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Abstract

Background: Lipid metabolism reprogramming is a hallmark for tumor which contributes to tumorigenesis and
progression, but the commonality and difference of lipid metabolism among pan-cancer is not fully investigated.
Increasing evidences suggest that the alterations in tumor metabolism, including metabolite abundance and
accumulation of metabolic products, lead to local immunosuppression in the tumor microenvironment. An
integrated analysis of lipid metabolism in cancers from different tissues using multiple omics data may provide
novel insight into the understanding of tumorigenesis and progression.

Results: Through systematic analysis of the multiple omics data from TCGA, we found that the most-widely altered
lipid metabolism pathways in pan-cancer are fatty acid metabolism, arachidonic acid metabolism, cholesterol
metabolism and PPAR signaling. Gene expression profiles of fatty acid metabolism show commonalities across pan-
cancer, while the alteration in cholesterol metabolism and arachidonic acid metabolism differ with tissue origin,
suggesting tissue specific lipid metabolism features in different tumor types. An integrated analysis of gene expression,
DNA methylation and mutations revealed factors that regulate gene expression, including the differentially methylated
sites and mutations of the lipid genes, as well as mutation and differential expression of the up-stream transcription
factors for the lipid metabolism pathways. Correlation analysis of the proportion of immune cells in the tumor
microenvironment and the expression of lipid metabolism genes revealed immune-related differentially expressed lipid
metabolic genes, indicating the potential crosstalk between lipid metabolism and immune response. Genes related to
lipid metabolism and immune response that are associated with poor prognosis were discovered including HMGCS2,
GPX2 and CD36, which may provide clues for tumor biomarkers or therapeutic targets.
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Conclusions: Our study provides an integrated analysis of lipid metabolism in pan-cancer, highlights the perturbation
of key metabolism processes in tumorigenesis and clarificates the regulation mechanism of abnormal lipid metabolism
and effects of lipid metabolism on tumor immune microenvironment. This study also provides new clues for
biomarkers or therapeutic targets of lipid metabolism in tumors.
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Introduction
Reprogramming of cellular metabolism is a well-established
hallmark of tumor that has attracted increasing attention in
the recent years [1]. Among the most important biology
components, lipids have many key biological functions, i.e.
acting as cell membrane components, serving as energy
storage sources and participating in cell signaling [2, 3].
The perturbations of lipid metabolism in cancer cells may
alter cellular function dramatically. Metabolic reprograming
also provides critical information for clinical oncology, and
the recent study from the pan-cancer study showed a clin-
ical relevance of metabolic expression subtypes in human
cancers [4]. Over the past few decades, many important
discoveries regarding genes that regulate lipid synthesis and
degradation have led to the current understanding of the
complex biochemical reactions in the metabolism transduc-
tion pathways. However, different types of lipids may have
different features in different cancer types. Up to now, there
is still no comprehensive study of the lipid metabolism in
pan-cancer.
Furthermore, increasing evidences suggest that the alter-

ations in tumor metabolism can also contribute to the in-
hibition of the antitumor response. Immunosuppression
in the tumor microenvironment (TME) is suggested to be
based on the mutual metabolic requirements of immune
cells and tumor cells [5]. Abnormal lipid metabolism
occurres not only in tumor cells but also in TME. A previ-
ous study demonstrated the deletion of 5-Lipoxygenase in
the TME promoted lung cancer progression and metasta-
sis through regulating T Cell recruitment [6]. Thus, the
investigation of the lipid metabolism features as well as
the crosstalk between the lipid metabolism and the tumor
immune microenvironment could help us to understand
the tumorigenesis in the solid tumors.
In the past 10 years, multiple omics data for different

tissue-origin tumors have been generated in The Cancer
Genome Atlas (TCGA) project, which provides a rich re-
source for understanding tumor features. According to the
tumor origin, tumors are classified into pan-gastrointestinal,
pan-gynecological, pan-kidney and pan-squamous tumors
etc. However, recent studies have shown both commonal-
ities and differences in genetic mutations [7] exist among
different tissue-origin tumors. The integrative analysis of
gene expression, mutation and DNA methylation could not

