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Abstract

Background: As an important type of post-translational modification (PTM), protein glycosylation plays a crucial
role in protein stability and protein function. The abundance and ubiquity of protein glycosylation across three
domains of life involving Eukarya, Bacteria and Archaea demonstrate its roles in regulating a variety of signalling
and metabolic pathways. Mutations on and in the proximity of glycosylation sites are highly associated with human
diseases. Accordingly, accurate prediction of glycosylation can complement laboratory-based methods and greatly
benefit experimental efforts for characterization and understanding of functional roles of glycosylation. For this
purpose, a number of supervised-learning approaches have been proposed to identify glycosylation sites,
demonstrating a promising predictive performance. To train a conventional supervised-learning model, both
reliable positive and negative samples are required. However, in practice, a large portion of negative samples (i.e.
non-glycosylation sites) are mislabelled due to the limitation of current experimental technologies. Moreover,
supervised algorithms often fail to take advantage of large volumes of unlabelled data, which can aid in model
learning in conjunction with positive samples (i.e. experimentally verified glycosylation sites).

Results: In this study, we propose a positive unlabelled (PU) learning-based method, PA2DE (V2.0), based on the
AlphaMax algorithm for protein glycosylation site prediction. The predictive performance of this proposed method
was evaluated by a range of glycosylation data collected over a ten-year period based on an interval of three years.
Experiments using both benchmarking and independent tests show that our method outperformed the
representative supervised-learning algorithms (including support vector machines and random forests) and one-
class learners, as well as currently available prediction methods in terms of F1 score, accuracy and AUC measures. In
addition, we developed an online web server as an implementation of the optimized model (available at http://
glycomine.erc.monash.edu/Lab/GlycoMine_PU/) to facilitate community-wide efforts for accurate prediction of
protein glycosylation sites.

Conclusion: The proposed PU learning approach achieved a competitive predictive performance compared with
currently available methods. This PU learning schema may also be effectively employed and applied to address the
prediction problems of other important types of protein PTM site and functional sites.

Keywords: Protein glycosylation prediction, Positive unlabelled-learning, Supervised-learning, AlphaMax, Sequence
analysis, Sequence-derived features
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Background
Glycosylation is among the most ubiquitous and import-
ant type of post-translational modification (PTM) across
three domains of life, including Eukarya, Bacteria, and Ar-
chaea [1]. It is estimated that glycosylation may occur in
> 50% of the human proteins [2], and that it is ubiquitous
in all living organisms [3]. Glycosylation involves attach-
ment of different types of glycan molecules to a specific
amino acid side-chain (i.e., tryptophan, asparagine, serine,
or threonine) in protein substrates [4]. Glycosylation has
been reported to be relevant for a myriad of biological
processes, including cell signalling and communication,
cell dissociation, immune modulation, protein quality con-
trol, protein folding, subcellular localization, and degrad-
ation [5–12]. Based on its critical role in a wide variety of
major pathways, protein glycosylation is associated with a
variety of human diseases, including diabetes [13–15],
cancers [16–20], and autoimmune diseases [21–23]. In
light of these strong associations with human diseases,
and in the current era of precision medicine, there is an
urgent need to develop computational tools to accurately
predict glycosylation sites in order to prioritize potential
candidates for experimental validation and elucidate their
biological functions.
To shortlist potential glycosylation sites and facilitate

advanced experimental validation, a variety of computa-
tional methods have been proposed as useful alternative
approaches. Such in silico methods for glycosylation site
prediction include NetNGlyc [24], NetOGlyc [21], Ensem-
bleGly [25], GPP [26], GlycEP [27], ModPred [28], as well
as our previously developed tools GlycoMine [29] and
GlycoMinestruct [30], etc. These approaches are based on a
supervised-learning scheme [e.g. using supervised learning
algorithms such as support vector machines (SVMs), ran-
dom forest (RF), etc] that uses reliably labelled positive
(i.e. experimentally verified glycosylation sites) and nega-
tive (i.e. non-glycosylation sites) samples to train the pre-
diction model. In terms of negative sample selection, the
majority of current approaches, such as NetNGlyc,
NetOGlyc, EnsembleGly, GPP, GlycEP, and GlycoMineStruct

randomly selected non-glycosylation sites from experimen-
tally verified glycosylated proteins as the negative samples.
However, this strategy can be problematic, as previously
assigned negative samples (non-glycosylation sites) could
be mislabelled due to limitations in experimental conditions
and technologies used, potentially resulting in unreliable
negative data selection and biased model training. More-
over, most current methods fail to account for the vast
amount of unlabelled data, the majority of which have not
been annotated with respect to glycosylation. According to
a previous study by De Comite et al. [31], positive and un-
labelled samples can aid the learning process. Recently, Niu
et al. [32] demonstrated theoretically that positive un-
labelled (PU)-learning methods performed better than

