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Abstract

Background: Genome-wide prediction has become the method of choice in animal and plant breeding. Prediction
of breeding values and phenotypes are routinely performed using large genomic data sets with number of markers
on the order of several thousands to millions. The number of evaluated individuals is usually smaller which results in
problems where model sparsity is of major concern. The LASSO technique has proven to be very well-suited for sparse
problems often providing excellent prediction accuracy. Several computationally efficient LASSO algorithms have
been developed, but optimization of hyper-parameters can be demanding.

Results: We have developed a novel automatic adaptive LASSO (AUTALASSO) based on the alternating direction
method of multipliers (ADMM) optimization algorithm. The two major hyper-parameters of ADMM are the learning
rate and the regularization factor. The learning rate is automatically tuned with line search and the regularization
factor optimized using Golden section search. Results show that AUTALASSO provides superior prediction accuracy
when evaluated on simulated and real bull data compared to the adaptive LASSO, LASSO and ridge regression
implemented in the popular glmnet software.

Conclusions: The AUTALASSO provides a very flexible and computationally efficient approach to GWP, especially
when it is important to obtain high prediction accuracy and genetic gain. The AUTALASSO also has the capability to
perform GWAS of both additive and dominance effects with smaller prediction error than the ordinary LASSO.
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Background
Genome-wide prediction (GWP) refers to the idea that
regression coefficients, obtained by regressing genomic
markers on phenotypic measurements in some training
data, can be used to predict phenotypic values without
the need to measure the phenotypes in some test data
[1–3]. Genome-wide data often consist of several thou-
sands, sometimes millions of markers. Since the number
of individuals is usually smaller, in the range of some hun-
dreds to a few thousands, the result is a multivariate high-
dimensional statistical issue that is often referred to as the
p >> n problem [4, 5]. The outer product of the design
matrix in the ordinary least squares (OLS) estimator is not
invertible in these situations and will result in a matrix
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of rank one. As a consequence, different regularization
techniques have been proposed to facilitate in obtaining
well-conditioned and unique solutions [6].
Regularization is a mathematical technique to impose

prior information on the structure of the solution to an
optimization problem. It closely resembles the task of
using priors in Bayesian statistics. By formulating regres-
sion as a minimization of loss plus penalty function prob-
lem it is easy to enforce certain restrictions on the regres-
sion coefficients. Ridge regression [7] and the LASSO
[8] are two popular regularization methods that only dif-
fer in the norms of their penalty functions, i.e. the �2
and �1 norms, respectively. It is well established that the
LASSO usually results in better prediction accuracy than
ridge regression if the predictors display low to moderate
correlation between each other [4, 9, 10].
The �1 norm of the LASSO is special because it results

in a convex minimization problem with sparse solutions
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(many regression coefficients are set to zero) which facili-
tate computations in large scale situations. A huge number
of studies have been devoted to extensions of the lasso in
various directions [11]. Generalized Linear Model (GLM),
survival and support vector machine versions can be
obtained by alternation of the loss function. Modifications
of the penalty function have resulted in the elastic net,
group and fused LASSO that can handle correlated, struc-
tured and time dependent predictor variables. Even more
elaborate extensions include sparse additive models and
the graphical LASSO [12].
Several optimization algorithms have been developed

for the LASSO. The least-angle regression (LAR) algo-
rithm borrows from forward-stepwise regression by
updating an active set of regressors via a regularization
path [13]. LAR provides relatively fast fitting for sparse
data but requires one OLS solution per iteration and is
not suitable for all loss functions. Another algorithm that
has turned out to be effective is cyclic coordinate descent
(CCD). CCD is also an iterative algorithm that updates the
regression coefficients by choosing a single coordinate to
update, and then perform a univariate minimization over
this coordinate. The idea is to compute the OLS coeffi-
cients on the partial residuals and apply soft-thresholding
to take care of the LASSO contribution to the penalty.
CCD efficiently exploits sparsity and can handle large data
sets [14].
The rise of big data problems has resulted in a resur-

