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Abstract

Background: Unsupervised clustering represents one of the most widely applied methods in analysis of high-
throughput ‘omics data. A variety of unsupervised model-based or parametric clustering methods and non-
parametric clustering methods have been proposed for RNA-seq count data, most of which perform well for large
samples, e.g. N ≥ 500. A common issue when analyzing limited samples of RNA-seq count data is that the data
follows an over-dispersed distribution, and thus a Negative Binomial likelihood model is often used. Thus, we have
developed a Negative Binomial model-based (NBMB) clustering approach for application to RNA-seq studies.

Results: We have developed a Negative Binomial Model-Based (NBMB) method to cluster samples using a
stochastic version of the expectation-maximization algorithm. A simulation study involving various scenarios was
completed to compare the performance of NBMB to Gaussian model-based or Gaussian mixture modeling (GMM).
NBMB was also applied for the clustering of two RNA-seq studies; type 2 diabetes study (N = 96) and TCGA study of
ovarian cancer (N = 295). Simulation results showed that NBMB outperforms GMM applied with different
transformations in majority of scenarios with limited sample size. Additionally, we found that NBMB outperformed
GMM for small clusters distance regardless of sample size. Increasing total number of genes with fixed proportion
of differentially expressed genes does not change the outperformance of NBMB, but improves the overall
performance of GMM. Analysis of type 2 diabetes and ovarian cancer tumor data with NBMB found good
agreement with the reported disease subtypes and the gene expression patterns. This method is available in an R
package on CRAN named NB.MClust.

Conclusion: Use of Negative Binomial model based clustering is advisable when clustering over dispersed RNA-seq
count data.
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Background
A common goal of RNA-seq studies is unsupervised
clustering [1–3]. Unsupervised clustering analysis has
been widely used to group samples to determine ‘latent’
molecular subtypes of disease or to cluster genes into
modules of co-expressed genes, where within which each
of the clusters observations are more similar to one
another than those in other clusters. The goal of this
study is to develop a unsupervised cluesting method for
that takes into account the over-dispersed nature of

RNA-seq count data for the clustering of samples. Popu-
lar unsupervised clustering methods include non-pa
rametric methods, such as, K Means, Nonnegative
Matrix Factorization (NMF), hierarchical clustering [4]
and parametric methods, such as, Gaussian mixture
modeling (GMM) or Gaussian model-based (MB)
clustering), which model the data as coming from a
distribution that is mixture of two or more components
[5–9]. In the context of model-based clustering there are
challenges in applying standard model-based clustering
to RNA-seq data, including the discrete nature of the
data and the over-dispersion observed in the data (i.e.,
the variance is greater than the mean).
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Over the past decade a substantial body of research
has emphasized the importance of over-dispersion in
the statistical modeling of RNA-seq data. Durán Pa
checo et al. [10] compared the performance of four
model-based methods for treatment effect comparison
on over-dispersed count data in simulated trials with
different sizes of clusters (i.e. number of individuals in
each cluster) and correlation level within each cluster.
They found important performance impact on group
comparison testing aroused by cluster sample size and
accounting for over-dispersion. The over-dispersion
characteristic in discrete count data can be captured by
Negative Binomial (NB) or Poisson-Gamma (PG) mix-
ture density. A flexible NB generalized linear model for
over-dispersed count data was proposed by Shirazi et
al. [11] with randomly distributed mixed effects charac-
terized by either Lindley distribution or Dirichlet
Process (DP). Si et al. [12] derive a Poisson and Nega-
tive Binomial model-based clustering algorithms for
RNA-seq count data to group genes with similar ex-
pression level per treatment, using Expectation-Ma
ximization (EM) algorithm along with initialization
technique and stochastic annealing algorithm. Other
methods such as nonparametric clustering are also
widely employed in latest research [6, 13–15], but can-
not guarantee a consistent and accurate result for
certain cases. For example, NMF clustering results may
vary tremendously due to the randomness of starting
point [16], and hierachical clustering performance de
pends on distance metric or linkage [17].
Gaussian Model-Based clustering with logarithm or

