 protein sequence against the final contig
produced by an example SRAssembler run. At each of
the portrayed rounds of recursion, the sequencing reads
identified by SRAssembler as potentially part of a homol-
ogous locus are mapped (using Bowtie2 [33]) onto the
final contig and visualized with the Integrative Genomics
Viewer [34].
In the initial round, which uses the Os07g26940.1 pro-

tein sequence as the query to search the reads, SRAssem-
bler finds reads that align to the exons. Because we
simulated paired-end reads, both members of the pair
are retained if either one of them aligns to the query.
This leads to some low-depth coverage of the introns and
untranslated regions (UTRs). During round 2, the contigs
assembled from the reads found in round 1 are used to
search for additional reads. By round 3 there is good read
coverage of the full length of the target gene, and addi-
tional rounds find new reads at the contig borders that
can extend its length. One observation from the results
in Fig. 2 is that initial walking is very fast when connect-
ing adjacent coding regions (i.e., exons), but extension
of the contig boundaries is relatively slow. If a user’s
region of interest is flanking, rather than part of, the cod-
ing sequence (e.g., promoter elements), more rounds of
recursion are necessary.

Comparison of SRAssembler to whole genome assembly
The ability to perform targeted local assembly is not useful
if the results are low quality. To demonstrate the effec-
tiveness of SRAssembler, we generated sets of simulated
sequencing reads of Arabidopsis chromosome 1 with four
depths of coverage ranging from 10X to 40X. Twenty
different random “seeds” (numbers used to create repro-
ducible pseudo-random output) were used with wgsim at
each coverage level, producing a total of 80 sets of reads.
We used SOAPdenovo2, the default assembler used by
the SRAssembler workflow, to attempt full assemblies of
Arabidopsis chromosome 1 from each of the 80 read sets.
The rice-homologs track from PlantGDB AtGDB [35]

indicates that 20 loci within the first million bases of
Arabidopsis chromosome 1 have rice homologs that are
over 100 amino acids in length. These 20 rice protein
sequences (Table 1) were used as queries for SRAssem-
bler against the simulated read sets. The contigs pro-
duced by SRAssembler from each run were aligned
using BLAST+ [36] against the full gene sequence of
their respective Arabidopsis orthologs. The assembly
contigs produced by SOAPdenovo2 were also searched
using BLAST+ for the 20 aforementioned Arabidopsis
genes.

https://github.com/BrendelGroup/SRAssembler
https://www.singularity-hub.org/collections/1653
https://www.singularity-hub.org/collections/1653
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Fig. 2 Assembly of At1g01230 using the SRAssembler strategy. The cDNA sequence of At1g01230.1 (blue) and the protein sequence of
Os07g26940.1 (black) are shown aligned to the final contig (red) produced by SRAssembler after 4 rounds of assembly using reads data simulating
20X coverage of Arabidopsis chromosome 1. The reads found in each round of the SRAssembler run of At1g01230 are also mapped onto the final
contig. Mapped reads are shown as pink or blue rectangles, representing forward and reverse orientation relative to the contig. In the initial round,
reads were identified that align with each exon of the query protein. Because we simulated paired-end reads, some of the mapped reads align to
the introns of the target gene. The mapped reads become the query contigs for subsequent searches of the read library, “walking” further into the
introns and out along the chromosome

For both SRAssembler and SOAPdenovo2 the percent
identity with the target reference sequence was over 98%
in all cases, and over 99% when read coverage was 20X
or higher. Assembly completeness of the target gene
tended to correlate with coverage depth, but there was
surprising variance between read sets generated from
different random seeds, especially at 10X and 20X cov-
erage, and increasing coverage depth did not universally

improve assembly (Additional file 1: Figure S1). Our met-
ric of comparison was the percentage of the target gene
sequence that aligned to the assembled contigs produced
by SRAssembler and SOAPdenovo2 for each read set. In
1062 out of 1600 cases (66.4%), SRAssembler and SOAP-
denovo2 performed equivalently. In 271 cases (16.9%)
SRAssembler produced a contig containing more of the
target sequence, and in 267 cases (16.7%) SOAPdenovo2
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Table 1 SRAssembly of 20 Arabidopsis genes