gence of first order gradient descent based methods in
mathematical optimization [15]. One problem with the
LASSO is that the penalty function is nondifferentiable
at zero. However, it turns out that the rediscovery of
proximal operator techniques has solved this issue. The
idea behind the proximal gradient is to decompose the
objective function f into the sum of one convex, dif-
ferentiable function g and one convex, nondifferentiable
function h, and then use a proximal map of h along with
the gradient of g to update in each iteration [16]. Prox-
imal versions of the LASSO include the fast iterative
soft-thresholding algorithm (FISTA) [17] and the alternat-
ing diretion method of multipliers (ADMM) [18]. These
methods are fast and can handle large data, but the tuning
of the learning rate and the regularization parameter can
be tedious.
The purpose of this study is to introduce proximal algo-

rithms, with a special focus on ADMM, into a GWP
framework, and then to develop a general approach that
automatically finds the optimal values of the learning rate
and the regularization parameters of an adaptive LASSO.
The learning rate determines how large steps the iterative
algorithm takes towards the minimum. Too large steps
leads to fewer iterations, but with a high risk to miss the
minimum. Too small steps may lead to very many itera-
tions to convergence and therefore also more computing

time. The learning rate is optimized using line search with
Armijo rule. The level of the regularization parameter in
the LASSO regulates how many regression coefficients
that are set to zero and is optimized with golden section
search. Finally, the method is evaluated on simulated and
real GWP data from cattle.

Results
Simulated data
For the QTLMAS2010 data we set εADMM = 10−4 and
εGSS = 10−2. Moreover, the initial bracketing points in
the GSS procedure were set to λa = 0.0001λmax and
λb = λmax. In this data set the last generation is used
as test data and therefore only one evaluation is needed.
The AUTALASSO completed in 190 s and resulted in
a MSEtest of 64.34 and rtest of 0.676. The number of λ-
values tested to convergence in the GSS algorithm was 21.
The additive effects were calculated as a = −θλopt,gen=0 +
θλopt,gen=2 and the non-zero SNPs are plotted in Fig. 1. It
can be seen that the major coefficients corresponds well
with the anticipated QTLs, i.e. the two major additive
loci and the additive part of the dominance locus. The
heterozygote effects equals the dominance effects d and
selected variables are plotted in Fig. 2. The three most
important variables are the dominance, over-dominance
and under-domiance loci, respectively. The numbers of
selected variables are 196 and 97 for the additive and
dominance effects, respectively, in Figs. 1 and 2.
The computing times of the glmnet ALASSO were

strongly influenced by the number of λ-values, with 7, 56
and 546 s for 100, 1000 and 10,000 values, respectively.
However, the influence of varying the number of λ on the
MSEtest was small, 64.52, 64.53 and 64.48, respectively.
Hence, we decided to use 100 λ-values for all analyses. The
glmnet LASSO and RR resulted in MSEtest of 65.73 and
83.07, respectively. The corresponding rtest were for the
ALASSO, LASSO and RR 0.675, 0.679 and 0.551, respec-
tively. Hence, the AUTALASSO provides lower MSEtest
regardless of method in glmnet. That the LASSO pro-
vides slightly higher rtest than both the AUTALASSO and
ALASSO should be interpreted with care (see Discussion).