supervised learning on PU scenarios. Another two recent
works highlighted that PU learning can yield an equivalent
performance to supervised-learning algorithms [33, 34] when
using ranking-based performance measures, such as receiver
operating characteristic (ROC) curve and the precision-recall
curve. Most recently, a powerful bioinformatics tool,
MutPred2 [35], has applied the PU learning approaches to
address the problem of inferring the molecular and pheno-
typic impact of amino acid variants, and achieved a
favourable performance compared with supervised-learning
algorithms. These studies demonstrate that PU learning has
a great capacity to achieve at least competitive performance
compared to supervised-learning algorithms and thus effect-
ively avoid the labour-intensive data labelling procedure.
Motivated by these studies, in this study, we employed a
PU-learning scheme to utilize the vast amount of unlabelled
data in order to explore the possibility of achieving a
competitive performance compared to the traditional
supervised-learning approaches with more relaxed require-
ment for data labelling.
For the current task, our results suggested that the

advantages of PU learning relative to traditional
supervised-learning techniques can be summarized as
follows: 1) PU learning is fast and simple, is able to sig-
nificantly reduce the effort and time necessary to label
samples and can achieve a competitive performance
compared to supervised-learning algorithms [36–38];
and 2) PU-learning is particularly amenable to bioinfor-
matics and computational biology settings, where a siz-
able portion of previously unidentified samples is likely
mislabelled.
In this study, we proposed a novel method, PA2DE

(V2.0), under the PU learning scenario for glycosylation sites
prediction. We also benchmarked several state-of-the-art
PU-learning algorithms and compared the performance of
our method with these algorithms for glycosylation predic-
tion using time-scaled datasets collected between 2007 and
2016 and sequence-derived features. The predictive perform-
ance of the proposed method was extensively benchmarked
against state-of-the-art PU-learning algorithms, traditional
supervised-learning algorithms (i.e. SVMs and RFs) and
one-class classifiers on both benchmark and independent test
datasets. The results showed that PA2DE (V2.0) achieved an
outstanding predictive performance in terms of F1 score, ac-
curacy (ACC), and the area under the curve (AUC) values.
Next, we retrained the classifiers of PA2DE (V2.0) using a
more comprehensive dataset and further compared its pre-
dictive performance with several state-of-the-art glycosyla-
tion site prediction methods. The performance comparison
results demonstrated that PA2DE (V2.0) achieved a competi-
tive performance compared with these methods. Finally, we
developed an online web server as an implementation of the
proposed method to facilitate the community-wide efforts
for performing in silico glycosylation site prediction.
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Results
Overall framework
Figure 1 illustrates the generic framework used for bench-
marking the performance of our proposed method with
PU-learning, supervised learning and one-class classifica-
tion algorithms for glycosylation prediction. As can be
shown, this framework comprised three steps, including
data collection and pre-processing, feature extraction and
selection, and benchmarking and independent tests. At

the first step, four time-scaling datasets harbouring experi-
mentally verified C-, N-, and O-linked human glycosyla-
tion sites collected in 2007, 2010, 2013, and 2016,
respectively, were extracted from the UniProt database
[39]. We subsequently performed sequence homology re-
duction in order to remove the sequence redundancy
from the initial datasets. At the second step, a variety of
sequence-derived features were calculated and extracted
from all four datasets. Feature selection based on the

Fig. 1 The overall framework of the experiments
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maximal Redundancy Maximal Relevance (mRMR) [40]
algorithm was then conducted to eliminate the redundant
and irrelevant features. As a result, the top 100 features
were ranked and identified for the datasets comprising C-,
N-, and O-linked glycosylation data for each year (Refer to
the section “Feature extraction and selection”). Please note
that the feature selection was only conducted for training
sets (i.e. datasets extracted from 2007, 2010, and 2013)
and the selection results (i.e. the selected features) were
then applied to the test set (i.e. the dataset extracted from
2016). At the final step, we performed the benchmarking
and performance tests using these datasets and the corres-
pondingly selected features. Three types of prediction
models trained using PU-learning, supervised-learning,
and one-class classification algorithms were constructed,
evaluated, and compared.

Dataset analysis
We collected four experimentally verified human C-, N-,
and O-linked glycosylation site datasets in the years
2007, 2010, 2013, and 2016 from the UniProt database.
A statistical summary of the collected proteins along
with their glycosylation sites before and after the
sequence-redundancy removal is shown in Table 1.
We first analysed the number of previously mislabelled

negative samples (i.e. non-glycosylation sites) in data
collected over four years (2007, 2010, 2013, and 2016).
The detailed numbers highlighting the previously mis-
labelled negative sites are shown in Table 2.
In Table 2, the N1 rows of the years 2010, 2013, and 2016

show the numbers of mislabelled non-glycosylation sites
and the percentages as compared with those of the corre-
sponding previous collection years (i.e. 2007, 2010, and
2013) for C-, N-, and O-linked glycosylation, respectively.
For example, the N1 value of N-linked glycosylation in