Blom [18] transformation often works well for some
discrete data. However, these transformations still show
limitations in capturing the over-dispersed nature of
RNA-seq data [19, 20]. Therefore, we developed a model
-based clustering approach that accounts for the over-
dispersion in RNA-seq counts by using a mixture of
Negative Binomial distributions, denoted by NBMB. The
clustering methods proposed by Si et al. [12] are model-
based for either Poisson or Negative Binomial data, but
restricted to grouping of genes based on limited number
of samples from different treatments.
Similar to the algorithms by Si et al. [12], we combined

the EM algorithm with stochastic annealing to fit the
Negative Binomial model-based clustering algorithm. In
developing the algorithm, we propose a more efficient
technique for estimating dispersion parameter and initia
lization of parameters. Another concern with this appli-
cation of the EM algorithm is the use of annealing rates.
Several stochastic algorithms have been proposed and
applied in existing research involving EM algorithm, see
[21, 22]. Research by Si et al. [12] applied both deter-
ministic and simulated annealing algorithms and follow
the suggested rate values by Rose et al. [21]. However,

these values might not be able to provide global optimal
prediction in some circumstances for our model. Simu-
lated scenarios in this research illustrate that slight ad-
justments in annealing rate can avoid local or less
optimal prediction and bring improvement on perform-
ance of the Negative Binomial model-based clustering
algorithm. Hence, in our algorithm we search and locate
the optimal annealing rates for NBMB on RNA-seq raw
counts. In the following sections, we describe the details
of the proposed NBMB method, along with assessment
of the method with an extensive simulation study based
on an RNA-seq data from the TCGA study of ovarian
cancer. Lastly, we present results from the application of
NBMB and GMM to two studies; an obesity and type 2
diabetes study and an ovarian cancer study conducted
by TCGA.

Methods
NBMB clustering method
The observed RNA-seq data set X is a N ×G matrix,
where N is the sample size and G is the number of genes
being considered for the clustering analysis. Each row of
X represents RNA-seq gene counts for a sample, de-
noted by xi, i = 1, …, N, where each element of xi is de-
noted by xig, i = 1, …, G. In this study we assume
independence between all genes and independence be-
tween all samples or subjects. Suppose the samples of
RNA-seq counts x1, …, xN can be grouped into K clus-
ters. NBMB assumes xi belongs to cluster k, k = 1, …, K,
and xi~NB(μk, θk), where μk = (μk1,…, μkG), θk = (θk1,
…, θkG) are the parameters of cluster k. The density

function of xig is f ðxig jμkg ; θkgÞ ¼ Γðxigþθkg Þ
Γðθkg Þxig ! ð

μkg
θkgþμkg

Þxig

ð θkg
θkgþμkg

Þθkg . The value of k for each sample xi is unknown

and cannot be observed. The prior probabilities for each
sample belonging to each component are p1, …, pK
and p1 +… + pK = 1. The log likelihood function for x1,

…, xN is L ¼ PN
i¼1 logðPK

k¼1pk f ðxijμk ; θkÞÞ , where
f(xi|μk, θk) is the density function for sample i when it is
assigned to cluster component k; pk is the prior prob-
ability for belonging to component k; μk, θk are the mean
and dispersion of component k. The NBMB method as-
sumes that RNA-Seq counts without batch and the li-
brary size effects follow the NB distribution, hence,
NBMB must be applied to normalized counts without
any transformation.

Estimation
We adopt the following EM algorithm to optimize likeli-
hood function L and estimate μk and classification of
samples. The optimal value of K is determined by Bayes-
ian Information Criterion (BIC) [7, 23].
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E-step
Calculate subject-specific posterior probability and value
of expectation function.
The expectation function at iteration (s − 1) is given

by:

l s−1ð Þ
k μ s−1ð Þ

k

� �
¼

XN

i¼1
p s−1ð Þ
ik log f xijμ s−1ð Þ

k ; θ̂k
� �� �

;

where pðs−1Þik is the posterior probability that sample i be-

longs to cluster component k at iteration (s − 1). In pðs−1Þik

¼ pðs−1Þk f ðxijμðs−1Þk ;θ̂k ÞPK

k¼1
pðs−1Þk f ðxijμðs−1Þk ;θ̂kÞ

, pðs−1Þk is the prior probability for

component k at iteration (s − 1); μðs−1Þk is the mean of

component k at iteration (s − 1) and f ðxijμðs−1Þk ; θ̂k Þ is
the density function for sample i when it is assigned to
component k.