Real data
We used the same ε-values as for the QTLMAS2010 data
in the analyses of the bull data. Moreover, we first ran
one analysis of one fold with λa = 0.0001λmax and λb =
λmax to get estimates that could guide to a more nar-
row λ interval. The consecutive folds were analysed with
λa = 0.0001λmax and λb = 0.002λmax. The mean tim-
ing over the folds was 3020 s and the mean MSEtest was
11.801 for AUTALASSO. The rtest was estimated to 0.615
for the AUTALASSO. With 100 λ-values the mean timing
of the glmnet ALASSO was 170 s and mean MSEtest equal
to 13.17. The MSEtest for the LASSO and RR was 12.65
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Fig. 1 Selected additive genetic effects of the SNPs for the simulated QTLMAS2010 data produced with the AUTALASSO. The two largest estimated
effects corresponds well with the simulated effects of the two major controlled QTLs (�) and the third largest effect is close to the additive part of
the dominance QTL (�). The number of non-zero variables is 196
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Fig. 2 Selected dominance genetic effects of the SNPs for the simulated QTLMAS2010 data produced with the AUTALASSO. The three largest
effects corresponds well with the simulated effects of the dominance (�), over-dominance (♦) and under-dominance (�) QTLs. The number of
non-zero variables is 97
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and 13.20, respectively. The corresponding estimates for
rtest were for the ALASSO, LASSO and RR 0.554, 0.579
and 0.554. Hence, the AUTALASSO produces the lowest
prediction error and highest prediction accuracy, but is
somewhat slower than glmnet. Though it should be noted
that glmnet is based on the CCD algorithm and imple-
mented in compiled Fortran which should be faster than
Julia.
Of the original 716 environmental variables were 28

selected by the AUTALASSO as shown in Fig. 3. None of
the 617 repeated measurement indicators were selected.
The three highest positive effects were obtained for vari-
ables 672 (age), 692 (year 2007) and 691 (year 2006),
respectively. Two negative effects also deviate from the
others, variable 711 (semen coll. numb.15) and 689 (year
2004).
The plots of the selected regression coefficients θλopt for

the two SNP homozygotes are provided from the authors.
The additive and dominance effects were calculated in the
same way as for the simulated data. Figure 4 provides a
plot of the additive effects of the Fleckvieh bull data. The
number of selected additive effects was 1116. The max-
imum additive effect was 0.223 for SNP 23194, whereas
the minimum of -0.230 was found for SNP 28087. Figure 5
provides a plot of the dominance effects of the bull data.

The number of selected dominance effects was 1468. The
maximum dominance effect was 0.279 for SNP 17125,
whereas the minimum of -0.254 was found for SNP 26154.

Discussion
One of the major obstacles in using high density genomic
marker data for prediction purposes is that the number
of individuals that can be scored usually is considerably
smaller than the number of markers. This situation intro-
duces several problems. For example, when p > n the
ordinary least squares estimates are not unique and will
considerably over-fit the data resulting in a low predic-
tion accuracy [4]. Other problems with big genome-wide
data sets include spurious random correlations, incidental
endogeneity, noise accumulation, and measurement error
[19]. Regularization provides an efficient technique to
constrain parameters which will lead to unique solutions
and often better prediction accuracy. The most successful
regularization method is the LASSO because it provides
a convex optimization problem with sparse solutions [12].
Here, we have proposed an automatic adaptive LASSO
that uses the ADMM algorithm for computing solutions
to the objective function, line search for tuning of the
learning rate and golden section search for optimization
of the regularization parameter.
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Fig. 3 Selected environmental effects for the real Fleckvieh bull data produced with the AUTALASSO. The three largest positive effects on the
phenotype are due to age, year 2007 and year 2006, whereas the two most negative are semen collector number 15 and year 2004. The number of
non-zero variables is 28
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Fig. 4 Selected additive genetic SNP effects for the real Fleckvieh bull data produced with the AUTALASSO. The largest positive and negative effects
are for SNP 23194 (0.223) and 28087(-0.230), respectively. The number of non-zero variables is 1116
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Fig. 5 Selected dominance genetic SNP effects for the real Fleckvieh bull data produced with the AUTALASSO. The largest positive and negative
effects are for SNP 17125(0.279) and 26154(-0.254), respectively. The number of non-zero variables is 1468
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A large number of methods have been proposed for
genome-wide prediction and several papers have evalu-
ated their predictive properties [20, 21]. Regularization
approaches include ridge regression, the LASSO and mix-
ture modeling. Their Bayesian counterparts are often
referred to as the “Bayesian alphabet” in the genetics lit-
erature [22]. The least angle regression version of the
LASSO was exploited for GWP in [23] and found to
yield better prediction accuracy than genomic BLUP and
BayesA. In another study based on glmnet [14], the
LASSO, the elastic net, adaptive LASSO and the adap-
tive elastic net all had similar accuracies but outperformed
ridge regression and ridge regression BLUP [10]. In [9],
an overview of both the frequentist and Bayesian LASSO
is provided. They found the LASSO and adaptive LASSO
to be competitive compared to several other methods in
evaluations on both simulated and real data. In conclu-
sion, the LASSO seems to be a computationally efficient
method that yields good prediction accuracy on GWP
data under many situations, but it would be valuable to
compile all evaluations into a meta-analysis.
We have calculated both MSEtest and rtest as measures