2010 was 237, which means that there existed 237 sites,
which were labelled as non-glycosylation sites in 2007 but
were later labelled as N-linked glycosylation sites in 2010.
These 237 mislabelled sites accounted for 26.04% of all
newly added sites in 2010 compared with 2007 (e.g. 26.04%
= 237/(2118–1208), where 2118 was the number of
N-linked glycosylation sites in 2010, while 1208 was the
number of N-linked glycosylation sites in 2007). As shown
in Table 2, a significant number of non-glycosylation sites
were labelled incorrectly due to the limitations of experi-
mental technologies, suggesting the possibility that current
non-glycosylation sites might actually represent true posi-
tives. With the advances of new technologies, additional
previously labelled non-glycosylation sites will likely also
become true positives. Importantly, this issue also applies
to other typical bioinformatics problems, such as other
types of PTMs (such as phosphorylation [41], lysine PTMs
[42], cleavage sites [43–45] etc.) and protein-protein inter-
action prediction [46], for which the selection of negative
samples should be exercised with caution. This issue also
highlights the significance of using PU-learning algorithms
to address such tasks and employing only positive and un-
labelled samples to train the models.
While the P1 rows are the actual probability of the gly-

cosylation sites of the previous collection time point. For
example, the P1 value of N-linked glycosylation in 2010
was 3.38%, meaning that the number of the positive
samples accounts for 3.38% of the total number of sam-
ples (3.38% = (237 + 1208)/(41,526 + 1208), where 237 is
the number of mislabelled non-glycosylation sites in the
2007 dataset, 1208 is the number of glycosylation sites
in the 2007 dataset, and 41,526 is the total number of
unlabelled sites). The P2 rows are the prior probabilities
of the glycosylation sites estimated by the Elkan-Noto al-
gorithm, while the P3 rows are the prior probabilities of

Table 1 A statistical summary of glycosylated proteins and glycosylation sites collected from 2007, 2010, 2013, and 2016 data

Year Type Initial dataset prior to redundancy removal Final dataset after redundancy removal

Num. of sites Num. of substrates Num. of sites Num. of substrates

2007 C-linked 36 10 36 10

N-linked 1245 537 1208 520

O-linked 321 101 320 100

2010 C-linked 38 12 38 12

N-linked 2175 908 2118 872

O-linked 345 114 344 113

2013 C-linked 43 15 43 15

N-linked 2508 1004 2442 965

O-linked 474 178 455 162

2016 C-linked 46 17 46 17

N-linked 2805 1111 2728 1066

O-linked 698 221 679 212

Li et al. BMC Bioinformatics          (2019) 20:112 Page 4 of 17



the glycosylation sites estimated by the AlphaMax
algorithm. In general, P3 and P2 are similar with the P1,
but they are both relatively higher than P1. In addition,
the value of P3 is closer to P1 than P2, which indicates
the AlphaMax algorithm is more reliable than the

Elkan-Noto algorithm in terms of prior probability
estimation.
We further analysed the proportions of unlabelled

samples. Note that the unlabelled samples included
non-glycosylation sites and potential glycosylation sites
yet to be discovered. Based on the data shown in Table
1, we generated Fig. 2 to visually illustrate the large
amounts of unlabelled samples of C-, N-, and O-linked
glycosylation in chronological order from 2007 to 2016.
The bar charts in Fig. 2 show the number of glycosyla-
tion sites identified each year based on Table 1, whereas
the pie charts illustrate the percentage of glycosylation
sites relative to unlabelled sites and associated with C-,
N-, and O-linked glycosylation, respectively.
With the development of more advanced experimental

technologies, increasing numbers of glycosylated pro-
teins and corresponding glycosylation sites are being
characterized (Fig. 2), with more unlabelled samples also
available. For example, 1208 N-linked glycosylation sites
were identified in 2007, accounting for 8% of the total
number of potential N-linked glycosylation sites. This
number increased to 2118 and 2442 in 2010 and 2013,
respectively, whereas the percentages remained at 7%. In
the case of C-linked glycosylation, a significant increase
from 71 to 84% in the proportion of unlabelled samples
occurred from 2007 to 2016. Altogether, these data

Table 2 Summary of the results for mislabelled negative sites

Year C-linked N-linked O-linked

2010 N1a 0 237 (26.04%) 22 (91.67%)

P1 11.76% 3.38% 1.26%

P2 14.86% 3.41% 1.28%

P3 12.07% 3.39% 1.28%

2013 N1 0 119 (36.73%) 32 (19.82%)

P1 8.35% 3.01% 1.22%

P2 9.36% 4.36% 1.24%

P3 8.62% 3.97% 1.22%

2016 N1 0 99 (34.62%) 32 (19.82%)

P1 6.51% 3.09% 1.11%

P2 7.15% 4.68% 1.13%

P3 6.63% 3.83% 1.13%

Note: a) N1, numbers and percentages of mislabelled non-glycosylation sites
and their percentages as compared with previous collection years; b) P1, the
actual class probability of glycosylation sites; c) P2: the prior probability of
glycosylation sites estimated by the Elkan-Noto algorithm; d) P3: the prior
probability of glycosylation sites estimated by the AlphaMax algorithm

Fig. 2 Rapid increase in the numbers of glycosylation sites and unlabelled samples in an increasing chronological order (from years 2007 to 2016)
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associated with mislabelled non-glycosylation sites and
the increasing number of unlabelled sites motivated us
to explore the possibility of employing the PU-learning
algorithms to facilitate the prediction of glycosylation
sites by considering unlabelled sites.

