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Abstract

Background: Biochemical networks are often described through static or time-averaged measurements of the
component macromolecules. Temporal variation in these components plays an important role in both describing
the dynamical nature of the network as well as providing insights into causal mechanisms. Few methods exist,
specifically for systems with many variables, for analyzing time series data to identify distinct temporal regimes and
the corresponding time-varying causal networks and mechanisms.

Results: In this study, we use well-constructed temporal transcriptional measurements in a mammalian cell during
a cell cycle, to identify dynamical networks and mechanisms describing the cell cycle. The methods we have used
and developed in part deal with Granger causality, Vector Autoregression, Estimation Stability with Cross Validation
and a nonparametric change point detection algorithm that enable estimating temporally evolving directed
networks that provide a comprehensive picture of the crosstalk among different molecular components. We
applied our approach to RNA-seq time-course data spanning nearly two cell cycles from Mouse Embryonic
Fibroblast (MEF) primary cells. The change-point detection algorithm is able to extract precise information on the
duration and timing of cell cycle phases. Using Least Absolute Shrinkage and Selection Operator (LASSO) and
Estimation Stability with Cross Validation (ES-CV), we were able to, without any prior biological knowledge, extract
information on the phase-specific causal interaction of cell cycle genes, as well as temporal interdependencies of
biological mechanisms through a complete cell cycle.

Conclusions: The temporal dependence of cellular components we provide in our model goes beyond what is
known in the literature. Furthermore, our inference of dynamic interplay of multiple intracellular mechanisms and
their temporal dependence on one another can be used to predict time-varying cellular responses, and provide
insight on the design of precise experiments for modulating the regulation of the cell cycle.

Keywords: Dynamics, Cell cycle, Time series, Change point detection, Time varying network reconstruction, Causal
inference, Temporal variation
Background
The progression of a eukaryotic cell cycle is governed by
a complex, dynamical network of molecular interactions
that regulate a series of directional and irreversible
events such as cell growth, DNA replication, mitosis,
and cell division. The biochemical pathways controlling
the order and timing of cell cycle phases play an
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essential role in maintaining genomic stability of the cell.
Significant progress has been made in identifying mo-
lecular players and pathways involved in cell cycle mech-
anisms through extensive investigations on model
systems such as yeast. Protein assays, transcriptional
studies, fluorescent imaging, and protein interaction
mapping have all contributed to our current understand-
ing of the cell cycle. From these studies and other
phenotypic assays, molecular players engaged in distinct
phases of the cell cycle, namely, G1, S, G2, and M
phases, have been identified, resulting in a static pathway
map of the cell cycle [1]. These maps lack dynamical in-
formation, owing to the absence of systematic time
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series measurements. In-silico experiments have helped
researchers develop mathematical models that
characterize the dynamics of cell cycle in yeast and other
eukaryotic cells [2–4]. In addition, fine-grained time
series measurements of a mammalian cell cycle can en-
rich the understanding of dynamical networks through
which the temporal relationships between molecular
players can be inferred, and further provide insights into
mechanistic causality. In this work, we present a system-
atic fine-grained RNA sequencing study of the transcrip-
tional profiles during a mammalian cell cycle.
Inferring causality from time-series data poses consid-

erable challenges; conventional methods of network re-
construction offer a static characterization of the
network topologies. For example, correlation-based
methods [5, 6], matrix-based methods such as
least-squares, principal component regression (PCR) [7],
and partial least squares (PLS) [8], L1-penalty based ap-
proaches such as least absolute shrinkage and selection
operator (LASSO) and fused LASSO [9, 10], Gaussian
graphical models [11], and information-theory based ap-
proaches [12, 13] are among the methods primarily used
for static network reconstruction. Boolean network (BN)
is used to model dynamic gene regulatory networks
through parameter estimation [14–16], however it re-
quires discretization of gene expression levels to binary
values to permit parameter estimation. Dynamic Bayes-
ian learning approach provides a temporally evolving
picture of the network [17, 18], but is computationally
expensive and tends to perform poorly on high dimen-
sional data. Even though time series data can be used to
easily construct correlation networks, developing quanti-
tative models from these data is complicated due to the
inherent nonlinearity of biological systems. However, it
is possible to capture this nonlinearity using successive
linear models over distinct time windows or temporal
regimes. The assumption is that within a given regime,
the topology of the network does not change. While
there has been several attempts at identifying different
regimes in long time-series, mainly in the signal process-
ing community [19–21], they have not been used to fur-
ther develop evolving dynamical models and networks
for biological systems.
We have developed a framework to investigate the

temporal changes in the cell cycle network using
RNA-seq time series data from Mouse Embryonic Fibro-
blast (MEF) primary cells. We use a non-parametric
change point detection (CPD) algorithm [22] based on
Singular Spectrum Analysis (SSA) [23] to infer the
mechanistic changes in the time-course data for a set of
63 cell cycle genes to estimate cell cycle phases. We also
use the notion of Granger causality implemented
through a vector autoregressive (VAR) model [24] to
predict the future expression levels of each gene as a
function of the past expression levels of other genes
yielding directionality of gene regulation among the 63
cell cycle genes. Furthermore, we utilize the concept of
Minimum Description Length (MDL) to use past expres-
sion levels of genes, up to 9 time lags (equivalent to 4.5
h), to determine the minimum data information from
past events required for a robust prediction of values at
the current time.
This computational scheme enabled us to (i) estimate

the timing of cell cycle phases, (ii) infer the duration of
the G1, S and G2/M phases of the MEF cell cycle to be
14.5, 10 and 4 h, respectively, (iii) reconstruct three suc-
cessive directed graphs representing the key regulatory
mechanisms among the 63 cell cycle genes in the G1, S
and G2/M phases of the cell cycle, (iv) infer the tem-
poral impact that biological processes have on one an-
other, as well as the dynamic changes in temporal
dependencies as the cell evolves through successive
phases, and (v) reflect the chronological order of regula-
tory events that are crucial to cell cycle control. The
main power of our work is its ability to capture import-
ant causal interactions over time, providing a broad pic-
ture of the dynamics of a cell cycle regulatory network.
We validate the reliability of our time-varying network
for cell cycle progression by comparing the interactions
detected in our results to the well-known regulatory
pathways in the literature.

Results
Gene expression in MEFs is measured at 96 different time
points at intervals of 0.5 h or 1 h (later interpolated to
every 0.5 h), covering more than one full cycle and the G1,
S and part of G2/M phases of another cycle. Of the 4248
differentially expressed genes, i.e., genes whose expression
values change more than 2-fold as compared to that at t =
0 at one or more time points, 63 are cell-cycle genes in-
cluded in the Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways database [1]. We first detected the dif-
ferent stages of the cell cycle using the CPD algorithm.
Then we developed a VAR model for each stage through
the estimation of optimal time-lags. Finally, we carried out
an in-depth analysis of the temporally evolving networks
as the cell cycle progresses.