only draw a landscape of the alteration of lipid metabolism
pathways, but also give clues to the regulation of lipid
metabolism. A comprehensive analysis of lipid metabolism
in different tissue specific cancers using multiple omics data
may provide novel insights in tumorigenesis and progres-
sion. At the same time, tools or algorithms were developed
in characterizing cell composition of complex tissues from
their gene expression profiles, especially for the immune cell
compositions, such as CIBERSORT [8] and TIMER [9]. The
data resources and tools may help us to study the lipid
metabolism features and their relations to the immune
microenvironments. In the present work, we explored the
key altered lipid metabolism pathways in pan-cancer, and
investigated the regulation of these pathways through the in-
tegration of mutation, DNA methylation and transcription
factors. We also analyzed the crosstalk of the key altered
lipid pathways with other oncogenic pathways, as well as the
correlation of the expression of lipid metabolism genes with
the proportions of immune cells in the TME and prognostic
effects of genes in the lipid metabolism pathways.

Results
Key altered lipid metabolism pathways in pan-cancer
Sixteen solid tumor types were selected in the present study
with a criterion of the number of para-tumor samples in
RNA level over ten samples, namely BLCA, BRCA, COAD,
ESCA, HNSC, KICH, KIRC, KIRP, LIHC, LUAD, LUSC,
PARD, READ, STAD, THCA and UCEC. Differentially
expressed genes were detected in each tumor type
comparing the tumor samples with the paired adjacent
normal tissue samples respectively using edgR [10].
Pathway enrichment analysis (Fisher exact test, Benjamini
& Hochberg adjustment) was performed according to the
differentially expressed genes with the background pathway
database KEGG. From the twenty-one selected
lipid-metabolism-related pathways (Additional file 1), the
result shows that the most widely and significantly altered
lipid metabolism or related signaling pathways in
pan-cancer are PPAR signaling, fatty acid degradation,
arachidonic acid metabolism pathway and cholesterol
metabolism pathway (Fig. 1a). Unsupervised clustering of
the pan-cancer by the pathway enrichment false discover
rate (FDR), shows that similar lipid metabolism features are
shared among the similar tissue origin tumors. For

Hao et al. BMC Bioinformatics 2019, 20(Suppl 7):195 Page 30 of 151



Fig. 1 Alterations in the lipid metabolism pathways and the crosstalk with other pathways. a Heatmap of the enrichment significance score
(colored by FDR) of lipid metabolism pathways from the KEGG pathways in pan-cancer. b, (c) and (d) Heatmaps of differentially expressed genes
(blue: down-regulation; red: up-regulation) related fatty acid metabolism, cholesterol metabolism and arachidonic acid metabolism in pan-cancer.
Significantly differentially expressed genes were highlighted with * (FDR < 0.05). e The network of lipid metabolism pathways with other pathway
with shared differentially expressed genes. Pathways were colored by their pathway categories
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example, the pan-kidney cancers or tumors from urologic
organism show similar lipid metabolism pattern including
the significantly altered cholesterol metabolism, PPAR sig-
naling pathway and arachidonic acid metabolism (Fig. 1a).
The lung cancers such as LUAD and LUSC also show simi-
lar lipid metabolism pattern.
We next analyzed the gene expression landscape of the

key altered lipid metabolism pathways. It can be observed
that the fatty acid metabolism process shows common fea-
tures among various tumor types. Unsupervised clustering
of genes expression alterations in fatty acid metabolism
pathway reveals that genes which regulate the beta oxida-
tion process in mitochondrion are dominantly
down-regulated in most of the cancer types. Inversely, the
genes specific for fatty acid biosynthesis were dominantly
up-regulated in tumor samples compared to adjacent nor-
mal samples (Fig. 1b), suggesting an accumulation of fatty
acid in tumor cells. The gene expression in the cholesterol
metabolism pathway showed tumor specificity. Clustering
pan-cancer based on the cholesterol metabolism pathway,
three sub-groups can be classified, including the
pan-kidney cancer (KICH, KIRC and KIRP) group, the
pan-gynecological (BRCA, UCEC) and pan-gastrointestinal
cancers (STAD, COAD and READ) group, and the third
group including LUAD, LUSC, HNSC, PRAD, ESCA, LIHC
and THCA (Fig. 1c). The alteration of arachidonic acid me-
tabolism pathway also shows strong tissue specificity in dif-
ferent cancers. The arachidonic acid metabolism pathway
can be divided into four sub-processes, including the gener-
ation of arachidonic acid catalyzed by phospholipase A2
(PLA2), and the production of downstream products by
various enzymes, including the production of prostaglan-
dins by the catalysis of cyclooxygenases (COXs), the pro-
duction of leukotriene and hydroperoxyeicosatetraenoic
acids (HETEs) by lipoxygenases (LOXs) and the production
of several HETEs and epoxyeicosatrienoic acids (EETs) by
cytochrome P450 (CYP450) epoxygenases enzymes [11].
Our results revealed that in the arachidonic-acid-producing
process, the key regulation gene PLA2G10 was significantly
up-regulated in KIRC, KICH, THCA, BRCA, UCEC and
LUAD, while down-regulated in COAD, READ and LUSC
(Fig. 1d). Regarding the effects of PLA2, we found that in
LIHC, only significantly up-regulated genes were observed
in arachidonic acid producing process, suggesting the
over-production of arachidonic acid in LIHC. For the pro-
duction of HETEs and EETs, CYP450 family genes play im-
portant roles. In HNSC, ESCA, STAD, LIHC and the
pan-kidney tumors, CYP450 family genes were dominantly
down-regulated, indicating the functional reduction of the
HETEs and EETs production. These results reveal different
types of lipids show different expression features in
pan-cancer.
To further investigate the potential influence of lipid me-