of model fit and found that they give somewhat contra-
dictory results, especially for the glmnet implementations
where the ordinary LASSO had both higher rtest and
MSEtest than the ALASSO. The standard Pearson corre-
lation coefficient is rtest = σŷtestytest/

(
σŷtestσytest

)
. When we

decompose rtest for the QTLMAS2010 data into its parts,
we see that σytest is the same at 10.83 for both methods.
However, σŷtest is increased from 5.93 in the LASSO to
6.82 in the ALASSO, and σŷtestytest is increased from 43.556
in the LASSO to 49.86 in the ALASSO. The introduc-
tion of the weight factor in the ALASSO increases model
complexity which results in decreased model bias, on the
expense of an increased variance. However, most impor-
tantly, the MSEtest is reduced. This is an example of the
Bias-Variance trade-off that is fundamental in statistical
learning [4]. Unfortunately, this phenomenon can compli-
cate the interpretation of rtest as a measure of model fit
and it should be used with care.
ADMM is a form of a proximal operator algorithm

that has become very popular in mathematical optimiza-
tion [15]. As described in the “Methods” section, we can
see that the ADMM is closely related to the augmented
Lagrangian method, but does not require a joint mini-
mization which facilitate computations in special applica-
tions, for example the LASSO. The ADMM LASSO was
first outlined in [18] and since then there have been exten-
sions to for example the clustering LASSO [24] and the
generalized LASSO [25]. We have used the least squares
(Euclidean) loss function since we perform regression in
this study, but it is straightforward to change to a classifi-
cation loss function (for example logit or hinge loss) in the
case of a binary trait.

Conclusions
The AUTALASSO provides a very flexible and computa-
tionally efficient approach to GWP, especially in situations
were it is important to obtain high prediction accuracy
and genetic gain. The algorithm automatically tunes the
learning rate with line search and the regularization fac-
tor using Golden section search. The results show that
the prediction error is smaller for the AUTALASSO when
compared with the adaptive LASSO, the ordinary LASSO
and ridge regression implemented in the popular glm-
net package, albeit at the expense of some increased
computing time. It is also shown that important SNP
markers can be identified, both with underlying additive
and dominance effects. The implementation in Julia is
easy to modify, and we have hope that future versions of
the AUTALASSO will fully capitalize on the distributed
computing facilities of the ADMM algorithm.

Methods and data
ADMM adaptive LASSO
The LASSO was introduced by [8] and the objective func-
tion of the optimization problem consists of an ordinary
squared �2 (Euclidean) norm loss function and an �1 norm
penalty function

minimize f (β) + g(β) (1)

where f (β) = (1/2)
∥
∥Xβ − y

∥
∥2
2 and g(β) = λ ‖β‖1. In

ADMM form (see Appendix), the LASSO becomes
minimize f (β) + g(θ)

subject to β − θ = 0.
(2)

The ADMM algorithm then is the following iterative
procedure

βt+1 =
(
XTX + ρI

)−1 +
(
XTy + ρ

(
θ t − ut

))