M-step

Update pk by pðsÞk ¼ 1
N

PN
i¼1p

ðs−1Þ
ik and μk by maximizing

lðs−1Þk ðμðs−1Þk Þ, that is μðsÞk ¼
PN

i¼1
pðs−1Þik xiPN

i¼1
pðs−1Þik

. The explicit form of

μðsÞk is derived by the first order gradient of lðs−1Þk ðμkÞ .
The estimate of dispersion θ̂k is not updated throughout
iterations, as explained in the following section.

Modification of algorithm
Initialization
The model in Si et al. [12] use treatment information in
initialization algorithm. NBMB adopt an initialization
technique different from this algorithm as current study
does not involve groups of genes. The initial value for

the prior probability pð0Þk is set at 1/K, while the initializa

tion of mean and dispersion (μð0Þk ; θð0Þk ) are the MLE for

all samples (denoted by μ̂MLE , θ̂MLE ). A trivial shift in
mean and dispersion between clusters can be adopted to
avoid equivalent posterior probabilities at the first

iteration, for example, μð0Þk ¼ μ̂MLEð1þ 0:01ðk−1Þ ) and
θð0Þk ¼ θ̂MLEð1þ 0:01ðk−1ÞÞ , with shift step 0.01. This
initial shift can be set to any value in R package
NB.MClust, but large values may cause computation
errors.

Dispersion estimate
The traditional M-step estimates μk, θk, pk simultan-
eously by maximizing expected log likelihood function
per component, without the closed form for estimate
of θk, which might lead to inefficient computation. A
conclusion in Si et al. [12] states that treating θk as
known via an estimated value in EM iterations does not

affect the power of clustering. Therefore, we fix θ̂k at ini-
tial values for all iterations. The estimate of dispersion in
their work is the Quasi-Likelihood Estimate (QLE) pro-
posed by Robinson et al. [24]. This technique signifi-
cantly reduces computation time and avoid invalid
values that can be produced at various iterations of the
EM algorithm. We emloy the similar approach in the
algorithm for NBMB using the exact MLE rather than
the QLE over all samples, as Si et al. [12] found that a
fixed value of the dispersion parameter in the EM algo-
rithm did not impact the clustering results.

E-step rescaling and annealing
Due to the assumed independence between genes and
subjects, we construct the multivariate density function
f(xi|μk, θk) by multiplying G univariate Negative Binomial

density functions f ðxijμk ; θkÞ ¼
QG

g¼1 f gðxig jμkg ; θkgÞ .

However, the existence of zero value of fg(xig|μkg, θkg)
cannot be avoided when G is large (e.g. G ≥ 1000), which

might result in the denominator of pðs−1Þik being zero. Set-
ting the density function to an arbitrary nonzero value

may lead to estimation errors for pðs−1Þik and pðsÞk . Thus, it
is necessary to rescale the density function per sample
per gene via dividing it by the exponential of mean dens-
ity across all genes and clusters, that is changing

fg(xig|μkg, θkg) to e log½ f g ðxig jμkg ;θkg Þ�−Mi , Mi ¼ 1
KG

PK
k¼1

PG
g¼1

log½ f gðxig jμkg ; θkgÞ: There have been several algorithms

proposed to reduce the risk of local optimal solutions in
EM algorithm, for instance, Simulated Annealing (SA)
by [22] and Deterministic Annealing (DA) by [21]. We
choose to use the DA algorithm to deal with issue of po-

tential local optimum, hence, pðs−1Þik in the E-step is modi-

fied as pðs−1Þik ¼ pk ½ f ðxijμðs−1Þk ;θk Þe−Mi �1=τs−1PK

k¼1
pk ½ f ðxijμðs−1Þk ;θkÞe−Mi �1=τs−1

. In applying

DA, we used the values τ0 = 2 or 10, τs + 1 = rτs and r =
0.9, similar to the values proposed by Rose et al. [21],
with τ0 = 10 providing an optimal solution in most of
simulation scenarios. Assessment of the robustness via a
simulation study found that these values do achieve the
best performance across all scenarios.