Detecting temporal changes and stages in the cell cycle
time series data
In order to identify different phases of the cell cycle
from the time-series data, we use a model-free CPD al-
gorithm (discussed in the Methods section) [22]. The
CPD algorithm captures the ongoing mechanistic
changes as the cell cycle progresses and partitions the
time series data into intervals with dominant trends, as-
sociated with cell cycle phases. It can be noted that no a
priori assumptions on the duration of the cell cycle
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phases were incorporated in our analysis. In this study, we
apply the CPD algorithm to 63 cell cycle genes presented
in the KEGG pathway for mouse cell cycle [1] (Add-
itional file 1 presents the list of genes). For every gene, the
time-course data for approximately two consecutive cell
cycles are available. We use cross-correlation between the
two time-series data to obtain the offset between the two
cycles by finding the time point at which the maximum
association between the two time-series occurs (see Fig. 1
and supplementary methods in Additional file 2).
When the offset is computed for every gene, the gene

expression profile is derived by properly concatenating
the two time-series according to the offset and then the
CPD algorithm is applied. This algorithm may detect
more than one change point in the expression profile of
each of the 63 cell cycle genes. Figure 2 is a radar chart
that depicts the count of genes for which the CPD algo-
rithm detects change points at every time point (1/2 h)
(data from 5 h to 35 h after the start of the first cell cycle
is shown in Fig. 2). There are three significant peaks in
the radar chart at 14.5, 24.5 and 28.5 h at which the
CPD algorithm detects change points for 29, 16 and 14
genes, respectively. We consider these peaks as
break-points between the consecutive G1, S and G2/M
phases of the cell cycle. According to the radar chart in
Fig. 2, the duration of the G1, S and G2/M phases of the
cell cycle is estimated to be 14.5, 10 and 4 h, respectively.
Therefore, we associate the intervals {1–14.5}, {14.5–
24.5} and {24.5–28.5} hours to the expression profile of
genes in the G1, S and G2/M phases of the cell cycle.
Fig. 1 Cross correlation of two time-series of Smc1a gene. The cross correl
the two time-series occurs with an offset of 7 samples
Network reconstruction from cell cycle time-series data
After detection of the major temporal intervals associ-
ated with cell cycle phases, the successive directed
graphs reflecting causal relationships of 63 cell cycle
genes are reconstructed as the cell progresses through
the G1, S and G2/M phases. In this work, the notion of
Granger causality is used to predict directionality of
links in the networks. Based on the definition of Granger
causality, a series X(t) is said to cause series Y(t) if the
future value of Y(t) is better predicted using the past
values of X(t) and Y(t) than when the future value of
Y(t) is predicted using only the past values of itself [25].
With the assumption that gene expressions may be
modeled through a linear regression, one can identify
Granger causality through Vector Autoregressive (VAR)
models (see Methods section). A d-order VAR model of
a k dimensional time series is given by:

y tð Þ ¼ vþ A1y t−1ð Þ þ A2y t−2ð Þ þ…
þ Ady t−dð Þ þ εt ; t ¼ 0; 1;…;T ð1Þ

where y(t) is a vector of realization of random variables
at time t, and y(t − d) at d samples before time t. Since
the VAR model can be of any arbitrary order 1, 2,… d,
the question of what the optimal order is arises. The op-
timal order of a variable yi(t) in the VAR model deter-
mines the number of time-lags that is necessary to take
into account, in order to extract sufficient information
from the lagged values of all variables that can provide
the most accurate prediction of yi(t). This optimal order
ation plot of the two time-series shows that maximal association for



Fig. 2 Segmentation of MEF cell cycle data with the change-point detection algorithm. Radar chart displays the count of genes that were
detected to have change points at every sample (1/2 h) in the gene expression profiles of the 63 cell cycle genes
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is estimated with the Minimum Description Length
(MDL) principle [26]. Description length (DL) is a meas-
ure of trade-off between the residual sum of squares
(RSS) and the complexity (order) of the VAR model:

DL ¼ T
2

logRSS þ d
2

logT ; d ¼ 1; 2;…; dmax ð2Þ

The MDL selects the optimal order such that the de-
scription length is minimized. Here we compute the de-
scription length of the VAR model for each gene
separately up to order dmax = 9. Figure 3 shows the plot
of the description length of four genes in the estimated
G1 phase.
Once the optimal order for each gene is computed
through MDL, we reconstruct three successive networks
that reveal the evolution of the gene regulatory network
of the 63 cell cycle genes through a complete cell cycle.
Towards this, we use the expression profiles of genes for
the three intervals {1–14.5}, {1–24.5}, and {1–28.5} hours
derived through the CPD algorithm. Figure 4 depicts the
gene regulatory network related to the {1–14.5} hour
interval of the cell cycle associated with the G1 phase,
Fig. 5 shows the network reconstructed for the {1–24.5}
hour interval associated with the G1 phase followed by
the S phase, and Fig. 6 illustrates the network represent-
ing the {1–28.5} hour interval related to the complete
cell cycle (G1 and S phases followed by the G2/M



Fig. 3 The plot of the description length for up to order dmax = 9 in the estimated G1 phase. The optimal order, shown in a red asterisk, is the
order at which the description length is minimized. As shown, the description length is minimized when the expression profiles of Ccnh, Cdk2,
Dbf4 and Mdm2 are modeled through VAR models of order 4, 5, 6 and 1, respectively
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phase). The resulting interactions have been validated
with prior literature and the interactions in the STRING
database. Table 1 presents the precision and false discov-
ery rate of predictions in the reconstructed networks in
Figs. 4, 5 and 6.

Temporal dependence of biological processes in the cell
cycle
In order to understand the temporal aspect of cell
cycle processes, we analyze the transient length of in-
fluence of dynamic processes on one another; our pri-
mary question seeks to ask if one biological event
induces the occurrence of another event in the cell,
what is the duration of its influence? We sought to
explore the temporal dependence of intracellular pro-
cesses by considering 16 time-dependent biological
processes governing the progression of the cell cycle.
Additional file 2: Table S1 shows these biological
mechanisms listed in the chronological order of their
occurrence during a cell cycle along with their mem-
bers (genes) according to the Reactome pathway
database [27]. In the three successive networks in
Figs. 4, 5, and 6, we group cell cycle genes that be-
long to each of the 16 biological processes into mod-
ules and infer the temporal dependence of modules
on one another. The temporal dependence of these
processes are assessed by taking into account the
average of directed edge time-lags between pairs of
processes. For instance, Fig. 7a, b, and c display the
links from the nodes in G1/S transition module to
the nodes in the G2/M DNA replication checkpoint
mechanism as the cell goes through the G1, S, and
G2/M phases, respectively. The numbers labeling
these links denote the optimal number of time-lags
required in the VAR model when assessing Granger
causality.
The average time-lags of edges in the three graphs in

Fig. 7a, b, and c are 1.4, 2.67, and 3.62, respectively. As
the cell evolves through a complete cell cycle, the aver-
age time-lag of the causal effect the G1/S transition
mechanism has on the G2/M DNA replication mechan-
ism increases. To further explore the length of