θ t+1 = Sλρ

(
βt+1 + ut

)

ut+1 = ut + βt+1 − θ t+1

(3)

where ρ > 0 is the learning rate, λ > 0 is the regulariza-
tion parameter and Sλρ(ν) = (ν−λρ)+−(−ν−λρ)+ is the
soft-thresholding operator that depends on both ρ and λ.
It is now possible to rewrite this algorithm using proximal
operators (see Appendix)

βt+1 = proxρf
(
θ t − ut

)

θ t+1 = proxλρg
(
βt+1 + ut

)

ut+1 = ut + βt+1 − θ t+1,
(4)

which is iterated to convergence determined by
∥
∥βt+1 − θ t+1∥∥∞ ≤ εADMM

(
1 + ∥

∥μt+1∥∥∞
)

(5)

for tolerance parameter εADMM. The choice of εADMM can
have a dramatic influence on the number of iterations to
convergence and we recommend to set it between 10−3

and 10−4.
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In [26], it was shown that the LASSO can be inconsis-
tent for variable selection under some situations and the
adaptive LASSOwas suggested in order to reduce bias and
full-fill oracle properties (i.e that the estimator satisfies
support and

√
n-estimation consistency). The idea behind

the adaptive LASSO is to use variable specific weights
ŵ = 1/|β̂|γ , where β̂ is estimated based on some pilot run
and γ > 0 a tuning parameter. The OLS estimates of β̂ are
not defined when p > n, but univariate marginal regres-
sion (or covariance) coefficients calculated as β̂ = XTy/n
can be used and yield good recovery properties under
most situations [27]. Moreover, the adaptive lasso penalty
can be seen as an approximation to the �q penalties with
q = 1−γ . Hence, γ = 1 approximates the �0 penalty [12].
This formulation is a great advantage since the penalty
function is still convex and the only part of the objective
function that needs to be changed in the adaptive LASSO
is g∗(β) = λ

∥
∥ŵβ

∥
∥
1.

Automatic tuning of the learning rate and the
regularization factor
Many procedures have been proposed for tuning of the
learning rate ρ in gradient decent algorithms. Since the
proximal gradient is a special case of projected gradients
methods we can use the fact that line search with Armijo
rule can be used for optimization of the learning rate in
this form of constrained optimization [15]. Given that the
projected gradient starts from the current iterate of βt ,
moves in the direction of the negative gradient of the
loss function βt − ρ∇f (βt) and then performs a projec-
tion back to the convex constraint set that holds θ t , a line
search can be formulated by iteratively decreasing ρk until

f
(
θ t

)
> f

(
βt) − ∇f

(
βt)T β +

(
1/2ρk

) ∥
∥βt∥∥2

2 (6)

no longer holds. The gradient is calculated as ∇f
(
βt) =

XT (
Xβt − y

)
. A suitable choice can be to start with ρ0 =

1 and decrease ρk by a factor of 0.5 each kth iteration until
ρK is found. A new ρK is then used in each tth ADMM
update.
The bias-variance tradeoff in statistical learning makes

it necessary to use test (or validation) data to avoid under-
and overfitting [4]. A common approach to find the min-
imum test MSE of a LASSO evaluation is to calculate
the value of the regularization factor where all regres-
sion coefficients of the training data are zero, i.e. λmax =∥
∥XTy

∥
∥∞, and then to evaluate the MSEtest along a path of

equally spaced and decreasing λ-values until an arbitrar-
ily choosen λmin is reached [14]. Often, this amounts to
fitting the LASSO for at least 100 λ-values, and the pre-
cision in finding the optimum depends on how well the
path covers the shape of the test error function around the
minimum.
Another option is to optimize the λ-value using a for-

mal optimization algorithm that minimize the convex test

error function. Here we propose to use the Golden section
search (GSS) which is a technique for finding the mini-
mum of a function by successively narrowing the range of
values inside which the minimum is known to exist [28].
The GSS algorithm is described as follows:
1. Set two bracketing points, for example

λa = 0.001λmax and λb = λmax.
2. Fit the ADMM LASSO with line search to the

training data for λa and λb to obtain θλa and θλb
which are used to predict the squared test errors

SEtest,λa = 1/2
∥
∥Xtestθλa − ytest

∥
∥2
2

SEtest,λb = 1/2
∥
∥Xtestθλb − ytest

∥
∥2
2 .