Simulation study
To assess the performance of NBMB, an extensive simu-
lation study was completed in which NBMB was com-
pared to GMM with no transformation, GMM on log
transformed counts, and GMM on Blom transformed
counts [25]. For each simulated data set, all the models
were applied with number of cluster components K
selected from K = 2, …, 6, based on BIC, with the clus-
tering performance assessed with the Adjusted Rand
Index (ARI) [26]. In this study we did not include K = 1
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in the range of K, because we assumed at least two clus-
ter components based on prior knowledge, similar to
[8]. The simulation scenarios differ in terms of: number
of clusters (K = 2, 3, 4, 5, 6); distance between clusters
(Δμ = 0.1, 0.5, 1; Δθ = 0, 1 ); percentage of differentially-
expressed (DE) genes (5, 10%); sample size (N = 50, 100,
150, 200); and number of genes (G = 1000, 5000). For
each scenario, 100 datasets were generated. Model-based
clustering usually requires filtering to a set of genes, as
the performance is poor when too many ‘null’ genes (i.e.,
genes with trivial variation) are included. Recent gene
expression studies often filtered genes down to 1000–
5000 genes for clustering by some measure of variability
[27, 28] or by a semi-supervised approach based on a
clinical endpoint, such as overall survival [29, 30].
Hence, we considered the number of genes at G= 1000
and 5000.
The simulated data sets were generated by baseline

parameters and the shift step between clusters. Baseline
parameters values μ1 and θ1 were the MLE of μ and θ for
the expression of the most variable genes in ovarian
cancer tumor samples from TCGA. The first cluster
component was generated by μ1 and θ1. The parameters
for each of the remaining cluster components, i.e. μk
and θk, k = 2, …, K were computed as μk = μ1e

(k − 1)Δμ, θk
= θ1e

(k − 1)Δθ, with Δμ and Δθ being the shift steps be-
tween two adjacent clusters. The shift step of mean μ
was set to either a small, medium, or large effect (Δμ =
0.1, 0.5, 1), while the shift step of dispersion θ was set at
either zero or one (Δθ = 0, 1). The value of Δμ was simi-
lar to the log fold change of RNA-Seq counts between
the subgroups of TCGA ovarian cancer tumor samples.

Application to real data
To assess the performance of NBMB to the commonly
used GMM with transformations, the clustering me
thods were applied to two transcriptomic studies. For
clustering analysis of each dataset, the most variable
genes were selected based on the Median Absolute Devi-
ation (MAD) as discussed in [31] and then used in the
clustering analysis. We used the 1000 instead of 5000
genes with the largest variation based on MAD for the
analysis of both data sets, as DE percentage for top 5000
genes is possibly smaller than that for top 1000 genes.
The optimal number of clusters in each study was se-
lected from a specified range of K based on the BIC
criterion.

Obesity and type 2 diabetes study
The first application dataset is a longitudinal transcrip-
tomic study of obesity and type 2 diabetes (T2D) in
which RNA was extracted from isolated skeletal muscle
precursor cells from 24 subjects. RNA was sequenced on
the Illumina HiSeq 2000 platform, with data downloaded

from Gene Expression Omnibus (GEO) at GSE81965,
GSE63887. This dataset does not contain any known
batch effects as described in [32]. We use edgeR package
within R statistical software to calculate library size nor-
malized counts based on the upper quartile normaliza-
tion factor, followed by computation of the counts per
million (CPM) for which clustering analysis was applied.
The range of possible number of clusters (K) for the
analysis were 2 to 5, since the four groups of subjects in
the T2D study can be reclassified as case and control.

TCGA ovarian Cancer study
The second dataset contains normalized RNA-seq counts
from the TCGA study of ovarian serous cystadenocarci-
noma tumors (N = 295). Tissue site effect within this data-
set is removed by Empirical Bayes method [33], with data
downloaded from MD Anderson at http://bioinforma-
tics.mdanderson.org/tcgambatch/ by selecting Disease ‘O
V’, Center/Platform ‘illuminahiseq rnaseqv2 gene’, Data
Level ‘Level 3’ and Data Set ‘Tumor-corrected-EBwithPar-
ametricPriors-TSS’. The downloaded data (X) was the
normalized expression abundance on the log scale; there-
fore the data was converted to the original scale by eX.
The range of possible clusters (K) was from 3 to 5, as mul-
tiple groups have reported that there are between 3 and 5
subtypes of serous ovarian cancer [34–36]. Cluster assign-
ments from NBMB and GMM were compared to the
CLOVAR subtypes, in which 4 subtypes have been
described related to progression free survival [35].