Performance comparison of different algorithms on the
benchmark datasets
We evaluated and compared the predictive performance
of the PU-learning, supervised-learning, and one-class
classification algorithms on the benchmark datasets of
C-, N-, and O-linked glycosylation collected from 2007,
2010, and 2013. Based on each dataset, we performed
100 randomization tests and reported the averaged per-
formance results. For each experiment, the same num-
bers of unlabelled and positive samples were selected to
form an initial dataset, which was further randomly split
into three subsets: training set (50%), validation set
(20%), and test set (30%). The validation set was used to
estimate the prior probability of the positive class [36],
and the training and validation sets were combined as a
new training set (i.e. trainingV; Fig. 1) to retrain the clas-
sifiers. The predictive performance of the trained classi-
fiers was evaluated using the test set, and the average
performance results from 100 experiments were re-
ported. Note that for the supervised-learning algorithms
(i.e. SVM and RF), the unlabelled sites were regarded as
negative samples, and we directly used the training sets
to train the supervised-learning classifiers. For the
one-class classification algorithms, we only used positive
samples from the training sets to train the algorithms.
The average predictive performance (measured by F1,

ACC, and AUC) of the classifiers on the benchmark data-
sets is shown in Table 3. The best F1, ACC, and AUC
values for each experiment are underlined and marked in
bold. These results showed that the PU-learning algo-
rithms generally outperformed the supervised-learning
and one-class classification algorithms in terms of F1,
ACC, and AUC, with the only exception for the dataset of
O-linked glycosylation from 2013. For the PU-learning al-
gorithms, PA2DE, PTAN, and PNB performed best in
most cases.

PU-learning algorithms performed best on the test datasets
To objectively compare the predictive performances, we
conducted performance tests of all of the algorithms
using the samples included in the dataset from 2016 ra-
ther than those from 2013, 2010, and 2007 as the posi-
tive test dataset. The numbers of tested positive samples
are shown in Table 4. We only evaluated the perform-
ance of N-linked and O-linked glycosylation sites, due to
the limited availability of C-linked data (only three
C-linked glycosylation sites). We then randomly chose
negative samples that were not labelled as glycosylation

sites in all of the datasets across all the four years. This
process was repeated 100 times, resulting in 100 test
datasets incorporating positive datasets and different
randomly selected negative datasets. We applied these
100 test datasets to evaluate the classifiers used in the
benchmark test. The average predictive performance in
terms of F1, ACC, and AUC are reported in Table 5.
The predictive performance of the algorithms on the

test datasets showed that PA2DE (V2.0) performed best
for both N- and O-linked glycosylation site prediction in
terms of F1 and ACC. Additionally, PNB achieved the
highest AUC values on the O-linked datasets of 2007
and 2013. On the N-linked dataset of 2010, PFBC
achieved the best AUC value, while RF achieved the best
AUC value when trained using the 2007 N-linked glyco-
sylation datasets, while SVM achieved the best ACC
value on the O-linked dataset of 2010. Compared to the
PU-learning and supervised-learning algorithms, the
one-class learners performed the worst across all these
years in terms of AUC and accuracy.
As shown in Table 5, in most cases, PA2DE (V2.0) per-

formed best among the PU-learning algorithms on the
test datasets. To examine the statistical significance of
F1 improvement by PA2DE (V2.0), we performed a Stu-
dent’s t-test to compare the results from PA2DE (V2.0),
PA2DE, RF, and SVM. Table 6 provides the calculated
p-values, which indicate that the F1 of PA2DE was sig-
nificantly (p ≤ 0.01) higher than that for RF and SVM ac-
cording to eight pairwise tests (marked in bold) among a
total of 12 tests. Figure 3 plots the distributions of F1
scores for these algorithms on the test datasets, with the
average F1 scores for PA2DE substantially higher than
that for RF and SVM.

Comparison with existing methods and web server
implementation
Thus far, we have used four time-scaling datasets collected
from the UniProt database to compare the prediction per-
formance of PA2DE (V2.0) with PU-learning, supervised
learning and one-class classification algorithms. The re-
sults demonstrated that the PA2DE (V2.0) algorithm
achieved the best performance in most scenarios.
In this section, we constructed a complete dataset with

experimentally validated human glycosylation sites col-
lected from the UniProt, dbPTM [47], and PhosphoSite-
Plus [48] databases to make the performance comparison
with the existing methods. For the data extracted from the
UniProt database, we only considered glycosylation sites
with ECO code ECO:0000269, which indicates the manu-
ally curated information with published experimentally
evidence (https://www.uniprot.org/help/evidences). We
further implemented an online web server using an opti-
mized PA2DE (V2.0) algorithm trained on this new data-
set. According to a previous study [28], N-linked
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glycosylation is generally associated with a N[!P][ST][!P]
motif which is highly specific and aids in the predictor
learning. Thus, we further classified the N-linked glycosyl-
ation sites into two subsets: a motif subset which con-
tained all the glycosylation sites located in such motif and
a non-motif set which did not include any obvious motifs.
In addition, given that the O-linked glycosylation usually
occurs on two different types of residues Serine (S) and
Threonine (T), we constructed two different models for
each residue type separately. We then removed the redun-
dant sequences from this dataset with the sequence iden-
tity of 30% by using the CD-HIT program. The statistical
summary of this dataset is shown in Table 7.
We randomly split the dataset into the training sets