tabolism in cancer, we investigated the crosstalk between the

four widely significantly altered pathways and other pathways
by comparing the shared differentially expressed genes. We
found that the alteration of the lipid metabolism pathways
can affect metabolism, signaling transduction and immunity.
Specifically, the alteration of fatty acid degradation is also
companioned with other metabolism pathways such as
amino acid metabolisms and xenobiotics, as well as the
cAMP signaling pathway. The alteration of arachidonic acid
metabolism can not only affect other metabolism process,
but also accompanied the alteration of signaling pathway
such as the MAPK signaling pathway. The differentially
expressed genes in the cholesterol metabolism pathway can
also modulate multiple signaling pathways such as PI3K-Akt
signaling, calcium signaling, cGMP-PKG signaling pathway
etc., impling its important role in signaling modulation. The
alteration in the cholesterol metabolism pathway may also
side with the ECM-receptor interaction and the immune sys-
tems (e.g. Hematopoietic cell lineage), revealing its role in
cell attachment and immune-effects. As a key modulation
signaling pathway, the PPAR signaling can modulate the fatty
acid metabolism, arachidonic acid metabolism and choles-
terol metabolism (Fig. 1e).

The regulation of lipid metabolism pathways
(methylation/ mutation/transcription)
To examine the molecular mechanisms underlying the
transcriptional regulation of the lipid genes in cancer, we
further integrated DNA methylation, somatic mutation and
mRNA expression data. We mainly focused on how fatty
acid metabolism, arachidonic acid metabolism, cholesterol
metabolism and PPAR signaling pathway were altered in
pan-cancers in multiple omics level. Firstly, we explored
the effect of DNA methylation on gene expression for the
lipid metabolism genes. Based on the same tissue samples,
we detected differentially methylated sites comparing the
DNA methylation profiles in tumor with the adjacent nor-
mal tissues. A former study has shown that abnormal DNA
methylation in the promoter region has a more important
regulatory effect on gene expression than non-promoter re-
gions [12], and cis-regulation was dominated by the nega-
tive correlation between promoter methylation and gene
expression [13]. We detected the differentially methylated
CpG sites (q-value < 0.05, dbeta > 0.1) that mapped on the
promoter regions and significantly negatively correlated
with the differentially expressed genes. Averaging of differ-
ential methylation sites located on the same gene that were
negatively correlated with the expression of the differen-
tially expressed genes in the four pathways were shown in
Fig. 2a. It can be observed that some of the differentially
expressed lipid metabolism genes were regulated by DNA
methylation. i.e., APOA1, which has anti-inflammatory and
antioxidant properties [14], was reduced in gene expression
associated with hyper-methylation of its promotor region in
cholesterol metabolism pathway, which could accelerate
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tumor growth and metastasis primarily via modulation of
innate and adaptive immune responses in tumors [15, 16].
PLA2 (PLA2G4F), which catalyzes the hydrolysis of mem-
brane phospholipids to release arachidonic acid (AA), was
up-regulated in BRCA and UCEC (pan-gynecological) ac-
companied with DNA hypo-methylation, inversely,
down-regulated in KIRC and KIRP (pan-kidney) accom-
panied with hyper-methylation in the promoter regions, re-
spectively. The differential methylation pattern supports
the tissue specific expression landscape of lipid metabolism
pathways.