(7)

3. Set the golden section ratio to ϕ =
(
1 + √

5
)

/2.
4. Let λc = λb−(λb−λa)/ϕ and λd = λa+(λb−λa)/ϕ.
5. Compute both SEtest,λc and SEtest,λd following (7) in

the first iteration. For iterations > 1 calculate
SEtest,λc if flag = 1 and SEtest,λd if flag = 0.

6. If SEtest,λc < SEtest,λd then move λd → λb,
SEtest,λc → SEtest,λd , θλc → θλd . Set flag = 1.
Compute new λc = λb − (λa − λb)/ϕ and
λd = λa + (λb − λa)/ϕ.

7. Otherwise move λc → λa, SEtest,λd → SEtest,λc ,
θλd → θλc . Set flag = 0.. Compute new
λc = λb − (λa − λb)/ϕ and λd = λa + (λb − λa)/ϕ.

8. Repeat 5-7 until (|λd − λc| /((λc + λd)/2)) < εGSS.
9. Calculate λopt = (λc + λd)/2 and perform a final

ADMM run to get θλopt and SEtest,λopt .

The value to choose for the convergence tolerance εGSS
can have a large effect on computing time. For a relatively
good balance between precision and computing time, εGSS
can be set between 0.01 and 0.001. The start values of θ

and β also influence computing time in each ADMM run.
Hence, the θ and β fits in step 5 of the GSS algorithm
are re-used in next iteration to obtain warm-starts, but
the u-vector is set to 0. Warm-starts have been shown to
reduce the number of iterations to convergence in ADMM
considerably [29].

Simulated data
The original data was produced for the QTLMAS2010
work-shop [30]. The total number of individuals is 3226
and they are structured in a pedigree with 5 generations.
The pedigree is founded by 20 individuals (5 males and
15 females), and created assuming that each female mates
once and gives birth to approximately 30 progeny. Five
autosomal chromosomes of length 100Mbp were simu-
lated. A neutral coalescent model was used to simulate
the SNP data. The procedure created 10,031 markers,
including 263 monomorphic and 9768 biallelic SNPs.
The continuous quantitative trait was created from 37

QTLs, including 9 controlled genes and 28 random genes.
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The controlled QTLs included two pairs of epistatic genes
with no individual effects, 3 maternally imprinted genes
and two additive major genes with effects of -3 and 3.
The random genes were selected from the simulated SNPs
and then their effects were sampled from a truncated nor-
mal distribution, and accepted if the absolute value of the
additive effect was smaller than 2. The resulting additive
effects of the random genes varied between -1.98 and 1.93.
Each simulated QTL was surrounded by 19-47 polymor-
phic SNPs (MAF >0.05) positioned within 1 Mb distance
from the QTL. 364 SNPs were in moderate to high LD
with the QTLs.
In addition to the original data, one dominance locus

was positioned at SNP number 9212 on chromosome
5 by giving the heterozygote (1) an effect of 5.00 and
the upper homozygote (2) a value of 5.01 . One over-
dominance locus was produced at SNP 9404 by assigning
the heterozygote an effect of 5.00, and lower homozy-
gote (0) the effect of -0.01 and upper homozygote (2) the
effect of 0.01. Finally, one under-dominance loci was cre-
ated at SNP id 9602 by assigning a value of -5.00 to the
heterozygote, and lower homozygote (0) the effect of -
0.01 and upper homozygote (2) the effect of 0.01. The
values of the genotypes of these new QTLs were added
to the original y-values. MAF cleaning was performed
at the 0.01 level so the final sample of SNPs with 0,1,2
coding was 9723. The SNPs were converted into one-
hot encoding, i.e. indicator variables for each genotype.
Hence, the final number of genomic markers was 29169.
Data from individual 1 to 2326 were used as training data
and from individual 2327 to 3226 (the 5th generation) as
test data.