Rice query Arabidopsis ortholog Locus start Locus end Contig start Contig end Identity

Os03g02970.1 At1g01040.2 23121 31227 23070 32269 99.99

Os05g36260.1 At1g01050.1 31170 33171 30480 33907 99.97

Os04g02900.1 At1g01090.1 47234 49304 47020 49718 100

Os07g26940.1 At1g01230.1 97412 99240 96394 99684 99.85

Os08g06060.1 At1g01560.2 202103 204440 201313 205079 100

Os07g26660.1 At1g01620.1 225665 227543 224898 228253 100

Os02g44470.1 At1g01750.2 275188 276310 274408 277381 100

Os06g03660.2 At1g01820.1 296001 298334 295251 298848 100

Os09g34970.1 At1g01910.1 313101 316090 312601 316984 100

Os06g04000.1 At1g01940.1 322886 324917 321925 326047 99.98

Os06g04560.1 At1g01950.3 325316 330619 325316 331264 100

Os01g08450.1 At1g02130.1 399983 401919 399420 401973 100

Os12g18880.1 At1g02140.1 403100 404456 402439 405644 99.94

Os01g18860.1 At1g02500.1 518091 520495 517829 521327 100

Os03g19510.1 At1g02560.1 537740 540127 537158 540531 100

Os03g21940.1 At1g02780.1 607799 609534 607187 609669 100

Os03g22340.1 At1g02830.1 625084 625608 624076 626451 100

Os05g05260.1 At1g03190.1 775527 780062 774617 780567 99.87

Os04g52130.1 At1g03475.1 868853 871308 868050 872005 99.62

Os10g35370.1 At1g03630.1 907523 909650 907182 909855 99.93

Twenty Arabidopsis genes chosen from the first million base pairs of chromosome 1 were assembled using rice protein queries. “Locus start” and “Locus end” are the
coordinates of the loci of the Arabidopsis genes, and “Contig Start” and “Contig End” indicate where the SRAssembler result aligns to Arabidopsis chromosome 1 with BLASTN

was superior. SRAssembler was able to match or exceed
the utility of a whole genome assembly in a total of 1333
cases (83.3%).

Assembly of homologous loci from real data
In real-world experiments, NGS reads are typically not
uniformly distributed over the genome sequence. The
aforementioned 20 rice protein sequences were again
used as queries for SRAssembler, this time to assem-
ble sequencing reads from a Swedish accession of
Arabidopsis [37].
We evaluated the performance of SRAssembler in this

test by aligning the contigs it produced against the
TAIR10 reference Arabidopsis genome using BLASTN.
The results in Table 1 show that for each protein query,
SRAssembler produced a contig that mapped to the
chromosome region containing the expected Arabidopsis
ortholog of the rice query. All 20 of these contigs share
at least 99.5% identity with the Arabidopsis reference
sequence and contain the entire homologous Arabidopsis
locus.
As a test of application on a more complex genome,

we also performed the reciprocal assemblies, using the
proteins encoded by the Arabidopsis genes as probes for
SRAssembler to build matching contigs from a set of

reads from IRIS 313-11802, a cultivar of rice from the
3000 Rice Genomes Project [38]. Libraries ERR611677 to
ERR611681 were used in this test, giving approximate 17X
genome coverage. Contigs were built after several rounds
of assembly and evaluated by the quality and extent of
GenomeThreader spliced alignments of the correspond-
ing known rice proteins. In 15 cases a contig covered over
90% of the rice protein (Table 2), clearly identifying a
homologous gene, and in all cases at least part of a relevant
gene was identified. Depending on the goals of the study,
in practice a user can use any of the contigs as starting
points for further assembly attempts, adding more reads
data (if available) or extending contigs by further assembly
rounds (SRAssembler will appropriately build on the pre-
viously generated results). A researcher may also consider
designing primers for genomic PCR based on the assem-
bly results in order to generate a more reliable sequence,
targeted to the gene of interest.