Next, we identified somatic alternations that potentially
regulated lipid metabolism. (See Additional file 2) depicted
the lipid genes with mutation frequency of more than 2%
and differently expressed in the four significantly altered
lipid-metabolism pathways in pan-cancer. More
high-frequency-mutated genes were observed that accom-
panied with dysregulated mRNA expression in UCEC,
while fewer genes were observed in KICH, KIRC and
KIRP. Notably, some genes with high frequency mutation
also showed consistent gene differential expression pat-
terns across pan-cancer. i.e., ACACB and RXRG were

Fig. 2 Multiple mechanisms contribute to dysregulation of lipid metabolism genes in cancer. a Pearson correlation estimation (p < 0.05) of the
association between mRNA expression and DNA methylation in the promoter region across pan-cancer. b Gene mutation versus its mRNA
expression (red color represents there is significant (wilcox test, p < 0.05) difference of the mRNA expression between the mutated group and the
non-mutated group, while grey color represents that no significant difference observed between the mutated group and the non-mutated
group. To perform statistic testing, the number of samples in either the mutated group or the non-mutated group should be greater or equal to
three. The white color represents the gene is with less than three mutated samples.). c Transcription factor mutation versus targets expression
(Color as the same as B). d Pearson correlation estimates of association between the expression of transcript factors and their target genes across
pan-cancer. The circle size is proportional to the significance level of correlation results
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with high mutation frequency and down-expressed in
most cancer types, including UCEC, LUAD, LUSC,
COAD, BLCA and HNSC. As gene mutations commonly
occurred in a part of the tumor samples, we further inves-
tigated whether the expression of genes was directly asso-
ciated with mutations in tumor samples. Candidate lipid
genes with mutations in at least three tumor samples were
selected, grouped by gene mutations. Wilcox test was per-
formed to detect the difference between mutanted and
non-mutated groups (Fig. 2b). In BRCA, COAD and
STAD, some mutated genes are significantly correlated
with mRNA expression. Compared with mRNA expres-
sion profile, we found the over-expression of FADS2 and
ELOVL4, and the low-expression of CD36 and LRP1 in
BRCA were associated with the somatic mutations of the
same genes. The over-expression of LIPG in COAD and
PCSK9 in STAD, the low-expression of HMGCS1 in
LUAD and ACACB in STAD may also be regulated by
gene mutations.
Mutation and differential expression of transcription

factors could also be critical factors for the regulation of
lipid metabolism. In the present study, we selected tran-
scription factor and target gene pairs from TRANSFAC
[17] (Additional file 3). Firstly, we analyzed the effect of
mutations of transcription factors on the expression of
target lipid-related genes. The pan-cancer map of mutated
transcription factors significantly associated (Wilcoxon
signed-rank test) with targeted lipid genes expression is
shown in Fig. 2c. The mutations of SREBF1, SREBF2 and
TP53 show significant impacts on downstream targeted
lipid genes, especially in the downstream target genes in
cholesterol metabolism pathway. In addition, the mutation
on SREBF1 was also associated with the expression of
ACACB and SCD, which are important enzymes in fatty
acid beta-oxidation and the synthesis of unsaturated fatty
acids processes, respectively. In BRCA, HNSC, THCA and
LUSC, TP53 mutation regulated the expression of LRP1,
the up-regulation of LRP1 has been reported to be associ-
ated with the invasiveness of cancer cells by supporting
ERK and inhibiting JNK signaling pathways [18, 19].
Secondly, we analyzed the Pearson correlation of the
expression levels between the transcription factors and
downstream targets in tumor samples. Figure 2d shows
the differentially expressed transcription factors which are
significantly associated with the expression of the targeted
lipid-metabolism genes (absolute Pearson correlation >
0.2, p-value < 0.01). The expression of SREBF1 is closely
associated with targeted lipid-metabolism genes in fatty
acid metabolism and cholesterol metabolism pathway. It
indicates that the up-regulation of SREBF1 promoted the
de novo synthesis of fatty acids associated with the upreg-
ulation of ACLY, FASN and SCD, increased cholesterol
uptake into hepatocytes associated with the upregulation
of PCKS9, modulated the fatty acid oxidation in