Results
Simulation study
There were 480 simulation scenarios being assessed,
with 100 datasets simulated per scenario. Unsupervised
model-based clustering was completed on each simu-
lated data set using the Negative Binomial mixture
model (NBMB) or the Gaussian mixture model (GMM)
with log, Blom or no transformation. To assess perform-
ance, adjusted rand index (ARI) was computed with
mean ARI for the scenarios presented in Fig. 1 ( Δθ = 1),
and Additional file 1: Figure S1 ( Δθ = 0). In general,
NBMB outperformed the GMM in most of the scenar-
ios, especially when total sample size or cluster distance
is small. The simulation results also indicate that for the
scenarios assessed, the none and logarithmic outper-
formed the Blom transformation for the Gaussian model
-based approach.
Figure 1 illustrates that the performance metric ARI is

decreasing as the number of clusters increases or the
shift step size decreases. NBMB has better or equivalent
performance compared to GMM on log transformed or
raw data for limited sample sizes (N = 50, 100), regard-
less of the number of genes or the shift step in parame-
ters, except for a few scenarios. This exception might be
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the result of simulation randomness or less optimal an-
nealing rate. ARI of GMM on log transformed data
increases sharply for the K > 3 scenarios at larger sample
sizes (N = 150, 200) and higher proportion of DE genes
(10%). The results in larger sample sizes also imply that
GMM with log-transformation is an ideal approach for a
large-scale study and may outperform NBMB in this
scenario.
The contrasts between NBMB and GMM methods are

consistent across the scenarios with different number of
genes (G = 1000, 5000). Performance of these approaches
also improved for certain scenarios when the number of
genes changes from 1000 to 5000. However, this improve-
ment does not imply that including more genes will defin-
itely lead to better performance in the clustering of real
data. If the percentage of DE genes decreases while still
preserving the number of genes included in the clustering
analysis, the clustering performance may decrease. Sum-
mary statistics for ARI per simulated dataset across differ-
ent scenarios were listed in Additional file 2: Tables S1-S4.

Analysis of obesity and type 2 diabetes study
In the Obesity and type 2 diabetes (T2D) study each
subject was sampled at 4 time points: 0, 0.5, 1, and 2 h
after insulin stimulation. Among the 24 subjects there
are 6 normal glucose tolerant, 6 obese, 6 type 2 diabetic,
and 6 obese and type 2 diabetic. We performed cluster-
ing by NBMB and Gaussian model-based methods on
library size normalized RNA-seq counts of 96 samples
and compared the clustering results to the known
disease/phenotype groups. The comparison between the
clustering methods is presented in Table 1 and Fig. 2.
All the normal glucose tolerant subjects were clustered
into NBMB cluster 1 (C1) and more than half of the

T2D and/or obese subjects were assigned to NBMB
cluster 2 (C2), matching with heatmap patterns in Fig. 2
(A). In contrast, the GMM with log, Blom and no trans-
formation divide each disease/phenotype group into 2–5
subgroups with one cluster (C1 in each GMM method)
overlapping with 2/3 or 5/6 of normal glucose tolerant
samples (Table 1), but the remaining clusters are not
overlapping with any other disease groups. The Fisher
Exact test shows both NBMB and GMM clusters are sig-
nificantly associated with disease groups.
The heatmaps in Fig. 2 (a)-(d) also reveal the outper-

formance of NBMB according to the matching between
the clusters and gene expression. The subjects in each
heatmap were ordered first by disease subtypes and then
by the clusters from each method. NBMB clusters in Fig.
2 (a) are consistent with the DE pattern in more than half
of the selected genes. GMM on log and non-transformed
data divide the non-obese normal glucose tolerant sub-
jects into two subgroups (C1 and C2 in Fig. 2 (b)-(c)), only
partially matching to the differential expression of a small
number of genes. Similarly, the clusters given by GMM
with Blom transformation do not show agreement with
most of the patterns in Fig. 2 (d). Furthermore, the clus-
tering result of NBMB implies that the difference between
the non-obese subjects with normal glucose tolerance are
less diverse compared to the other disease groups. NBMB
cluster 2 (C2) identifies potential signatures for a subject
having either obesity or T2D.