Assembly of paralogous loci
SRAssembler often assembles multiple contigs, some of
which are not ultimately of interest. These may con-
tain distantly related genes, or just share a common
domain with the query. Spliced alignment software such
as GenomeThreader is used to identify the contigs labeled
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Table 2 SRAssembly of rice homologs

Arabidopsis
query

Rice homolog Spliced alignment
score

Homolog
coverage

At1g01040.1 Os03g02970.1 0.997 1.000

At1g01050.1 Os05g36260.1 0.714 1.000

At1g01090.1 Os04g02900.1 0.997 1.000

At1g01230.1 Os07g26940.1 1.000 1.000

At1g01560.2 Os08g06060.1 0.967 1.000

At1g01620.1 Os07g26660.1 0.597 0.992

At1g01750.1 Os02g44470.1 0.780 1.000

At1g01820.1 Os06g03660.2 0.676 1.000

At1g01910.1 Os09g34970.1 0.889 0.843

At1g01940.1 Os06g04000.1 0.992 1.000

At1g01950.3 Os06g04560.1 0.492 0.800

At1g02130.1 Os01g08450.1 0.786 0.738

At1g02140.1 Os12g18880.1 0.778 0.981

At1g02500.1 Os01g18860.1 1.000 1.000

At1g02560.1 Os03g19510.1 0.820 0.908

At1g02780.1 Os03g21940.1 0.656 0.480

At1g02830.1 Os03g22340.1 0.696 0.841

At1g03190.1 Os05g05260.1 0.996 0.955

At1g03475.1 Os04g52130.1 1.000 0.913

At1g03630.1 Os10g35370.1 0.900 0.981

Twenty Arabidopsis proteins were used as queries into rice reads. The homologous
rice proteins were spliced-aligned to the assembled contigs. The best result for each
query is shown here

as “hits” against the query. In many cases, multiple hit
contigs are the result of whole or partial genome duplica-
tion events. The ability to potentially identify and assem-
ble paralogous (homologous due to duplication within
a genome) as well as orthologous (homologous due to
speciation) loci to genes of interest is an additional fea-
ture of the SRAssembler approach. This can be espe-
cially valuable in plants, which frequently undergo genetic
duplication events.
The Arabidopsis Information Portal (Araport) [39]

ThaleMine tool was used to identify genes paralogous
to the 20 Arabidopsis loci from the previous section.
Nineteen out of the 20 genes had at least one paralog
identified in PANTHER version 11 [40]. Many of the con-
tigs assembled by SRAssembler were identified by BLAST
to correspond to one of these paralogs. Out of 295 Ara-
bidopsis genes identified as homologous to the 20 rice
queries, 79 (26.8%) genes were completely assembled. In
many cases the assembled contigs covered only part of a
paralogous locus. Beyond the 79 complete genes, 19 addi-
tional gene bodies (the region from the start codon to the
stop codon, but not including UTRs) were fully assem-
bled, and a total of 141 gene bodies had at least 50% of

their length covered by a contig. Table 3 summarizes these
results, and Additional file 2: Table S1 contains details for
each paralogous gene individually.

Intra-species comparison of gene homologs
Twenty representative cultivars from the 3000 Rice
Genomes Project were selected to demonstrate the util-
ity of SRAssembler for analyzing conservation of a gene
within a species. The coding sequence of Os07g26940.1
was used as an example query. A homologous contig was
successfully assembled from each of the cultivars. These
contigs were aligned to the reference Os07g26940.1 gene
sequence with MUSCLE [41] and show strong conser-
vation in both exons and introns (alignment included as
Additional file 4). Exon 1 has 99.5% identical sites, intron
1 has 98.9% identical sites, exon 2 has 100% identical
sites, intron 2 has 96.8% identical sites, and exon 3 has
99.3% identical sites. The 5′-UTR has 92.1% identical sites,
and the 3′-UTR has 99.7% identical sites. The 301 bp
region of the multiple sequence alignment upstream of