mitochondria associated with the down-regulation of
ACACB in most cancers (Fig. 2d, Additional file 4).
Similarly, the abnormal expression of SREBF2 also signifi-
cantly affected the imbalance of cholesterol metabolism
and arachidonic acid metabolism.
Strikingly, based on the integration analysis of

multi-omics data, we found that many regulatory factors
lead to the same result. In COAD, the significant
up-regulation of TBXAS1 expression is affected by
hypo-methylation of the DNA promoter region and asso-
ciated with mutation of the upstream transcription factor
NFE2. In LIHC, the significant downregulation of LDLR
expression may be modulated by the hyper-methylation of
the DNA promoter region, the mutation of the upstream
transcription factor SP3, and the down-regulation of the
transcription factor EGR1. These results provide a more
comprehensive and illustrative mechanism of tumor lipid
metabolism abnormalities.

The correlation between lipid metabolism and the
immune cells in tumor micro-environment
The proportion of immune cells in the tumor microenvi-
ronments of the sixteen tumors were estimated using
CIBERSORT [20]. We found that the Macrophages M0, T
cell CD4 memory resting and Macrophages M2 were
among the highest-proportion immune cells across all the
sixteen tumor types. While, Eosinophils, Neutrophils, T
cells gamma delta, B cells memory and T cells CD4 naive
are among the lowest-proportion immune cells (Fig. 3a).
Unsupervised clustering of the immune cell proportions
can classify the pan-cancers into three sub-groups. The
pan-kidney cancer (KICH, KIRC and KIRP), LIHC and
PRAD were clustered in to one sub-group featured with
high proportion of T cells CD4 memory resting. HNSC,
COAD, LUSC, BRCA, LUAD, BLCA and THCA were clus-
tered into another subgroup featured with high proportion
of Macrophages M0, and the other cancer types including
pan-gastrointestinal (ESCA, READ and STAD) fall into the
third group. To further explore the relation between lipid
metabolism and the immuno-microenvironment, Pearson
correlation between expression values of the lipid genes
and the immune cell proportions were carried out. Genes
that are significantly correlated with at least one of the 22
immune cells and significantly differentially expressed were
further used to perform pathway enrichment analysis. The
enrichment score (FDR) of the 21 selected lipid metabolism
pathways were shown in Fig. 3b. It can be observed that the
differentially expressed lipid metabolism genes which were
significantly correlated with tumor immune environments
were enriched in the cholesterol metabolism pathway and
arachidonic acid pathway. We further selected the most sig-
nificantly correlated genes with absolute correlation coeffi-
cient greater than or equal to 0.7 in the four significantly
altered lipid metabolism pathways (Additional file 5). The

Hao et al. BMC Bioinformatics 2019, 20(Suppl 7):195 Page 34 of 151



highly correlated lipid-metabolism genes with the immune
cell proportions in the four pathways are shown in Fig. 3c,
including ANGPTL3, PLTP and LRP2 in the cholesterol
metabolism pathway, PLA2G5, CYP2B6 and GPX2 in the
arachidonic acid metabolism pathway, HMGCS2 and
FABP2 etc. in the PPAR signaling pathway, OLAH and
SCD5 etc. in the fatty acid metabolism indicating their roles
in altering the TME. We further assessed the correlation of
the expression level of transcription factors which regulate
lipid metabolism and the proportion of immune cells.
Transcription factors associated with immune cells were se-
lected with the thresholds of absolute correlation coefficient
greater than 0.5 and FDR < 0.05 in at least two tumor types,
as shown in Fig. 3d. Specifically, we found that the tran-
scription factor STAT1, which is a key regulator for the
cholesterol metabolism and arachidonic acid pathway, was
significantly correlated with the proportion of T cells CD4
memory activated, T cells CD8 and Macrophages M1, im-
plying its role in regulating the immune microenvironment
by acting on lipid metabolism.