Real data
The SNP genotype data comes from the bovine 50k Bead-
chip and the phenotypes measured were total number of
spermatozoa in ejaculates during routine artificial insem-
ination programs, both obtained from Austrian Fleck-
vieh bulls [31]. Sperm quality data were obtained from 3
Austrian AI stations: Gleisdorf station in Styria (7704 ejac-
ulates, 301 bulls sampled from 2000 to 2010), Hohenzell
station in Upper Austria (16671 ejaculates, 309 bulls sam-
pled from 2000 to 2009), and Wieselburg station in Lower
Austria (15514 ejaculates, 293 bulls sampled from 2000
to 2009). In addition to year and station were also age of
bull (13 - 161 months), month of year (January - Decem-
ber), period between 2 successive ejaculates (0 - 60 days)
and collector (1 - 17) used as input variables. All vari-
ables, except age of bull and period between successive
ejaculates, were transformed into 0,1 indicator variables
(one-hot encoding). Age of bull and period between suc-
cessive ejaculates were standardized to mean 0 and SD
1, whereas the phenotype total number of spermatozoa
was mean centered. The final number of environmental

variables was 716, where the first 617 corresponds to bull
repeated measurements indicators.
1799 Austrian Fleckvieh bulls were genotyped using

the bovine SNP50 Beadchip v1 (Illumina) which con-
tains 54001 SNPs (50k). Only autosomal SNPs that were
assigned to a chromosome were used. Missing SNP data
were imputed using FImpute [32] and converted to 0,1 and
2 code. SNPs with MAF smaller than 0.01 were removed
resulting in a total of 38871 SNPs. These SNPs were also
converted into indicator variables which produced 116613
markers. Bulls without phenotype measures were also
removed. The final number of bulls was 671 with a total
of 21567 phenotype measures. The data was randomly
divided into 10 repeats (corresponding to 10-fold cross-
validation) of training data with 15097 observations and
test data with 6470 observations.

Implementation
The full automatic adaptive LASSO (AUTALASSO) was
implemented in Julia version 0.6 [33] and uses the
ProximalOperators package for the proximal steps in
the ADMM algorithm. The Julia code used for the
QTLMAS2010 data is provided at: https://github.com/
patwa67/AUTALASSO.
The prediction accuracy of the AUTALASSO was com-

pared with the R implementation of an adaptive LASSO
(ALASSO), the ordinary LASSO (LASSO) and ridge
regression (RR) using the glmnet package with default set-
tings [14]. For comparative purposes were both MSEtest
and Pearson correlation coefficient (rtest) calculated. The
evaluations were performed on an Intel Xeon E5 4-Core
3.7GHz with 256GB RAM.

Appendix
Proximal operators
A proximal operator proxf is used to evaluate a closed
and proper convex function f (β) of a specific optimization
subproblem that is assumed to be easier to solve than the
original problem. By iteratively evaluating proximal oper-
ators on subproblems, a proximal algorithm converges to
the solution of the original problem [34]. The proximal
operator is defined as

proxf (θ) = argmin
β

(
f (β) + (1/2) ‖β − θ‖22

)
(8)

where ‖·‖2 is the Euclidean norm, and β and θ are vec-
tors of length p. The right hand side of the argument is
strongly convex so it has a unique minimizer for every
θ ∈ Rp. A scaled version of (8) is obtained by introducing
parameter λ > 0 resulting in λf where (1/2) is replaced by
(1/2λ). This definition indicates that proxf (θ) is a point
that compromises between minimizing f and being close
to θ . λ can be seen as a trade-off parameter between these

https://github.com/patwa67/AUTALASSO
https://github.com/patwa67/AUTALASSO
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two terms. Another key property is for separable sum
functions f (β , θ) = g(β) + h(θ) where splitting leads to

proxf (β , θ) = proxg(β) + proxh(θ). (9)

Finally we note that there is a near relationship between
proximal operators and gradient methods where

proxλf (β) ≈ β − λ∇f (β) (10)

when λ is small and f (β) is differentiable. In this formula-
tion, ∇ denotes the gradient and λ is an equivalent to the
learning rate of a gradient optimizer [16].