Table 3 Summary of assembly of paralogous Arabidopsis genes

Arabidopsis
target

Total
paralogs in
clade

Complete
paralogs

Complete
gene
bodies

Gene bodies
>50%
assembled

At1g01040.2 6 1 (17%) 1 (17%) 1 (17%)

At1g01050.1 6 4 (67%) 4 (67%) 5 (83%)

At1g01090.1 3 1 (33%) 1 (33%) 1 (33%)

At1g01230.1 2 1 (50%) 2 (100%) 2 (100%)

At1g01560.2 29 3 (10%) 5 (17%) 17 (59%)

At1g01620.1 37 12 (32%) 14 (38%) 17 (46%)

At1g01750.2 12 9 (75%) 10 (83%) 10 (83%)

At1g01820.1 5 3 (60%) 3 (60%) 3 (60%)

At1g01910.1 3 1 (33%) 1 (33%) 3 (100%)

At1g01940.1 30 3 (10%) 6 (20%) 12 (40%)

At1g01950.3 64 1 (2%) 1 (2%) 10 (16%)

At1g02130.1 63 22 (35%) 30 (48%) 40 (63%)

At1g02140.1 1 1 (100%) 1 (100%) 1 (100%)

At1g02500.1 4 3 (75%) 4 (100%) 4 (100%)

At1g02560.1 10 2 (20%) 3 (30%) 3 (30%)

At1g02780.1 4 3 (75%) 3 (75%) 3 (75%)

At1g02830.1 3 3 (100%) 3 (100%) 3 (100%)

At1g03190.1 6 1 (17%) 1 (17%) 1 (17%)

At1g03475.1 2 2 (100%) 2 (100%) 2 (100%)

At1g03630.1 5 3 (60%) 3 (60%) 3 (60%)

Nineteen out of the 20 Arabidopsis gene “targets” have at least one annotated
paralog. SRAssembler was able to completely assemble at least one additional
paralog for 13 of those targets. In many cases in which the complete paralog was
not assembled, contigs still covered a significant fraction of the gene body (region
from the start codon to the stop codon). If further investigation of a clade is desired,
the final contigs could be used as starting queries for new SRAssembler runs
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the Os07g26940.1 start site is also highly conserved, with
90.4% identical sites.
Further upstream of this point, nine of the cultivars

diverge widely from the other eleven. Based on com-
parison to the rice reference Os-Nipponbare-Reference-
IRGSP-1.0 [42], it appears that these cultivars likely share
an insertion of at least 400 bp. This is notable because
this variance from the reference is not reported in the
Rice SNP-seek database [43] for any of the nine diver-
gent cultivars (and obviously could not be reported, as
the database data are derived from read mapping to the
reference genome, which would necessarily miss anything
longer than within-read length insertions or deletions).

Assembly from short reads in RNAseq data
SRAssembler can also assemble contigs using sequencing
reads from sources other than whole-genome sequencing
experiments, such as RNAseq. RNAseq data from mouse
skeletal muscle were used to assemble Myf6, a myogenic
transcription factor gene [44]. Despite the reads being
only 33 base pairs, SRAssembler was able to assemble a

contig with 100% identity to the mRNA corresponding to
the full length of the query protein.