Analysis of ovarian cancer study
Research by TCGA [27] and Tothill et al. [37] found and
defined four subtypes of high-grade serous ovarian can-
cer: Immunoreactive, Differentiated, Proliferative and
Mesenchymal. These subtypes are later integrated with

Fig. 1 Simulation Results for Non-zero Shift in Dispersion. Plot of the mean Adjusted Rand Index for 100 simulated datasets in each of the
scenarios with non-zero shift in dispersion parameter. Scenarios in each panel are ordered by K, shift step size, and DE percentage. Colors
represent different methods, while shapes represent shift step size. Gaussian Mixture Model with none, log and Blom transformations are labeled
as GMM None, GMM Log and GMM Blom
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Table 1 Overlap between Obesity and T2D disease groups and the unsupervised cluster assignments produced from GMM with or
without transformation and NBMB

Non-obese & Normal glucose tolerant Non-obese & T2D Obese & Normal glucose tolerant Obese & T2D

GMM None

C1 16 (66.7%) 4 (16.7%) 4 (16.7%) 8 (33.2%)

C2 8 (33.3%) 4 (16.7%) 8 (33.2%) 8 (33.2%)

C3 0 8 (33.2%) 4 (16.7%) 4 (16.7%)

C4 0 4 (16.7%) 8 (33.2%) 4 (16.7%)

C5 0 4 (16.7%) 0 0

GMM Blom

C1 20 (83.3%) 4 (16.7%) 4 (16.7%) 4 (16.7%)

C2 4 (16.7%) 0 0 4 (16.7%)

C3 0 12 (50%) 12 (50%) 8 (33.4%)

C4 0 4 (16.7%) 8 (33.4%) 4 (16.7%)

C5 0 4 (16.7%) 0 4 (16.7%)

GMM Log

C1 16 (66.7%) 4 (16.7%) 4 (16.7%) 8 (33.2%)

C2 8 (33.3%) 4 (16.7%) 8 (33.2%) 8 (33.2%)

C3 0 8 (33.2%) 4 (16.7%) 4 (16.7%)

C4 0 4 (16.7%) 8 (33.2%) 4 (16.7%)

C5 0 4 (16.7%) 0 0

NBMB

C1 24 (100%) 8 (33.3%) 8 (33.3%) 12 (50%)

C2 0 16 (66.7%) 16 (66.7%) 12 (50%)

Fig. 2 Heatmap for T2D Study: Ordered by Disease Subtypes. Heatmap of the 1000 top MAD genes for the 96 samples in Type 2 Diabetes study
with disease subtypes and clustering results by (a) NBMB, (b) GMM log-transform, (c) GMM non-transformed, (d) GMM Blom-transformeddisplayed
at the top. Rows represent genes and columns are subjects
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prognostic signatures and named as Classification of
Ovarian Cancer (CLOVAR) framework by Verhaak et al.
[38]. To assess NBMB and GMM with and without vari-
ous transformations, we completed model-based cluster-
ing and compared these findings to the four CLOVAR
subtypes, which are presented in Table 2 and Fig. 3. The
CLOVAR subtypes used in this paper were determined
by the single-sample Gene Sets Enrichment Analysis
(ssGSEA) scores computed on the 100-gene CLOVAR
signatures (see Additional file 2: Table S1 and S7 of
[38]). NBMB determined 3 clusters, while GMM with
different transformation found 4 clusters. NBMB cluster
1 (C1) was enriched for differentiated and immunoreac-
tive subtypes, cluster 2 (C2) was enriched for mesenchy-
mal and cluster 3 (C3) contained a large proportion of
proliferative CLOVAR subtype samples. On the other
hand, GMM completed on non-transformed, the Blom
and log transformed count data show similar levels of
agreement with the CLOVAR subtypes as the NBMB,
with most of mesenchymal and proliferative samples
clustered in different GMM clusters, i.e. C1, C3 of Blom
transform and C2, C4 of log transform in Table 2. The
Fisher Exact test shows that both NBMB and GMM clus-
ters are significantly associated with CLOVAR subtypes.
The heatmaps in Fig. 3 (a)-(d) present the DE pattern