Alternating direction method of multipliers (ADMM)
The alternating direction method of multipliers (ADMM)
is a simple but powerful algorithm that is appropriate for
distributed convex optimization, and specifically to prob-
lems in statistics and machine learning. It is based on
decomposition of a large global problem into small local
coordinated subproblems to find a solution [18].
In order to understand the ADMM, it is useful to

introduce the methods of dual ascent and augmented
Lagrangians. For the convex optimization problem

minimize
β

f (β)

subject to Xβ = y
(11)

the Langrangian will be

L(β , θ) = f (β) + θT (Xβ − y) (12)

and the dual function is

g(θ) = inf
β
L(β , θ) = −f ∗ (

−XTθ
)

− yTθ (13)

where X is a matrix of size n × p, y is a vector of length n,
θ is the dual variable and f ∗ is the convex conjugate of f.
The dual problem is to maximize g(θ). In dual ascent the
dual problem is solved using gradient ascent. If the dual
function is differentiable the following iterating scheme
describes dual ascent

βt+1 = argmin
β

L
(
β , θ t

)

θ t+1 = θ t + ρ
(
Xβt+1 − y

) (14)

where ρ > 0 is the learning rate and t is the iteration num-
ber. The first step of (14) is a β-minimization step and the
second step is a dual variable update. If ρ > 0 is adequately
chosen and several assumptions hold, then βt converges
to an optimal point and θ t converges to an optimal dual
point.
Augmented Lagrangian methods were partly developed

to make the dual ascent method more robust in situations
where the objective function lacks strict convexity. The
augmented Lagrangian for (11) is

Lλ(β , θ) = f (β)+θT (Xβ −y)+ (λ/2)
∥
∥Xβ − y

∥
∥2
2 (15)

where λ is the penalty parameter. The augmented
Lagrangian can be used in an iterative procedure denoted
the method of multipliers

βt+1 = argmin
β

Lλ

(
β , θ t

)

θ t+1 = θ t + λ
(
Xβt+1 − y

) (16)

which is the same as dual ascent, except for the augmented
part of the Lagrangian and the use of λ as step size. The
method of multipliers has better convergence properties
than dual ascent.
By extending the parameter space into β and θ , the opti-

mization problem for the ADMM algorithm can now be
rewritten as

minimize
β

f (β) + g(θ)

subject to Xβ + Zθ = y
(17)

where the augented Lagrangian is

Lλ(β , θ ,μ) = f (β) + g(θ) + μT (Xβ + Zθ − y)

+ (λ/2)
∥
∥Xβ + Zθ − y

∥
∥2
2

(18)

and the iterative ADMM algorithm becomes

βt+1 = argmin
β

Lλ

(
β , θ t ,μt)

θ t+1 = argmin
θ

Lλ

(
βt+1, θ ,μt)

μt+1 = μt + λ(Xβt+1 + Zθ t+1 − y)

(19)

Noting that the primal residual is e = Xβ + Zθ − y and
the scaled dual variable is u = (1/λ)/μ a scaled version of
(19) can be obtained as

βt+1 = argmin
β

(
f (β) + (λ/2)

∥∥Xβ + Zθ t − y + ut
∥∥2
2

)

θ t+1 = argmin
θ

(
g(θ) + (λ/2)

∥
∥Xβt+1 + Zθ − y + ut

∥
∥2
2

)

ut+1 = ut + Xβt+1 + Zθ t+1 − y
(20)

and rt+1 = λXTZ(θ t+1 − θ t) can be interpreted as a dual
residual. It can be shown that both rt and et approach zero
at convergence [16].
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