Prognosis impacts of lipid metabolism
To investigate the prognosis impact of lipid metabolism, es-
pecially genes in the four most widely significantly altered
pathways, we classified samples from each of the sixteen
cancer types into two groups according to the median value
of the gene expression for each gene. Log-Rank test was

performed to estimate the difference between the survival
time of the two groups. The lipid-metabolism related genes
with significantly prognosis impact were shown in Fig. 4a
(p-value < 0.05). High-expression of FADS1, FADS2, FASN
and ACOT7 in the fatty acid metabolism pathway, GPX8,
PTGES3 and PTGIS in the arachidonic acid metabolism
pathway, SQLE, VDAC1, CD36, LDLR, LRP1 and VAPA in
the cholesterol metabolism pathway and MMP1, OLR1 in
the PPAR signaling pathway significantly reduced the over-
all survival of patients. While down-regulation of genes
such as CYP4A11, PLA2G4A, PLA2G3, LTC4S, CYP27A1,
HMGCS2 and PDPK1 reduced patient overall survival time
in most tumor types. Taking the differential expression be-
tween tumor and adjacent normal samples into consider-
ation, it can be observed that the lipid-metabolism related
genes, such as MMP1, HMGCS2 and AKR1C3, may not
only be diagnosis markers for tumors but also may act as
prognosis biomarkers in different tumor samples. These re-
sults indicate that abnormal lipid metabolism in tumors
may play crucial roles in patient survival.
Furthermore, we found three lipid-metabolism related

genes HMGCS2, GPX2 and CD36 associated with the
tumor immune microenvironment were significantly cor-
related with prognosis (Fig. 4b, c and d). Low expression
of HMGCS2 was associated with poorer survival time in
KIRC. High expressions of GPX2 and CD36 were associ-
ated with poorer survival in KIRP and BLCA, respectively.

Fig. 3 The correlation between lipid metabolism and the immune cells in tumor micro-environment. a Heatmap of the average proportion of
the immune cells (colored by proportion) in pan-cancer. b Heatmap of enrichment significance of lipid metabolism related pathways from KEGG
pathways for the differentially expressed lipid metabolism genes which are significantly related immune in pan-cancer (colored by FDR, red
represented significant enrichment (FDR < 0.05) and grey represented the non-significant enrichment (FDR > = 0.05)). c Pearson correlation
between the expression of differentially expressed lipid metabolism related genes and the proportion of immune cell in pan-cancer. d Pearson
correlation between the expression of differentially expressed transcription factors and the proportion of immune cell for pan-cancer
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These results may provide important biomarkers for the
potential prognosis and treatment of cancers from an im-
mune aspect.

Discussion
This comprehensive integrated analysis of pan-cancer en-
hances our understanding of the lipid metabolism dysregula-
tion molecular events relevant to multiple cancer types. Our
analysis highlights the most widely significantly perturbed
lipid metabolic pathways in cancers, including PPAR signal-
ing, fatty acid degradation, arachidonic acid metabolism
pathway and cholesterol metabolism pathway. The synthesis
and degradation of fatty acids which provide the material
and energy base for tumors, the metabolism of arachidonic
acid produces different inflammatory cytokines, the choles-
terol metabolism may influence many signaling pathways
and the PPAR signaling pathway can directly regulate other
lipid metabolism pathways. Based on the analysis of gene ex-
pression profiling for multiple tumors, the metabolic pro-
cesses of fatty acids appeared to be altered in a more
consistent way in most tumors, including the attenuation of
fatty acid beta oxidation process in mitochondrion and en-
hancement of fatty acid de novo biosynthesis in tumor sam-
ples, suggesting an accumulation of fatty acid in tumor cells,
which support the synthesis of cell membranes and cell

division requirements. The alteration of arachidonic acid me-
tabolism pathway and cholesterol metabolism show strong
tissue specificity, which may reflect the different inflamma-
tory or immune environments in different types of tumors.
By exploring the regulation of gene expression in lipid me-
tabolism, the integrated analysis of DNA methylation, muta-
tion and the expression of transcription factors provide
further evidence for the lipid metabolism. Different expres-
sion pattern in different lipids metabolism pathways may be
influenced by their micro-environments. Further correlation
analysis between the gene expression of lipid-metabolism
genes and the immune cell proportions in the tumor im-
mune microenvironments further provides clues for the rela-
tion between lipid metabolism and the immune
microenvironments. For example, the expression of tran-
scription factor STAT1 which modulate the cholesterol me-
tabolism and arachidonic acid pathway, was correlated with
several types of immune cells in the tumor immune micro-
environment. Following prognosis analysis revealed that sev-
eral lipid-metabolism genes may not only be diagnosis
biomarkers for tumors but may also be prognosis bio-
markers, such as MMP1 and HMGCS2. It has been reported
that MMP1 overexpression has an important role in promot-
ing tumor cell invasion [21] and HMGCS2 silence promoted
tumor cells metastatic via Epithelial-Mesenchymal