and independent test sets with the ratio of 7 to 3. The
training sets were used for constructing the PA2DE
(V2.0) model for the web server and the independent
test sets were used for benchmarking the predictive per-
formance with other existing methods. A statistical sum-
mary of the training set and independent test set is
shown in Table 8.
We adopted the PU-learning protocol suggested in a

recent work, MutPred2 [35] to re-train the PA2DE
(V2.0) model based on the top 100 ranked features of
the training set. The unlabelled dataset was first gener-
ated by randomly selecting 20 non-glycosylation sites
from each glycosylated protein in the training data set.
Then, the positive and unlabelled datasets were used to
perform feature selection. The mRMR algorithm was
employed to identify the top 100 ranked features for
each type of glycosylation. The feature selection results
are shown in Table 9.
For each type of glycosylation, a final unlabelled set

was generated by further randomly selecting 10,000
non-glycosylation sites from the training set. In doing
so, we ensure the estimation of class prior probability is
fairly low (1 × 10− 4). As the glycosylation site prediction
is a problem with class imbalance, the mislabelled sam-
ples exist in the unlabelled set with a relatively low frac-
tion. For these types of glycosylation with fewer than
10,000 unlabelled samples, all the non-glycosylation sites
were included. Then, a five-fold cross-validation test was
performed on the training datasets. The summary of the
training datasets for each type of glycosylation and the
corresponding predictive performance are shown in
Table 10.

In order to objectively evaluate the performance of our
method, we compared the predictive performance of
PA2DE (V2.0) with several state-of-the-art methods, in-
cluding GlycoEP, NetNGlyc, NetOGlyc, and ModPred,
on the independent test datasets. In order to perform
the prediction, the protein sequences of the independent
test datasets were submitted to the web servers/soft-
wares of these methods with the default or recom-
mended settings to obtain the prediction results, which
were then used for evaluating the predictive perform-
ance of these methods. We randomly selected the equal
number of non-glycosylation sites to the number of gly-
cosylation sites as the negative samples from the glyco-
sylated proteins in the independent test datasets. For
example, if a protein sequence contained n N-linked gly-
cosylation sites, we randomly selected n amino acids (N)
that were not labelled as N-linked glycosylation sites as
the negative samples. The predictive performance for
different types of glycosylation sites are shown in
Table 11. We also generated the ROC curves (shown in
Fig. 4) to evaluate and compare the performance of dif-
ferent methods.
As shown in Table 11 and Fig. 4, the performance

comparison results indicate that for all five types of gly-
cosylation, PA2DE (V2.0) achieved the best performance
in terms of AUC. While for N-linked (non-motif ) glyco-
sylation, ModPred achieved the best ACC (0.807) and F1
score (0.773), while for O-linked (S) glycosylation, Gly-
coEP achieved the best F1 score (0.848).
Based on the trained models of PA2DE (V2.0), we fur-

ther implemented an online web server that enables the
users to predict potential novel glycosylation sites. The
web server is freely available at http://glycomine.erc.mo-
nash.edu/Lab/GlycoMine_PU/, developed using Java Ser-
ver Pages and managed by Tomcat 7 on a Linux server.

Conclusions
In this study, we have proposed a new computational
method, PA2DE (V2.0), to address the task of protein
glycosylation site prediction in the PU-learning scenario.
A variety of algorithms, including supervised-learning
(SVM and RF), PU-learning (PA2DE, PAODE, PNB,
PTAN, and PFBC), and one-class classification algo-
rithms (OneClassClassifiers and one-class SVMs) were
extensively benchmarked, evaluated and compared with
our proposed method in this study. Both benchmarking
and independent tests showed that our proposed
method achieved a competitive predictive performance
compared with several supervised-learning algorithms
for glycosylation-site prediction. Performance compari-
son results with the other existing methods indicate that
the proposed method is capable of accurately predicting
protein glycosylation sites. A publicly available web ser-
ver has been implemented to facilitate the prediction of

Table 4 The numbers of glycosylated proteins and
corresponding sites included in the test datasets

Type Num. of Sites Num. of Substrates

C-linked 3 2

N-linked 324 156

O-linked 244 76
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potential glycosylated protein substrates and glycosyla-
tion sites. With the success of applying PU-learning
scheme to protein glycosylation prediction in this study,
we anticipate that such methods can be widely employed
to facilitate the prediction of other protein functional
sites, including other different types of PTMs.

Methods
Data collection and pre-processing
As noted, four datasets comprising experimentally verified
human C-, N-, and O-linked glycosylation sites from years
2007, 2010, 2013, and 2016 were collected from the Uni-
Prot database. To avoid overfitting and performance
over-estimation, we removed sequence redundancy from
all four datasets using the CD-HIT program [49] by set-
ting the identity between any two sequences to ≤30%.
The predictive performance of traditional supervised-

learning algorithms is contingent on the quality of both
positive and negative samples. Similar to previous stud-
ies [29, 30], experimentally determined glycosylation
sites were used as positive samples (Table 2). An increas-
ing number of C-, N-, and O-linked glycosylation sites
and glycosylated proteins were identified from 2007 to
2016 (e.g., increasing from 1245 N-linked glycosylation

Table 6 Statistical significance of PA2DE performance in terms
of F1 scores relative to the RF and SVM algorithms on the test
datasets