Fig. 4 MEF cell cycle network for G1 phase. The graph reconstruction of the network representing the causal interactions of 63 cell cycle genes obtained
by using only the data samples in the interval {1–14.5} hour of the cell cycle associated with the G1 phase. The blue edges represent true positive (TP)
connections validated though the known literature (STRING database). The green edges represent true indirect affinities between the pairs of genes they
are connected to, and the gray edges are interactions captured only in our model, serving as potential novel hypotheses. The node colors denote the
optimal time lag corresponding to every target gene in the VAR model. See Additional file 3 for the complete list of interactions in the above network
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intertwined temporal dependence these biological pro-
cesses have on one another, we extend this analysis to all
16 intracellular processes listed in Additional file 2:
Table S1. Fig. 8a, b, and c show the heat map plots dis-
playing the average time-lag of edges between each pair
of the 16 processes as the cell completes the G1, S, and
G2/M phases. The heat map images identify temporal
Fig. 5 MEF cell cycle network for G1 phase followed by the S phase. The g
interactions of 63 cell cycle genes obtained by using only the data sample
phase. The blue edges represent true positive (TP) connections validated th
represent true indirect affinities between the pairs of genes they are conne
as potential novel hypotheses. The node colors denote the optimal time la
Additional file 4 for the complete list of interactions in the above network
dependence of biological events on one another in dif-
ferent stages of the cell cycle.

G1 phase
The G1 phase, also known as the Gap 1 phase, is the
first of the four phases that occur in one complete
eukaryotic cell cycle. During the G1 phase, the cell
raph reconstruction of the network representing the causal
s in the interval {1–24.5} hour of the cell cycle associated with the S
ough the known literature (STRING database). The green edges
cted to, and the gray edges are interactions only in our model, serving
g corresponding to every target gene in the VAR model. See



Fig. 6 MEF cell cycle network for G1 and S phases followed by the G2/M phases. The graph reconstruction of the network representing the
causal interactions of 63 cell cycle genes obtained by using only the data samples in the interval {1–28.5} hour of the cell cycle associated with
the G2/M phase. The blue edges represent true positive (TP) connections validated though the known literature (STRING database). The green
edges represent true indirect affinities between the pairs of genes they are connected to, and the gray edges are interactions captured only in
our model, serving as potential novel hypotheses. The node colors denote the optimal time lag corresponding to every target gene in the VAR
model. See Additional file 5 for the complete list of interactions in the above network
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grows in size and synthesizes mRNA and proteins re-
quired for DNA synthesis. In this section, we investigate
the role of key regulatory proteins and their correspond-
ing phase specific interactions found in the recon-
structed G1 phase network (Fig. 4). The complete list of
the edges estimated in the G1 phase network is pre-
sented in Additional file 3.

Rb1/Rbl1
In Fig. 4, we note Rb1 interacts with Cdkn1a, Cdkn2a,
Skp2, Cdh1, and Anapc1. It is known that Cdkn1a forms
a physical complex with Rb1 and can activate Rb1 to
bring about cell cycle arrest [28, 29]. Furthermore, Rb1
activity is mainly regulated by Cdkn2a inhibition of
Ccnd1 to prevent phosphorylation of retinoblastoma
(Rb) proteins, while Ccnd1 initiates the phosphorylation
of Rb1 in mid-G1 phase [30, 31]. Rb1 physically interacts
with Skp2 to inhibit Cdkn1b ubiquitination and induce
G1 arrest [32]. Further, Anapc1 and its activator Cdh1
interact with Rb1 and are required for Rb1-induced cell
cycle arrest which leads to Rb1-induced accumulation of
P27 (Cdkn1b) during G1 arrest [33]. Detection of the
Rb1 → Abl1 edge is illustrated in Fig. 4. Rb1 is known
to form a complex with Abl1 in the late-G1/
Table 1 Statistics for the reconstructed network of the G1, S and G2

Reconstructed network Number of true positive edges Num

G1 phase 268 76

S phase 198 78

G2/M phase 203 103
early-S-phase as a result of its hyperphosphorylation by
the cyclin-D/cdk4–6 complex [34–36].
The Rb1 → Tfdp1 and Rbl1 → E2f1 edges are cap-

tured in the reconstruction of the network representing
G1 phase in Fig. 4. It is widely accepted that Rb1 and
Rbl1 genes negatively regulate the G1/S transition of the
cell cycle and enable cell growth by targeting key tran-
scription factors, including E2Fs and transcription factor
DP subunits [37–39]. In addition, trans-activation by the
E2f1-Tfdp1 heterodimers is known to be inhibited by the
retinoblastoma protein family [40].
E2f1–4
In Fig. 4, E2f1 is seen to interact with Mcm3, Cdc6,
Orc1, and Cdc45. The E2F transcription factor upregu-
lates the transcription of Mcm3 gene in the late G1
phase [41, 42]. Besides the minichromosome mainten-
ance complex (MCM) genes, Cdc6, ORC, and Cdc45
genes that are components of the pre-replication com-
plex are well-known E2F-inducible genes during the late
G1 and G1/S boundary in the cell cycle [43–46]. The
Tfdp1 → E2f1 interaction is also detected; it is widely
established that Tfdp1 interacts and forms a heterodimer
phases in Figs. 4, 5, and 6

ber of false positive edges Precision False Discovery Rate

0.78 0.22

0.72 0.28

0.61 0.39
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Fig. 7 Temporal dependence of G2/M DNA replication checkpoint mechanism on the G1/S transition mechanism. Orange nodes are genes that
take part in G1/S transition mechanism of the cell cycle and the green nodes are genes that take part in G2/M DNA replication pathway. Every
edge label denotes the temporal dependence of the target node on the source node. In this example, the farthest dependence is 7 time lags. a
Temporal dependence of G2/M DNA replication pathway on the G1/S-transition pathway in the {1–14.5} hour interval. b Temporal dependence
of G2/M DNA replication pathway on the G1/S-transition pathway in the {1–24.5} hour interval. c Temporal dependence of G2/M DNA replication
pathway on the G1/S-transition pathway in the {1–28.5} hour interval
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with E2f1 to regulate the cell cycle progression from G1
to S phase [47–49].