Running time
Because SRAssembler directly assembles relatively short
regions of interest, it takes far less time and computing
power than a complete genome assembly. As a demonstra-
tion of the potential speed and resource use of SRAssem-
bler, we used the rice protein Os07g26940.1 as a query
for SRAssembler using 42 million Arabidopsis genomic
read pairs from NCBI SRA ([20]) accession SRR519536.
In these tests we ran the single-threaded SRAssembler
with one processor and the openMPI-configured version
of SRAssembler with 5, 10, 15, and 20 processors, and
compared the amount of time spent on preprocessing
reads and recursively assembling contigs (Fig. 3). Prepro-
cessing in SRAssembler splits read files into conveniently
manageable sizes, converts the read format from FASTQ
to FASTA to minimize the storage footprint, and indexes
the reads for speedy searching. If SRAssembler is rerun
using the same sequencing data, the preprocessing step

Fig. 3 Running time of SRAssembler. SRAssembler was run for five rounds using the Os07g26940.1 protein sequence as a query for 42 million
Arabidopsis genomic read pairs. The effect on running time of pre-existing preprocessed read chunks, the size of the read chunks, and the number
of processors assigned to SRAssembler were each tested and are shown as the mean of three technical replicates. As the number of processors
assigned to SRAssembler rises from one to 17, completion time drops dramatically. Using larger read chunks increases the time required for
preprocessing but can decrease the time of chromosome walking up to some point. The speed gains from increasing numbers of processors show
diminishing returns, and vanish if the number of processors exceeds the number of read chunks
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can be skipped, improving running time. This is use-
ful when assembling several homologs from the same
sequencing data, or when experimenting with different
run parameters.
The number of chunks the read files are split into can

impact the speed of an SRAssembler run. Using fewer,
larger files makes read processing take longer, but can
make subsequent runs faster, at least when using one pro-
cessor. The advantages of parallelization disappear when
the number of chunk files exceeds the number of proces-
sors available.
When SRAssembler was run on a single core with the

default split file size of 500,000 reads, the execution time
of this test averaged 61 min; this dropped to 4 min with
20 cores. A little more than half of this time was spent on
the reads preprocessing stage. SRAssembler running time
for a predetermined number of rounds is dependent on
the number of processors and the size of the read libraries
used, but is less predictable when stopping is based on
completion of a contig that covers the query sequence.

Discussion
SRAssembler is not the first software to use a recur-
sive search approach to analyze NGS reads that have not
yet been assembled. Tracembler used recursive BLAST
searches within the NCBI Trace Archive, but was not
capable of searching user-provided read libraries, and
used a less sophisticated approach to selecting and assem-
bling reads [22]. The Mapsembler program is a tool tar-
geting specific biological events such as SNPs, splicing
events, or gene fusion [45]. Although Mapsembler also
uses an iterative search algorithm as in Tracembler and
SRAssembler, it is not designed to assemble homologous
loci, does not use paired-end reads, and will not accept a
protein query sequence. A tool called MITObim [46] uses
a “baiting and iterative mapping” strategy similar to our
“in silico chromosome walking” to assemble mitochon-
drial genomes, but it is not designed to assemble regions
homologous to generic protein or DNA sequences.

Conclusions
SRAssembler offers a fast, efficient way to assemble
whole-genome sequencing reads into contigs containing
regions of interest, and we expect this approach to be
useful to biology researchers for a variety of purposes.
One obvious use case is a researcher who is interested in
the sequence of a specific gene in an organism that does
not have an assembled genome. This could be a particu-
larly interesting individual or population from a species
with an existing reference genome, or perhaps a member
of a previously unsequenced species. Rather than spend-
ing time and computational resources on whole-genome
assembly (a process which still intimidates many biolo-
gists), SRAssembler is intended to allow the researcher to

assemble the sequence they care about and move forward
with their research questions. Our testing suggests that
the assembly of a target homologous gene has accuracy
similar to full genome assemblies by modern software,
while being much faster and requiring fewer resources.
The speed and computational resource advantages of