Type Algorithm 2007 2010 2013

N-linked PA2DE 6.35E-04 0.0369 6.07E-23

Random Forest

PA2DE 5.61E-21 8.10E-06 6.96E-23

SVM

PA2DE (V2.0) 2.44E-09 0.0233 7.35E-40

Random Forest

PA2DE (V2.0) 1.09E-32 1.34E-06 8.33E-40

SVM

O-linked PA2DE 0.0104 6.10E-04 1.86E-09

Random Forest

PA2DE 0.4566 0.0210 9.64E-16

SVM

PA2DE (V2.0) 6.23E-04 1.04E-04 6.53E-20

Random Forest

PA2DE (V2.0) 0.0986 9.19E-04 8.19E-29

SVM

Fig. 3 Boxplots showing that PA2DE outperformed the RF and SVM algorithms in terms of F1 score on the test datasets
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sites in 2007 to 2805 in 2016). In-depth analysis of anno-
tation changes in the data spanning these 4 years is pro-
vided in the section “Dataset analysis”. Importantly, this
indicated that a sizable number of non-glycosylation
sites previously mislabelled and treated as negative sites
(due to limitations in the experimental methods at the
time) should be used as valid positive sites. Obviously,
the inclusion of such mislabelled data will affect the per-
formance evaluation of glycosylation-prediction models.
Therefore, it is reasonable to assume that a portion of
other experimentally unexplored residues, including
tryptophan, asparagine, serine, and threonine, can be po-
tentially identified as C-, N-, or O-linked glycosylation
sites as experimental technologies continue to advance.
Note that all current computational methods for glyco-
sylation prediction were developed based on the label-
ling of positive and negative samples, which is consistent
with traditional supervised-learning schemes. Therefore,
it is difficult for existing methods to retrain or update
the models in order to keep pace with rapidly updated
data, especially concerning previously mislabelled nega-
tive samples. In this study, we predicted glycosylation
sites by using a PU-learning scheme.
For benchmarking tests, we employed glycosylation

sites retrieved from 2007, 2010, and 2013 as the positive
samples used to train the classifiers. For traditional
supervised-learning models (i.e., SVMs and RF), we ran-
domly selected the same number of non-glycosylation
sites as negative samples in order to construct the nega-
tive training datasets. As noted, such negative samples
could be mislabelled due to limitations in experimental
technologies. By contrast, for PU-learning models, such
negative samples were treated as unlabelled samples. Be-
cause one-class learners only require information

concerning the target class (i.e., glycosylation sites),
there is no need to assign any negative or unlabelled
samples for such models.
For the performance test set, we selected glycosylation

sites that were experimentally annotated exclusively in
2016 as positive test samples. Negative samples (i.e., those
having been consistently labelled as non-glycosylation
sites across all 4 years) were randomly selected to consti-
tute the negative dataset, with an equal number of positive
samples used for each type of glycosylation. This
random-sampling procedure was repeated 100 times. Due
to insufficient test data for C-linked glycosylation (only
three sites available), the performance test was con-
structed only for N- and O-linked glycosylation.

Feature extraction and selection
A local sliding window comprising 15 residues (i.e.,
seven upstream residues and seven downstream residues
centred on the glycosylation site) [29] was used for fea-
ture extraction. This 15-residue peptide can be repre-
sented as [50]:

P ¼ p1p2…p8…p14p15; ð1Þ

where pi denotes the i-th residue of the peptide, P, and p8
denotes the glycosylation site. In this study, we extracted
six groups of sequence-derived features to encode a pep-
tide and train the machine-learning model. The first group
consists of: 1) 20 amino acid compositions [51], and 2)
400 dipeptide amino acid compositions [52].
The second group includes three different types of auto-

correlation features: 1) 240 normalized Moreau-Broto
autocorrelation features [53, 54]; 2) 240 Moran autocorrel-
ation features [55]; and 3) 240 Geary autocorrelation fea-
tures [56]. The autocorrelation features measure the level
of correlation between two peptide sequences according
to their physicochemical properties.
The third group is ‘Composition-Transition-Distribu-

tion (CTD)’ [57], which includes three types of features:
1) 21 composition features, 2) 21 transition features, and
3) 105 distribution features. These features are calcu-
lated based on physicochemical properties that represent
the amino acid-specific distribution of a specific struc-
tural or physicochemical property within a peptide.

Table 7 A statistical summary of glycosylated proteins and glycosylation sites collected from UniProt, dbPTM and PhosphoSitePlus

Type Before redundancy removal After redundancy removal

Num. of Proteins Num. of Sites Num. of Proteins Num. of Sites

C-linked 13 134 10 109

N-linked (motif) 1103 3850 770 2669

N-linked (non-motif) 100 158 91 146

O-linked (S) 192 683 165 602

O-linked (T) 169 2150 155 2095

Table 8 Numbers of glycosylation sites included in the training
sets and independent test sets

Type Training set Independent test set

C-linked 76 33

N-linked (motif) 1869 800

N-linked (non-motif) 102 44

O-linked (S) 421 181

O-linked (T) 1467 628
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The fourth group includes two sequence-order-feature
sets: 1) 60 sequence-order-coupling number features,
and 2) 100 quasi-sequence-order features [58].
The fifth group contains two types of pseudo-amino-

acid-composition features: 1) 50 type I features; and 2)
50 type II features [52].
The sixth group contains 8400 AAindex features ex-

tracted from the AAindex database [59].
A total of 9927 features were extracted and calculated.