Ccnd1/Cdk4
We note the Ccnd1-Cdkn2b and Cdk4-Cdkn1b interac-
tions in Fig. 4. Cdkn2b can physically interact with and
inhibit the activity of D-type cyclin dependent kinases
and Cyclin D/CDK complexes while the Cip/Kip pro-
teins, including Cdkn1a and Cdkn1b, can inhibit G1
CDKs such as Cdk4 [30, 50–52]. We also see the Ccnd1
→ Rbl1 and Cdk4 → Rbl1 interactions in Fig. 4. It is
known that in late G1 phase, Cyclin D/Cdk4–6 com-
plexes perform the main phosphorylation of Rbl1, a
member of the retinoblastoma family, leading to dissoci-
ation of Rbl1 from Rb-E2F/DP complexes [53–55]. Fur-
thermore, the phosphorylation of Rbl1 by Cyclin D/
Cdk4 complex inactivates Rbl1 to promote G1/S transi-
tion [55].
Ccnd1 → E2f1 and Ccnd1 → Tgfβ1 interactions are

seen in Fig. 4. E2f1 is known to promote cell cycle
progression through the induction of G1 phase cyclin,
Cyclin D1 [56, 57]. Tgfβ1 blocks the progression of cell
cycle during G1 and this is associated with Tgfβ1 inhib-
ition of Ccnd1 expression [58]. We note the Ccnd1 →
Cdh1 and Cdk4 → Cdh1 interactions; Cdh1 is known to
limit the accumulation of the G1 mitotic cyclin/CDK
complexes to prevent pre-mature S-phase entry [59].
Ccnd1 → Ccne1 is also captured in Fig. 4. Analyses by
Geng et al. (1999) suggest that Cyclin E is a major down-
stream target of Cyclin D enabling cell to progress
through G1 and enter the S phase [60].
Pre-replicative complex
The Orc1 ↔ Mamc3, Orc1 → Cdc6, Orc → Cdc7and
Mcm3 → Orc1 interactions are also seen in Fig. 4. Ac-
cording to multiple studies, in late mitosis and during
G1 phase, Orc1 bound to replication origins recruits and
serves as a platform for the assembly of Cdc6 followed
by Mcm3 to form the pre-replicative complex [61–64].



A

B

C

Fig. 8 (See legend on next page.)

Masnadi-Shirazi et al. BMC Bioinformatics          (2019) 20:294 Page 9 of 22



(See figure on previous page.)
Fig. 8 Temporal interdependencies of biological processes as the cell goes through the G1, S and G2/M phases. Each row and column in the
heat map represents one of the 16 time-dependent biological processes. The number in every pixel represents the average time-lag of edges
sourcing from its corresponding row process and targeting its column process (one lag is equivalent to ½ hour). a Heatmap of temporal
dependence of processes as the cell goes through the G1 phase, b Heatmap of temporal dependence of processes as the cell goes through the
G1 followed by the S phase. c Heatmap of temporal dependence of processes as the cell goes through the G1, S and G2/M phases
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Orc1 interacts with Cdc6 throughout the G1 phase but
not during other phases [62].

Kip/Cip cyclin dependent kinase inhibitors (Cdkn1a, Cdkn1b,
and Cdkn2a)
The Cdkn1b → Tgfβ1, Mdm2 → Cdkn1a and Cdkn2a
→ Mdm2 regulatory links can be seen in Fig. 4. Tgfβ1 is
reported to downregulate Cdkn1b during G1 phase [65]
and Mdm2 has been shown to negatively regulate
Cdkn1a and promote its proteasomal degradation which
controls cell cycle progression during the G1 phase [66,
67]. Several studies have shown that Cdkn2a physically
interacts with Mdm2 to impede Mdm2-induced degrad-
ation of Trp53 and enhances Trp53 role in transcription
and apoptosis [68, 69]. This particular interaction stabi-
lizes p53 and restores a p53-dependent G1 cell cycle ar-
rest that is otherwise abrogated by MDM2 [52, 70, 71].
See supplementary text in Additional file 2 for ex-

tended description of interactions in the G1 phase.

S phase
S (synthesis) phase is the second phase of the cell cycle
occurring after the G1 phase and before the G2 phase in
which DNA is replicated. Here we delve into the results
for key S-phase proteins we obtained through our ana-
lysis (depicted in Fig. 5). Full list of the edges predicted
for S phase is presented in Additional file 4.

Chek1
We note the Chek1 → Trp53 and Orc1 → Chek1 edges
in Fig. 5. It is well established that Chek1 regulates
Trp53 activity during DNA damage-induced S and G2
phase arrests [72–74]. Moreover, it has been extensively
studied that cells with replicative initiation mutants de-
fective in the Orc1 gene require the checkpoint kinase
Chek1 during S phase to maintain cell viability by stabil-
izing DNA replication forks [75–77]. We note the inter-
action of Chek1 with Cdc45 and Cdk2 in Fig. 5. Cdc45
is a target of the Chek1-mediated S-phase checkpoint
[78, 79]. During the S-phase checkpoint, Chek1 activity
increases which leads to Cdk2 inhibition and blockage of
the S-phase transit in response to DNA damage [80, 81].
We further note that Chek1 interacts with Smc1a and
Wee1 in Fig. 5. Syljuåsen et al. (2005) have shown that
inhibition of Chek1 in S-phase cells triggers rapid phos-
phorylation of Smc1a, suggesting a regulatory associ-
ation between the two genes during S phase of the cell
cycle to protect DNA breakage and promote DNA repair
[79]. Chek1 phosphorylates and positively regulates
Wee1 in the DNA replication checkpoint [82] and in the
G2 DNA damage checkpoint [83]. Additionally, Wee1
inhibition diminishes Chek1 phosphorylation in cells
that are undergoing replicative stress [84].

Atm
We note the E2f4 → Atm, Skp2 → Atm and Cdc7 →
Atm edges in Fig. 5. E2F transcription factors not only
regulate many genes required for entry into S phase, but
also take part in DNA repair by transcriptionally regulat-
ing Atm [85]. Wu et al. (2012) have examined the role
of Skp2 in DNA damage response and repair by showing
its recruitment and activation of Atm during DNA
double-strand breaks [86]. Cdc7, involved in initiation
and progression of DNA replication during S phase, fur-
ther plays role in DNA repair by activating the Atm/
Atr-Chek1 checkpoint pathway [87].

Trp53
The interaction of Trp53 with Mcm3 and Orc1, both of
which are key components of the pre-replicative com-
plex, is shown in Fig. 5. Trp53 controls the initiation of
replication and entry into S phase by regulating prolifer-
ation related genes such as Mcm3, Orc1, and Cdc6 [88,
89]. Furthermore, the Pkmyt1 → Trp53 interaction has
been detected in the reconstruction of the S phase regu-
latory network. Price et al. (2002) have shown that
Pkmyt1 can negatively regulate Trp53-induced apoptosis
in response to DNA damage in the S phase or the G2
phase [90].

Mdm2
The Cdk1 → Mdm2 and Ttk → Mdm2 interactions can
be seen in Fig. 5. Mdm2 is known to be phosphorylated
by Cyclin A-Cdk1 complexes at the onset of S phase to
reduce its interaction with Trp53 [91]. Ttk phosphory-
lates Mdm2 which facilitates oxidative DNA damage re-
pair and cell survival during the S-phase [92].