SRAssembler over whole-genome assembly become even
more apparent when trying to scale up an experiment.
If a researcher is interested in a specific gene family, not
within a single individual, but in each of 500 members of
a population, computational resources and time are likely
to be more prohibitive than the falling costs of NGS tech-
nology. This is especially true if the researcher is using
pre-existing sequencing reads.
Whether or not an SRAssembler assembly attempt suc-

ceeds depends on the specifics of the application, includ-
ing factors such as available read depth, intron content
and length of the target gene, repetitive sequence con-
tent of the target region, and degree of similarity between
the probe and target sequences. In favorable conditions,
a quick success is likely. In difficult conditions, a variety
of SRAssembler options allow flexible use of the program
that can often still lead to success.
Collections like the human 1000 Genomes project [47]

and the 3000 Rice Genomes Project mean that researchers
can perform new bioinformatic experiments without
needing to collect new data. Sequencing reads collections
have already been used to create tools like the Rice SNP-
seek database, which mapped sequencing reads onto the
rice Nipponbare reference genome to detect SNPs and
other small variants in each of the sequenced cultivars
[42]. However, as demonstrated in one of our experiments,
this method is not sufficient to detect larger variants
such as long indels or chromosome rearrangements. The
SRAssembler strategy of recursively searching for reads
that match the region of interest is not biased by an exist-
ing reference sequence, and can lead to discoveries that
reference-mapping alone cannot.
Ongoing and future massive sequencing projects (ulti-

mately, the Earth BioGenome Project [21]) will gener-
ate unprecedented opportunities for detailed comparative
genomics studies. SRAssembler should be a useful tool
to aid in the transformation of such sequence data into
knowledge.

Availability and requirements
Project name: SRAssembler
Project home page: https://github.com/BrendelGroup/
SRAssembler
Operating system: UNIX-like
Programming language: C++
Other requirements: Singularity v2.4.2+, OR Vmatch
v2.3.0, SOAPdenovo2 v2.04, ABySS v2.1.0, GeneSeqer,
GenomeThreader v1.7.0+, and SNAP v2006-07-28

https://github.com/BrendelGroup/SRAssembler
https://github.com/BrendelGroup/SRAssembler
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License: GNU GPL-3.0
Any restrictions to use by non-academics: None

Additional files

Additional file 1: Figure comparing assembly of target genes from
simulated reads as a factor of read coverage depth. Twenty Arabidopsis
genes were assembled from 20 different sets of simulated reads (“seeds”),
at four different read coverage depths. Although the majority of gene/seed
combinations showed improved assembly of the gene with increasing
coverage depth, each gene had at least one seed that produced a worse
result at higher coverage depth than it had at a lower depth
(demonstrated by negative line slopes). (PDF 13 kb)

Additional file 2: Table of Arabidopsis orthologs to rice queries and their
aligned contigs. The contigs from twenty SRAssembler runs using rice
proteins against Arabidopsis genomic sequencing reads were aligned with
blastn against the Arabidopsis reference genome. The Arabidopsis
orthologs (“Atgene”), their locations(“GeneStart” and “GeneStop”), and the
beginning and end of their coding sequences (“ORFstart” and “ORFstop”)
were identified with Araport Thalemine. If a contig from the SRAssembler
run using the homologous rice protein (“Osprobe”) overlapped with an
Arabidopsis gene location, this is noted in the “Contig” column, as is the
percent identity with (“Identity”) and location on (“ContigStart” and
“ContigStop”) the reference genome. The length of overlap between the
contig and each gene locus (“ContigGeneOverlap”) and coding region
(“ContigORFOverlap”) are noted, as are the fraction of the total gene and
coding region lengths (“GeneCoverage” and “ORFCoverage”). (TSV 30 kb)

Additional file 3: Scripts and files for complete replication of results.
Unpacking this tarball will create directories and scripts that, when
executed, will download all necessary reads and perform all of the
experiments described in this manuscript. The scripts will reproduce all of
the tables and figures in this manuscript except for the workflow diagram.
(TAR 340 kb)

Additional file 4: FASTA-format alignment of hit contigs from 20 rice
cultivars. The Os07g26940.1 CDS sequence was used as the SRAssembler
query against sequencing reads from 20 rice cultivars. The hit contigs were
aligned with the reference genomic sequence for Os07g26940.1 using
MUSCLE. (MUSCLE 154 kb)
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MPI: Message passing interface; NGS: Next-generation sequencing; SRA:
Sequence read archive; UTR: Untranslated region
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