It is possible that such a high-dimensional feature set
might contain certain noisy and irrelevant features,
resulting in disfavorable model training and decreased
predictive performance. To remove such features, we ap-
plied the mRMR (minimum Redundancy and Maximum
Relevance) algorithm [40] and selected the top 100 fea-
tures contributing the most to each C-, O-, and
N-linked glycosylation event. mRMR evaluates the rele-
vance and redundancy of two features, x and y, based on
mutual information, which is defined as:

I x; yð Þ ¼ ∬p x; yð Þ log p x; yð Þ
p xð Þp yð Þ dxdy; ð2Þ

where p(x, y) is the joint probability of feature x and y,
where p(x) and p(y) are marginal probabilities.

PU-learning algorithms
Current PU-learning algorithms can be generally catego-
rized into two main types. The first type has been imple-
mented as a ‘two-step’ strategy, where the algorithms
identify reliable negative samples from the unlabelled
dataset first and then employ both the positive samples
and these identified reliable negative samples to train a
classifier in the second step. This procedure needs to be

repeated until a certain threshold (e.g., a performance
measure, such as Matthews’s correlation coefficient or
AUC) is achieved. To the best of our knowledge, this
represents a predominant strategy currently practiced in
bioinformatics research and has been adopted for identi-
fication and prediction of disease-associated genes from
the human genome [60–62], protein pupylation predic-
tion [63, 64], kinase substrates identification [65], pro-
tein subcellular localization prediction [66], and drug
interactions prediction [67].
The second type focuses on evolving traditional super-

vised-learning algorithms to enable learning from both
positive and unlabelled data. To date, several promising
algorithms have been reported based on the evolution of
classic supervised-learning algorithms, including deci-
sion trees (C4.5) [68] and Bayesian classifiers [69]. For
example, POSC4.5 [70] was proposed based on the C4.5
algorithm, and based on Bayesian theory, He et al. [71]

Table 9 The number of different selected feature groups as result of feature selection

Type AAC Auto-correlation CTD Sequence-order Pseudo-AAC AAindex

C-linked 3 23 2 4 5 63

N-linked (motif) 2 1 4 2 4 87

N-linked (non-motif) 4 1 3 2 4 86

O-linked (S) 11 7 13 3 3 63

O-linked (T) 8 4 8 2 2 76

Table 10 Summary of the training datasets and performance
results of PA2DE (V2.0)

Type Number of Sites AUC ACC F1

Positive Unlabelled

C-linked 76 258 0.997 0.981 0.981

N-linked (motif) 1869 7111 0.927 0.886 0.894

N-linked (non-motif) 102 4888 0.874 0.974 0.973

O-linked (S) 421 8331 0.974 0.972 0.972

O-linked (T) 1467 10,000 0.876 0.857 0.859

Table 11 Performance comparison results between different
methods on the independent test datasets

Type Methods AUC ACC F1

C-linked PA2DE (V2.0) 0.999 0.983 0.984

GlycoEP 0.546 0.600 0.647

ModPred 0.933 0.933 0.938

N-linked (motif) PA2DE (V2.0) 0.893 0.815 0.820

GlycoEP 0.697 0.637 0.638

NetNGlyc 0.638 0.616 0.627

ModPred 0.837 0.782 0.791

N-linked (non-motif) PA2DE (V2.0) 0.872 0.761 0.758

GlycoEP 0.669 0.648 0.644

NetNGlyc 0.630 0.716 0.675

ModPred 0.842 0.807 0.773

O-linked (S) PA2DE (V2.0) 0.915 0.859 0.766

GlycoEP 0.796 0.787 0.848

ModPred 0.873 0.770 0.670

NetOGlyc 0.770 0.662 0.583

O-linked (T) PA2DE (V2.0) 0.864 0.793 0.827

GlycoEP 0.739 0.694 0.747

ModPred 0.821 0.746 0.781

NetOGlyc 0.769 0.718 0.763
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proposed a series of Bayesian classifiers for PU-learning,
including PTAN (Positive Tree Augmented Naïve Bayes),
PFBC (Positive Full Bayesian Network Classifier), PNB
(Positive Naïve Bayes), and PAODE (Positive Averaged
One-Dependence Estimators), according to the ‘selected
completely at random’ assumption [36]. Previously, we
proposed PAnDE (Positive Averaged n-Dependence Esti-
mators) [72], which extends the AnDE algorithm [73]
based on the ‘selected completely at random’ assumption.
AnDE relaxes the attribute-independence assumption

by selecting n parent-attributes and assuming that all
other attributes are independent of the given class label.
The classification algorithm used by PAnDE for a sam-
ple, x, is described as follows:

PAnDE xð Þ ¼ arg max
y

X

S∈
A
n

� � δ xSð ÞP y; xSð Þ
Yn

m¼1

P xmjy; xSð Þ;