Pre-replicative complex
We see the interaction of Mcm3 with Cdc45 in Fig. 5.
Mcm3 and Cdc45, both interacting components of the
pre-replicative complex [93–95], are known to dissociate
from the origin DNA and associate with non-origin
DNA and move with replication forks at the beginning
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of S phase [96, 97]. In addition, Cdc45 loading onto the
chromatin in the S phase is required to activate the heli-
case activity of the MCM complex [98, 99]. We note the
Cdc6 → Cdk2 edge; Cdc6 has been shown to activate
Cdk2 to initiate DNA replication and G1-S phase pro-
gression [100, 101]. Cdc6 is known to activate Cdk2 to
prevent re-replication during S and G2 phases [102].
Dbf4 → Cdk1 can be seen in Fig. 5; Cdk1 is known to
target the Dbf4-Cdc7 kinase at the end of S phase to
prevent re-replication in G2/M [103, 104].
Further description of S phase-specific interactions is

provided in supplementary text in Additional file 2.

G2/M phase
G2 phase is the third phase of the cell cycle in which the
cell rapidly grows, protein synthesis occurs, and the cell
prepares to enter mitosis. During mitosis, the replicated
chromosomes are separated into two nuclei and the cell
is divided into two daughter cells. Additional file 5 con-
sists of the entire list of interactions estimated in recon-
struction of the G2/M phases. In this section, we
investigate the main G2/M signaling pathways predicted
in our study (shown in Fig. 6).

Ttk
We note the Ttk → Bub1, Ttk → Mad2l1, and Ttk →
Bub1b interactions in Fig. 6. Studies have revealed that
Mph1 (Ttk homologue), which localizes to the kineto-
chores only at prometaphase (second phase of mitosis),
is required for the recruitment of Bub1 and other spin-
dle assembly checkpoint components [105, 106]. Ttk
promotes closed Mad2l1 production and subsequent as-
sembly of the mitotic checkpoint complex (MCC) to ac-
tivate the spindle checkpoint assembly [107]. Huang
et al. (2008) have reported that Ttk is one of the major
kinases required for Bub1b phosphorylation which is es-
sential for the mitotic checkpoint and also for kineto-
chores to establish microtubule attachments during G2/
M [108].

Mad2l1-Mad1l1
The Espl1 → Mad2l1, Mad2l1 → Bub1b, Bub3 →
Mad1l1, and Rad21 → Mad1l1 edges can be seen in Fig.
6. The Espl1-Mad2l1 interaction has been confirmed as
a regulatory mechanism required for sister chromatid
segregation [109]. Further, the spindle assembly check-
point components Mad2l1 and Bub1b are known to act
cooperatively to assemble the mitotic checkpoint com-
plex and to prevent premature chromatid separation at
the mitotic checkpoint [110–112]. Multiple studies have
indicated that Mad1l1 forms a complex with Bub3 dur-
ing the cell cycle and is crucial for spindle checkpoint
function [113–115]. There is evidence that knockdown
of MAD proteins is correlated with Rad21 cleavage to
promote sister chromatid segregation [116].

Bub1b-Bub1-Bub3
The Bub1b → Cdc20 and Bub1b → Plk1 edges can be
seen in Fig. 6. Studies have shown that a checkpoint
function of Bub1b is to inhibit the activity of Anaphase
Promoting Complex (APC/C) by blocking the binding of
Cdc20 to APC/C [117–119]. Furthermore, Bub1b binds
to Cdc20 to inhibit APC activity in interphase, allowing
the accumulation of Cyclin B in G2 phase prior to
M-phase entry [120]. Bub1b localizes to centrosomes
and suppresses centrosome amplification via regulating
Plk1 activity during interphase [121]. In addition, Bub1b
brings about the action of Plk1 at kinetochores for ap-
propriate chromosome alignment during prometaphase
[122].

Cdk1
We see the interaction of Cdk1 with Bub1b and Rbl1 in
Fig. 6. Phosphorylation of Bub1b by Cdk1 is required for
mitotic spindle checkpoint arrest and promotes the for-
mation of the kinetochore during G2/M [123]. It has
been reported that Cdk1 phosphorylates pRB (retino-
blastoma protein) in mitotic cells [36, 124, 125], while
our model captures the interaction of Cdk1 with the
pRB-related protein, Rbl1.
The network of Fig. 6 depicts the edges Cdk1 →

Ccnb2, Wee1 → Cdk1, and Pkmyt1 → Cdk1. B-type
cyclins form a complex with Cdk1 and this complex ac-
cumulates through late S and G2 phases of the cell cycle
[126] and the activation of the Cyclin B-Cdk1 kinase is
needed for entry into the G2/M phase [127, 128]. It is
widely accepted that Cdk1 activity is regulated through
its inhibitory phosphorylation by Wee1 and Pkmyt1,
leading to activation of the G2/M arrest which prevents
premature entry into mitosis [129–132].

Ccnb2
We can see the Cdc20 → Ccnb2 and Cdc25b → Ccnb2
edges in Fig. 6. It is known that APC/C-Cdc20 inter-
action can mediate cyclin B degradation which conse-
quently prevents Cdk1 activity from reaching excessively
high levels [133] and that the spindle assembly check-
point acts on Cdc20 to block the degradation of Cyclin
B during metaphase [134]. The Cdc25 phosphatases are
known to dephosphorylate and therefore activate the
Cdk1-Cyclin B complexes [135–137].

Espl1
The Espl1 → Ccnb2, Cdk1 → Espl1, Espl1 → Smc1a,
and Espl1-Bub1 interactions are shown in Fig. 6. Espl1
binds to Cyclin B during anaphase, a required step in
anaphase to shut down Cdk1 activity, to achieve abrupt
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and simultaneous separation of sister chromatids [138–
140]. It is widely accepted that Espl1 triggers anaphase
(fourth phase of mitosis) by initiating cleavage of cohesin
multiprotein complex which includes the Smc1a subunit
[141]. Studies have determined the role of Bub1 in the
timing of Espl1 activation and hence regulation of ana-
phase [142, 143]. The supplementary text in Additional
file 2 provides an extended description of G2/M
phase-specific network identified in our study.

Discussion
Mammalian cell cycle is a dynamic process orchestrated
by the activation of distinct molecular players across
time. Canonical characterization of the cell cycle as a
static network fails to provide temporal mechanistic in-
sights on the control exerted by the proteins during dif-
ferent phases of the cycle. In this study, we use an
exhaustive and fine-grained time series expression data-
set capturing the cell cycle of MEF primary cells to de-
velop a temporally evolving dynamical network for the
cell cycle progression. While our reconstruction is based
on using the transcriptome, and there could be differ-
ences between the transcriptome and the proteome
abundances [144–147], we believe that the broad con-
clusions are substantiated by mechanisms reported in
the literature. For example, studies have revealed that
certain classes of genes, such as cell cycle genes, have
higher correlation of mRNA expression with the corre-
sponding protein expression across a large number of
genes [148, 149], justifying our use of the transcriptome
across time to investigate the cell cycle. Using a set of 63
key cell cycle genes, we show that our causality-driven
approach provides a temporal map of the phases of the
cell cycle.
The mechanistic changes in the RNA-seq time-course

data are identified by a change point detection algorithm
which enables us to infer the timing of cell cycle phases
and their duration with no prior biological knowledge.
Through our computational analysis, the G1, S, and G2/
M phases are estimated to be 14.5 h, 10 h, and 4 h long,
respectively. For a typical proliferating mammalian cell
with an average cycle span of 24 h, G1 phase lasts about
11 h, S phase about 8 h, G2 phase about 3–4 h, and M
phase about 1 hour [150]. However, cell cycle duration
varies from one cell type to another; for instance, the
average phase duration for the rat embryo PC12 cell line
when serum starved for 24 h and then serum treated for
37 h, is roughly 15 h, 13.3 h, and 4 h for the G1, S, and
G2/M phases, respectively [151], whereas reports show
that the average cell cycle length for MEF cell line is
25.3 h [152, 153].
The three successive directed graphs depicted in Figs.