Fig. 4 Prognosis impact of genes in key lipid metabolism pathways. a Genes in the four key altered lipid metabolism pathways which are
associated with prognosis. Red represents high gene expression significantly reduces the patient’s overall survival time and blue represents low
gene expression significantly reduces the patient’s overall survival time. b, (c) and (d) Kaplan-Meier survival curve for tumors stratified by high or
low expression levels of (b) HMGCS2, (C) GPX2 and (d) CD36 (the high or low expression level groups were stratified by the median expression
value). P-value indicates significance levels from the comparison of survival curves using the Log-rank test
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Transition (EMT) process and the activation of ERK/c-Jun
signaling pathway [22]. We also revealed lipid metabolism
biomarkers that were closely correlated with the tumor im-
mune microenvironment, such as CD36. Former research
investigated that the increased expression of CD36 promotes
tumor metastasis, and mediates a pro-apoptotic effect in
ovarian tumor cells [23]. Genetic depletion of the fatty acid
translocase CD36 inhibits the induction of immunosuppres-
sive function in tumor-infiltrating Myeloid-derived suppres-
sor cells (MDSC) and results in a CD8+ T cell-dependent
delay in tumor growth [24].
Our results provide a comprehensive analysis of lipid me-

tabolism in tumors and explored the association between
lipid metabolism and immune environments, which could
further provide clues for lipid-metabolism based diagnosis
biomarker discovery and prognosis biomarker develop-
ment. There are still some limitations in the present study.
The correlation analysis between the gene expression of the
lipid metabolism genes and the proportions of immune
cells implys their association, however, generating such data
is not enough to capture detailed interaction. Whether ab-
normal lipid metabolism is a driving force for immune
microenvironment formation or whether abnormal im-
mune microenvironment can lead to abnormal lipid metab-
olism still need to be validated experimentally.

Conclusion
Based on multi-omics data of pan-cancer, we found widely
alterations of fatty acids, arachidonic acid and cholesterol
metabolism and PPAR signaling in different tumors, and
similar lipid metabolism features are shared among the
similar tissue origin tumors. In the process of studying the
mechanism of abnormal regulation of expression profile,
we correlated possible causes of metabolic disorders of
lipids in tumors from several aspects: somatic mutation,
DNA methylation abnormality and regulation of tran-
scription factors. This would contribute to providing clues
to support the further molecular regulatory experiments.
Our analysis revealed potential correlation between lipid
metabolism and immune response. In addition, we also
found genes related to lipid metabolism and immune re-
sponse that are associated with poor prognosis. It is of
great significance to molecular targeted therapy for tu-
mors and development of new anti-cancer drugs. In con-
clusion, integrated analytic approaches have been applied
to multiple data platforms from a large set of clinically an-
notated multiply tumor cases to provide a better under-
standing of lipid dysregulation molecular targets that may
lead to improved therapeutic strategies.

Methods
Data acquisition
Multiple omics data including gene expression data nor-
malized by RSEM from Illumina HiSeq RNASeqV2,

DNA methylation data from the Human Methylation450
assay, DNA mutation data and clinical data were down-
loaded from Broad GDAC Firehose [25]. Sixteen solid
tumors with sample size of adjacent normal samples
over 10 were selected in this study, including BLCA,
BRCA, COAD, ESCA, HNSC, KICH, KIRC, KIRP, LIHC,
LUAD, LUSC, PRAD, READ, STAD, THCA and UCEC.
Gene expression data (Raw counts and FPKM) were
downloaded from GDC Data Portal [26]. The Human-
Methylation450 assay obtained as the DNA methylation
status (β values) range from zero to one, with scores of
“0” indicating no DNA methylation and scores of “1” in-
dicating complete DNA methylation.

Differential gene expression analysis
Genes were taken into consideration for differentially
expressed gene calculation, with a minimum sample size
with detection over six and over a quarter of the total
sample size. Differential expressed genes between tumor
and paired adjacent normal samples were detected using
edgeR [10] using the gene expression data of raw counts.
A threshold of FDR less than 0.01 and the absolute log2
fold-change greater than 1 were used for defining differ-
entially expressed genes.