ð3Þ
where xm denotes the value of attribute Xm,

A
n

� �

denotes
the set of all size-n subsets of the attribute set A = {1,…,k},
and xS denotes a tuple of parent attributes having n

attributes. The δ(xS) function is used to avoid using parent
attributes, the values of which do not occur in the training
data, and δ(xS) = 1 if xS occurs in the training dataset
[otherwise δ(xS) = 0]. Note that in the case that all
δ(xS) = 0, eq. (1) becomes:

PAnDE xð Þ ¼ PA n−1ð ÞDE xð Þ: ð4Þ

Empirical studies showed that PAnDE outperformed
PNB and PAODE according to evaluation using 20 UCI
datasets and the protein glycosylation datasets collected
in GlycoMine [72].
The original PAnDE algorithm applies the estimation

method based on the ‘selected completely at random’ as-
sumption to estimate the class priors, which has been shown
to overestimate class priors, especially in cases where the
true class priors are extremely small [74, 75]. Recently, a
very useful algorithm, termed AlphaMax [35, 74, 75], has
been proposed to provide a new solution to estimate class
priors. Considering that glycosylation prediction is a class
imbalance problem and the mislabelled data in unlabelled
set is low fraction, we thus used this new estimation method

Fig. 4 ROC curves for PA2DE (V2.0), NetNGlyc, NetOGlyc, GlycoEP, and ModPred on independent test datasets
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for class prior estimation in the PAnDE algorithm, referred
to as PAnDE (V2.0).
Based on Bayes’ theorem and the conditional inde-

pendence assumption, PNB was initially devised based
on a multinomial model of naïve Bayes (NB) for text
classification [76]. This algorithm requires users to pro-
vide the prior probability of a positive class in order to
estimate the probability for each class. Further, He et al.
[71] extended PNB based on the ‘selected completely at
random’ assumption in order to handle general classifi-
cation tasks, with no requirement to provide prior
probability.
PAODE [36] was proposed based on the AODE [77] al-

gorithm (i.e., A1DE), which is a special version of AnDE
(n = 1) that relaxes the attribute independence assumption
by using one super-parent attribute and considering all
other attributes as conditionally independent, given this
super-parent. Similarly, the proposed PAODE algorithm
(i.e., PA1DE) is a special version of PAnDE, where n = 1.
PTAN is a another version of the tree-augmented NB

(TAN) [78] algorithm for positive-unlabeled learning.
The TAN algorithm approximates interactions between
attributes by using a tree structure imposed upon the
NB structure. TAN-structure learning occurs through
computation of the conditional mutual information be-
tween two attributes, given a specific class label.
PFBC was proposed based on full Bayesian network

classifier (FBC) [79], where the conditional probability
table for each attribute is a decision tree. Learning an
order of attributes is the most important process in con-
structing a full Bayesian network. The experimental re-
sults reported by He et al. [71] demonstrate that PFBC
is more robust against unlabelled data.
In this study, we compared the predictive performance

of our newly proposed PA2DE (V2.0) algorithm with the
other five Bayesian PU-learning algorithms PA2DE,
PNB, PAODE, PTAN, and PFBC for predicting glycosyl-
ation and further compared its predictive performance
with several supervised-learning and one-class classifica-
tion algorithms.

Supervised-learning algorithms
Two representative supervised-learning algorithms, RF
and SVMs were used to compare the predictive perform-
ance of PU-learning and one-class classification algo-
rithms. These two algorithms have been widely used to
solve a variety of bioinformatics tasks and also in protein
glycosylation prediction [11, 29, 30, 80–83] with the re-
sults providing outstanding predictive performance. In
our study, we employed implementations of RF and
SVM based on the WEKA machine-learning platform
[84]. All corresponding parameters used for the two al-
gorithms were set as the default values.

One-class classification algorithms
One-class classification algorithms identify samples of a
specific class by learning from a training set containing
samples only from this class. One-class classification has
been widely applied in a variety of real-world scenarios,
such as outlier [85] and novelty detection [86]. We also
attempted to apply this learning method to glycosylation
identification. We selected two state-of-the-art one-class
classification algorithms implemented in WEKA (one--
class SVMs [87] and OneClassClassifiers [88]) and used
the same positive samples to train these one-class classi-
fiers. A testing sample was predicted as ‘1’ if the trained
classifiers regarded the sample as positive; otherwise, it
was predicted as ‘?’. We regarded samples predicted as
‘?’ as predicted negative samples. Based on this strategy,
we evaluated the performance of the one-class classifiers
using the same performance measures as those for the
supervised- and PU-learning methods.

Performance evaluation
Three performance measures were employed to evaluate
the predictive performance of the supervised- and
PU-learning schemes and facilitate comparisons between
different methods, including AUC, F1, [36, 70] and ACC
(Accuracy). These measurements are defined as follows:

F1 ¼ 2� Precision� Recall
Precision þ Recall

; ð5Þ

ACC ¼ TP þ TN
TP þ TN þ FP þ FN

; ð6Þ

where Precision and Recall in (5) are respectively
defined as

Precision ¼ TP
TP þ FP

; ð7Þ

Recall ¼ TP
TP þ FN

: ð8Þ

where TP, TN, FP, and FN represent the numbers of true
positives, true negatives, false positives, and false nega-
tives, respectively.
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