4, 5, and 6, representing the interaction of cell cycle
genes as the cell evolves through the G1, S and G2/M
phases of the cell cycle, are derived by utilizing the no-
tion of Granger causality identified by a VAR model.
This approach allows for the inference of temporal
length of influences each gene has on others. The tem-
poral dependencies are obtained by estimating the opti-
mal order of the VAR model that reveals the sufficient
number of lags required to extract useful past informa-
tion that may influence the expression of other genes.
Among the key G1 phase mechanisms (Fig. 4), we

were able to detect the regulation of Rbl1 by Ccnd1 and
Cdk4 as a promoting factor in the G1/S transition [55],
the role of the retinoblastoma protein in enabling cell
growth by targeting E2F and DP transcription factors
[37–39], as well as the function of cyclin dependent kin-
ase inhibitors in inducing growth arrest in the G1 phase
[51, 52]. The Cdkn2a-Mdm2 interaction which stabilizes
the tumor suppressor protein Trp53 [71], the Cyclin
E-Cdk2 interaction required for G1/S transition [154], as
well as Ccne1’s role in the loading of Mcm3 and Cdc45
onto the chromatin [101, 155, 156] were detected in our
reconstruction of the G1 phase network. We were able
to detect the recruitment and assembly of Mcm3 and
Cdc6 by Orc1 leading to the formation of the
pre-replication complex and its assembly onto replica-
tion origins prior to S phase [61, 63].
The G1 phase events prepare the cell to initiate DNA

replication in the S phase of the cell cycle. The
pre-replicative complex is assembled onto each origin
prior to S phase and creates licensed origins that can ini-
tiate replication by origin firing. Once the cell transitions
from G1 phase to the S phase, the licensed origin are
converted into active replication forks [157, 158].
Major S-phase regulatory pathways are shown in Fig.

5. The loading of the replicative polymerases through
Mcm3 recruitment of Cdc45 [159], along with the intra
S-phase checkpoint exerted by Chek1 targeting of Cdc45
and regulation of Cdk2 [78, 80], are among the major
S-phase pathways. The network in Fig. 5 further de-
scribes the role of Chek1 in stabilizing the replication
forks and protecting against DNA breakage through its
interaction with Orc1 and Smc1a [76, 79].
During S-phase, Trp53 is involved in regulating initi-

ation of replication by targeting replication-related genes
Cdc6, Orc1, and Mcm3 [88]. Furthermore, we detected
Cdk1’s role in preventing re-replication during S phase
by regulating Dbf4 [104], along with the function of Atm
in regulation of DNA damage and DNA repair, captured
through Atm’s interaction with Dbf4 and Skp2 [85, 86].
Figure 6 represents significant regulatory pathways

characterized in the G2/M phases of the cell cycle such
as spindle assembly checkpoint (SAC), mitotic check-
point assembly, and chromosome segregation. Among
these pathways, we detected the formation of mitotic
checkpoint complex and the establishment of
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microtubule attachments during G2/M phases through
the function of Ttk-Mad2l1 and Ttk-Bub1 interactions,
respectively [106, 108]. Our proposed model for the G2/
M phase identifies the Bub3-Mad1l1 interaction essential
for spindle checkpoint function [113–115], the coopera-
tive interaction of Mad2l1 and Bub1b that is required
for prevention of premature sister chromatid segregation
[111], as well as Mad2l1-Chek1 interaction which en-
sures fidelity of mitotic segregation [160]. In addition,
we detected the interactions suggesting the blockage of
premature entry into mitosis through Cdk1 phosphoryl-
ation by Wee1 and Pkmyt1 [129–132]. It is interesting
that Cdk1 phosphorylation not only occurs at an early G2
phase, but may also occur during late S phase [132] as
shown in Figs. 5 and 6. We detected Cdk1’s role in pre-
venting re-replication during G2/M by targeting Cdc7
[103], along with the activation of the Cdk1-Cyclin B com-
plex required for G2/M entry [127]. Additionally, we spot-
ted Plk regulation of Cdc20 which activates the anaphase
promoting complex, triggering the separation of sister
chromatids [161], Plk1’s role in mitotic exit through its
interaction with Cdc25b [162], as well as the concurrent
and abrupt segregation of sister chromatids through the
Espl1-Ccnb2-Cdk1 pathway [138, 140] (Fig. 6).
We also built the above networks by incorporating

transcription factors (TFs) in our analysis using TRANS-
FAC® (2018, release 2) database. We found 25 differen-
tially expressed TFs in our dataset that we considered in
this analysis. There is significant overlap between the
intra-cell cycle gene interactions when comparing the
results from the 63 cell cycle genes-based network
model and that from the 63 cell cycle genes- and 25
TFs-based network model. The list of all interactions for
the TFs and cell cycle genes for the G1, S and G2/M
phases is included in Additional file 6. We validated our
inference through STRING database for intra-cell cycle
interactions, and through Enrichr libraries [163, 164] for
those involving TFs. We also calculated the precision
metric for the network reconstructed using the dataset
incorporating TFs. Additional file 2: Table S2 shows the
precision metric for the three networks.

Conclusions
In this work, we reconstruct causal mechanisms and
networks across time during a mammalian cell cycle.
Our integrative framework provides insight into the
temporal behavior of MEF cell cycle. Through our com-
putational analysis of the time series data from cell cycle
genes, without any prior knowledge, we estimate the G1,
S and G2/M phases of the cell cycle to last approxi-
mately 14.5, 10 and 4 h, respectively. Using the data
from each cell cycle phase, we reconstruct phase specific
networks, and detect key regulatory interactions essen-
tial to passage of the cell through cell cycle checkpoints.
Since we utilize a higher order VAR model, the delay be-
tween the synthesis of the transcript and its correspond-
ing protein is taken into account, justifying our use of
temporal gene expression data in our analysis. Moreover,
the average optimal order for genes participating in each
regulatory pathway is used as a means to determine the
temporal dependencies between multiple biological
pathways in the three successive cell cycle regimes that
transcends the current understanding of temporal inter-
dependency of cellular mechanisms in the biology
literature.