Pathway enrichment analysis
Pathway enrichment analysis was performed using fisher
exact test followed by Benjamini & Hochberg test based on
KEGG pathways using the differentially expressed genes for
each tumor. Pathways with FDR less than 0.05 were consid-
ered to be significantly enriched pathways. According to
KEGG pathway categories, lipid metabolism pathways were
selected in the category of Metabolism and Organismal sys-
tems, as listed in Additional file 1. Pathway enrichment score
for the lipid metabolism pathways were plotted in Fig. 1a
using ‘pheatmap’ in R package according to the FDRs.

Differential DNA methylation analysis
To study the differentially methylated sites between tumor
and adjacent normal tissue, we used the Bioconductor
tool, minfi [27] for differential methylation analysis.
Probes which had “NA”-masked data points or located on
sex chromosomes were eliminated. For a CpG site to be
considered differently methylated, the difference in the
median value between the tumor and the paired normal
samples (dbeta) should be more than 0.1 and q value less
than 0.05 were considered statistically significant.

Integrated analysis of methylome and transcriptome
For analyzing the effect of methylation on gene expression,
only CpG sites located in the promoter region (TSS1500,
TSS200, and 5′ UTR) which showed differential methylation
were taken into consideration. For specific gene in one can-
cer type, hypo-methylation in the gene promoter region and
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over-expression, or hyper-methylated in the promoter region
and down-expression were considered as positively regula-
tions [28]. Pearson correlation between gene expression and
averaging of gene-associated probes was evaluated.

Integrated analysis of somatic mutations and transcriptome
For a specific gene, the mutations on the gene may influ-
ence its expression. To investigate the effect of somatic
mutations on gene expression, we grouped the tumor
samples according to mutations for each gene, then Wil-
coxon signed-rank test was used to identify the differ-
ence of gene expression between the mutated group and
the non-mutated group. On the other hand, gene muta-
tions in the transcription factors may also influence tar-
gets. The transcription factor and target gene pairs were
extracted from TRANSFAC database [29]. To evaluate
the effect of mutation in transcription factors to the ex-
pression of downstream targets, we classified samples
according the mutation states of specific transcription
factors. The Wilcox test was also used to identify the ex-
pression difference of the gene expression level of tar-
gets. For the above analysis, genes with mutations in at
least three tumor samples were taken into consideration.
P-value < 0.05 were considered statistically significant.

Correlation analysis between transcription factors and
targets
To investigate the effect of transcriptional regulation of
lipid metabolism, we further assessed the correlation be-
tween the expression of the transcription factors and
lipid metabolism genes. Correlations between transcrip-
tion factors and targets were assessed using Pearson cor-
relation. Significant correlations were considered as
those pairs with p-value smaller than 0.05.

Correlation analysis between tumor immune cell
proportion and lipid metabolism specific gene expression
The relative abundance of 22 immune cell types in the six-
teen cancer types was estimated using CIBERSORT [8, 20]
based on the gene expression data from TCGA. To investi-
gate the effect of lipid metabolism to immune microenvir-
onment in tumors, we assessed the correlation between the
expression of candidate lipid genes and transcription factors
collected from the literature, KEGG and TRANSFAC
databases to filter by the differentially expressed genes in
the category of lipid metabolism (Additional file 6) and
each tumor immune cells proportion in each tumor type
using Pearson correlation followed by BH adjustment.
Lipid-metabolism genes correlated with immune cell pro-
portions were selected with the threshold of FDR smaller
than 0.1. Pathway enrichment analysis of the
lipid-metabolism genes correlated with the immune cells
were performed using Fisher exact test followed by BH
adjustment based on KEGG pathways.

Prognosis analysis of differentially expressed genes
To investigate the prognostic impact of lipid metabol-
ism, we performed survival analysis on the differently
expressed genes related fatty acid metabolism, arachi-
donic acid metabolism, cholesterol metabolism and
PPAR signaling in at least three out of the sixteen tumor
types. We merged RNA differentially expressed and sur-
vival data from the clinical information file matched by
sample ID for each tumor type. The statistical signifi-
cance of survival differences in the Kaplan-Meier ana-
lysis was assessed using the Log-rank test and splitting
the tumor samples into two groups: low and high ex-
pression levels (median value used as the cut-off ), as im-
plemented in Survival-Online [30]. For survival clinical
features, Log-rank test in univariate Cox regression ana-
lysis with proportional hazards model [31] was used to
estimate the p values comparing quantile intervals using
the ‘coxph’ function from package “rms” in R.
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