Methods
RNA-seq data
The gene expression profiles are acquired through a
RNA-seq experiment for serum response of Cf-1 MEF
primary cells (E13 embryos), the purpose being to tran-
scriptionally characterize the changes in the cell cycle
genes as the cell cycle progresses. In order to
synchronize the cell cycle, after the cells are incubated
in starvation medium (0.5% FCS) for 36 h, serum is
added to reach 20%, to re-initiate the cell cycle. RNA
isolation is performed using Trizol RNA extraction
protocol. The RNA-seq data is aligned using the STAR
RNA-seq aligner [165] and the read counts are normal-
ized using the HOMER software [166]. Samples are
taken 1 hour before the addition of serum, right before
the addition of serum and every half hour after serum
addition. This sampling routine is carried out for ap-
proximately two cell cycles. The raw time-series data is
then processed to determine the fold-change in expres-
sion for each gene by dividing the expression level of
each sample by the average of the expression levels at
samples taken 1 hour before serum addition and right
before serum addition.

Change point detection algorithm
Change Point Detection (CPD) is a non-parametric
method based on sequential application of Singular
Spectrum Analysis (SSA) to detect changes in
time-series [22, 167]. SSA is a powerful method for
time-series analysis that is based on applying principal
component analysis to the trajectory matrix acquired
from the original time series. Basic SSA has four main
steps:

1. Embedding: In this step, the trajectory matrix X is
built from the original time series, xt, where every
column of this matrix is a vector that lies in an M-
dimensional space ℝM.

2. Singular value decomposition (SVD): The singular
value decomposition of the lag-covariance matrix R
= XXT provides M eigenvalues and eigenvectors and
principal components.
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3. Grouping: The principal components are split into
two groups I and I′. The l principal components in
group I provide a good description of the time
series. This leads to decomposition of the trajectory
matrix X ¼ XI þ XI 0 .

4. Diagonal averaging: Through this step, the matrices
XI and XI 0 are uniquely mapped to their respective
time-series zt and εt.

The SSA captures the structure of the time-series by
selecting the l eigen-vectors, which span an l-dimen-
sional subspace. Figure 9a and b show the scree plot and
explained variance of eigenvalues, respectively when
SVD is applied to the time-course data of Cdkn2d.
This helps choose the number of eigenvalues that cap-

ture sufficient variation in the time series (see the trend of
Cdkn2d time-series displayed by the three largest eigen-
values in Fig. 10). Change point detection can be achieved
by sequentially applying SVD to the lag-covariance matri-
ces computed in time intervals of length N, [n + 1, n +
N], and selecting a group of l eigenvectors determining an
l-dimensional subspace. If at a particular time τ, an in-
crease in the distance between the l-dimensional hyper-
plane spanned by the eigenvectors of the lag-covariance
matrix and the M-lagged vectors Xj (xj + 1, … , xj +M), j ≥ τ,
occurs, the algorithm postulates a change point. A cumu-
lative sum-type statistic is computed based on the distance
between the l-dimensional subspace and the vectors Xj

and compared against a threshold; every time the test stat-
istic exceeds the threshold, a change point is detected. Fig-
ure 11 depicts the detection of change points in the
time-series for Cdkn2d time-series. The change points de-
tected are representative of a structural change in the
mechanism generating the time-series (see the supple-
mentary methods in Additional file 2).

Granger causality
Granger causality is a notion based on the ability to pre-
dict the future value of one process using the past values
of another process [25]. This notion was first introduced
in macroeconomics and has proven useful in providing
the direction of information flow; however it is not
equivalent to true causality. Granger causality provides
information about numerical information and predic-
tion, while true causality is profoundly related to the in-
fluence of one variable onto another. Formally, a time
series x is said to Granger-cause a time series y if the fu-
ture value of y can be better predicted given the past
values of x and y, (xt − 1, xt − 2,… , yt − 1, yt − 2,… ), than
predicting the future of yt given only the past values it-
self, (yt − 1, yt − 2,… ). This statistical concept of causality
can be well represented by the VAR model for linear re-
lationships [24]. A d-order VAR model of a k dimen-
sional time series is given by:
y tð Þ ¼ vþ A1y t−1ð Þ þ A2y t−2ð Þ þ…
þ Ady t−dð Þ þ ε tð Þ ð3Þ

where y(t) = (y1(t), y2(t), … , yk(t))
T is a (k × 1) random

vector, yi(t) is the measurement at time t of the ith ran-
dom variable, Al is a (k × k) autoregressive coefficient
matrix, v is a (k × 1) vector of intercepts and ε(t) = (ε1(t),
ε2(t), … , εk(t))

T is a k-dimensional error vector of ran-
dom variables with zero mean and covariance matrix ∑.
A necessary and sufficient condition for variable yj to

be Granger-causal for yi is that the corresponding coeffi-
cient aijl (ij

th entry of Al, l = 1,… , d) is statistically sig-
nificant [168, 169]. Therefore, the direction of
information flow can be determined by estimating the
autoregressive coefficient matrices of the VAR model.
The optimal order of the VAR model can be estimated
via the minimum description length (MDL) principle.

Estimation stability with cross validation
Considering the time series (y1,… , yT) for each of the k
variables, the VAR model in Eq. (3) can be written com-
pactly in the following matrix form [170]:

Y ¼ φX þ ε ð4Þ
where Y = (y1, … , yT)

T is a (T × k) matrix whose columns
are time series for each of the k random variables with
sample size T, φ = (φ0, … , φT − 1)

T is a (T × (kd + 1)) matrix
with φt = (1; y(t); … ; y(t − d + 1))T, X = (v, A1, A2, … , Ad)

T

is a ((kd + 1) × k) coefficient matrix and ε = (ε1, … , εT)
T is

a (T × k) matrix. For each of the k columns of matrices Y,
X, and ε, we have the following linear regression model

yi ¼ φxi þ εi; i ¼ 1;…; k ð5Þ
We are interested in recovering vector xi ∈ℝ

kd + 1 from
the observation yi ∈ℝ

T and φ. Since φ ∈ℝT × (kd + 1), and
T≪ kd + 1, we have an underdetermined system of lin-
ear equations, and this linear inverse problem cannot be
solved uniquely. However, if xi is sufficiently sparse, i.e.,
the support of xi has small cardinality, it is actually pos-
sible to recover xi by solving the following ℓ0
minimization problem [171, 172]:

x̂i ¼ min‖xi‖ 0 subject to yi ¼ φxi; i ¼ 1;…; k ð6Þ
where ‖xi‖0 denotes the number of nonzero coefficients
of xi. Since ℓ0 minimization is an NP-hard problem, it
can be relaxed to an ℓ1-norm regularization that can be
a heuristic for finding a unique sparse solution [173]:

x̂i ¼ min yi−φxik k2 þ λ xik k1 ; i ¼ 1;…; k ð7Þ

Note that ℓ1-norm regularization in Eq. (6) is strictly
related to the Least Absolute Shrinkage and Selection
Operator (LASSO) problem [174]:
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Fig. 9 Principal Components of Cdkn2d gene expression profile. a Scree plot of the Eigenvalues shows the ordered eigenvalues of the lag-
covariance matrix corresponding to the gene expression profile of Cdkn2d. We can see a dramatic change in slope of the eigenvalue plot at the
fourth component. Therefore, from what is observed in this plot, it is reasonable to retain the first three largest eigenvalues and group them
together to select the set I. b Explained variance for the first eight largest principal components that explain 95% of the cumulative variation. The
fourth and higher components explain very little variation and thus the first three largest eigenvalues can be grouped together in group I
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x̂i ¼ min
1
2

yi−φxik k22 þ λ xik k1; i ¼ 1;…; k ð8Þ

The regularization parameter λ in the LASSO sets a

trade-off between the fit error kyi−φxik22 and the sparsity
of the signal xi. In order to choose the desired λ, one can
use traditional model selection criteria, such as Akaike’s
information criterion (AIC) [175] and Bayesian informa-
tion criterion (BIC) [176]. These criteria are easily com-
puted, though are dependent on model assumptions and
even if model assumptions are met, they may not be valid
in the finite sample cases. The regularization parameter λ
is often selected through the model-free Cross-validation
(CV) approach [177, 178]. CV often leads to estimators
with good predictive performance when sample size is
large. In the cases where sample size is small, CV
does not yield a good interpretable model because
LASSO + CV is unstable and not reliable for scien-
tific interpretations [179]. In this work, we observed
that selecting λ through Estimation Stability with
Cross Validation (ES-CV) leads to more meaningful
and interpretable results [180]. Estimation stability
(ES) is based on the idea that the solution is not
meaningful if it varies considerably from sample to
sample. The LASSO generates a family of solutions
known as the solution path:



Fig. 10 Decomposition of Cdkn2d time series into the main signal and noise. This plot depicts the time series xt for the gene expression profile
of Cdkn2d (black curve), along with its decomposition into two time series zt and εt. zt (blue curve) corresponds to the time series reconstruction
from matrix XI that is built from the three largest eigenvalues of the lag-covariance matrix, and εt (red dotted curve) corresponds to the time
series reconstruction from matrix XI0 that is built from the remaining eigenvalues of the lag-covariance matrix
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x̂i λ½ � ¼ minimize yi−φxik k22 þ λ xik k1 ð9Þ
We want to choose λ in the solution path based on es-

timation stability. Since ES is tightly tied to the sampling
scheme, we need multiple solution paths to evaluate sta-
bility. Cross-validation data perturbation is used to ran-
domly partition the T samples into V groups of pseudo
data sets by leaving out one group at a time. Let φ∗[j],
Fig. 11 Plot of change points for Cdkn2d time series. The black curve is the ori
to zt which is the trend of the time series. The blue curve is the plot of the Wn t
the threshold h which is used in the decision rule. Every time the Wn test statist
yi
∗[j] represent the jth pseudo data set (random partition)

derived from φ and yi, respectively. The pseudo solutions
are given by:

x̂i j; λ½ � ¼ minimize yi
� j½ �−φ� j½ �xik k22 þ λ xik k1 ð10Þ

for j = 1,… , V, i = 1,… , k. ES measures the stability or
similarity of pseudo solutions across different groups of
ginal RNA-seq time series data for Cdkn2d, xt. The pink curve corresponds
est statistic calculated through the CPD algorithm. The dotted red curve is
ic exceeds the threshold, a change point is selected (green dotted lines)
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Fig. 12 Estimation Stability with Cross Validation (ES-CV). The green curves are the plot of the ES metric. The black curves are the plot of mean
squared error (MSE) through cross validation. The blue triangles identify the λ at which the local minima of the ES metric occur. The pink circles
indicate the largest λ such that MSE is within one standard error of the minimum MSE. a In the case where noise overwhelms the data, ES fails
and CV is incorporated. We can note that between the choice of CV (pink circle) and the choice of ES (blue triangles), ES-CV picks the larger λ. b
We can note that the ES-CV approach selects a larger λ compared to the choice of cross validation. Hence, the choice of λ selected through ES-
CV leads to a sparser solution than that of CV
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samples. For each λ, the stability of the following
estimates

ŷi j; λ½ � ¼ φx̂i j; λ½ �; j ¼ 1;…;V ; i ¼ 1;…; k ð11Þ
are studied by looking at the sample variance of the
estimates

dVAR ŷi λ½ �ð Þ ¼ 1
V

XV

j¼1
ŷi j; λ½ �−ŷi λ½ ��

�

�

�

2

2; j

¼ 1;…;V ; i ¼ 1;…; k

ð12Þ
where
ŷi λ½ � ¼ 1
V

XV

j¼1
ŷi j; λ½ �:

The normalized version of the sample variance is de-
fined as the estimation stability metric:

ES λð Þ ¼
dVAR ŷi λ½ �ð Þ
ŷi λ½ ��

�

�

�

2

2

ð13Þ

ES is the reciprocal of the test statistic for testing the
null hypothesis H0 : φxi = 0, and can be viewed as a selec-
tion of λ as a set of hypothesis tests; for each λ we are
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testing to see if the fit ŷi½λ� is statistically different from
fitting the null model (φxi = 0).
The most statistically significant solution along the so-

lution path is the one whose ES metric has the largest
reciprocal. Therefore, the most statistically significant
solution is the one that locally minimizes the ES metric.
In the case where noise overwhelms the signal (high
noise), y bears no relation to φ and ES proposes inad-
vertent local minima. Thus, cross-validation is incorpo-
rated into finding the solution (ES-CV) (see Fig. 12a).
ES-CV further limits the choice of λ to the local mini-
mum of ES(λ) that is greater than or equal to the choice
of cross-validation (see Fig. 12b) [179, 180].

Minimum description length
The optimal order of the VAR model can be estimated
through model selection approaches such as Minimum
Description Length (MDL) [26]. MDL selects a model
that provides the shortest description of data. Descrip-
tion length for observations yT = {y1, y2, … , yT} from a
parametric family M ¼ f f ðyT jθÞ : θ∈Θg is − log f θðyT Þ
þLðθÞ, where the first term is the cost function and the
second term is the cost of transmitting the estimated
parameter θ. For a linear regression model in eq. (3), the
observation y has the following description length:

DL ¼ T
2

logRSS þ d
2

logT ; d ¼ 1; 2;…; dmax ð14Þ

where RSS denotes the residual sum of squares and d is
the order of the VAR model in Eq. 3. The optimal order
is selected such that the code length in Eq. 14 is
minimized:

dopt ¼ minimize
T
2

logRSS þ d
2

logT ; d ¼ 1; 2;…; dmax

ð15Þ

Precision
Precision or confidence indicates the proportion of pre-
dicted positive edges that are real positives [181]. In
other words, Precision is a measure of accuracy of the
predicted positives:

Precision ¼ True Positives
True Positivesþ False Positives

These methods have been implemented in Matlab®
(Mathworks, Inc.).
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