for CLOVAR subtypes and the latent groups discovered
by each method. Subjects in each heatmap were ordered

first by CLOVAR and then by the clusters. NBMB and
GMM log-transformed clusters in Fig. 3 (a)-(b) are con-
sistent with the DE pattern in half of the selected genes,
although GMM on log-transformed data divided NBMB
cluster 3 (C3) into two subgroups, improving the agree-
ment to heatmap DE pattern. This improvement con-
firms a conclusion in simulation study that GMM may
outperform NBMB for large samples. Clusters identified
by the other two GMM approaches severely deviated
from the differential expression in Fig. 3 (c)-(d). In
addition, NBMB cluster 1 (C1) in Fig. 3 (a) reveals the
signatures accounting for similarity between differenti-
ated and immunoreactive subtypes, while GMM log-
transformed clusters 3 and 4 (C3, C4) in Fig. 3 (b) un-
cover a small number of DE genes for the latent groups
in proliferative CLOVAR subtype.
It should be noted that the genes and methods used in

the development of the CLOVAR subtypes are not exactly
the same as those used in the application of NBMB and
GMM methods. The CLOVAR subtypes are determined
by the top 100 genes of the signatures in [27] that were
consistently present in various ovarian cancer studies [35],
while the NBMB and GMM methods perform unsuper-
vised clustering with 1000 genes selected based on TCGA
samples only. We do not use the CLOVAR signatures in
NBMB and GMM methods, because our goal is to assess
unsupervised clustering performance of model-based
methods on high-dimensional RNA-Seq data rather than
discovering unknown disease subgroups with the devel-
oped signatures.

Discussion
In this paper, we presented a method and algorithm
using a Negative Binomial mixture model (NBMB) to
complete unsupervised model-based clustering of tran-
scriptomic data from high-throughput sequencing tech-
nologies. In doing so, we assess the NBMB method
using both an extensive simulation study and transcrip-
tomic studies of type 2 diabetes and ovarian cancer. In
general, we found that the NBMB outperforms Gaussian
mixture model (GMM) applied to transformed data, par-
ticular when the same size was small or when difference
in cluster means were small. In this study we choose to
compare NBMB to other model-based approaches, as
model-based methods are known to outperform non-
parametric or heuristic-based methods when the correct
model is specified [8, 39], especially when the range of
number of clusters is known. Besides, Nonnegative
Matrix Factorization (NMF) requires impractical compu-
tation time for large data matrices [15] and has limita-
tion for certain distribution patterns [40], although it
has been successfully used for transcriptome data ana-
lysis. Therefore, we only compare model-based methods
for current research.

Table 2 Overlap between CLOVAR subtypes and the
unsupervised cluster assignments produced from GMM with or
without transformation and NBMB

Differentiated Immunoreactive Mesenchymal Proliferative

GMM None

C1 43 (68.25%) 85 (87.63%) 48 (87.27%) 27 (33.75%)

C2 11 (17.46%) 12 (12.37%) 7 (12.73%) 50 (62.5%)

C3 8 (12.7%) 0 0 1 (1.25%)

C4 1 (1.59%) 0 0 2 (2.5%)

GMM Blom

C1 5 (7.94%) 22 (22.68%) 44 (80%) 4 (5%)

C2 38 (60.32%) 54 (55.57%) 8 (14.55%) 2 (2.5%)

C3 4 (6.35%) 12 (12.37%) 3 (5.45%) 59 (73.75%)

C4 16 (25.39%) 9 (9.28%) 0 15 (18.75%)

GMM Log

C1 33 (52.38%) 52 (53.61%) 5 (9.1%) 19 (23.75%)

C2 16 (25.4%) 36 (37.11%) 47 (85.45%) 4 (5%)

C3 13 (20.63%) 4 (4.13%) 0 17 (21.25%)

C4 1 (1.59%) 5 (5.15%) 3 (5.45%) 40 (50%)

NBMB

C1 37 (58.73%) 69 (71.13%) 10 (18.18%) 1 (1.25%)

C2 9 (14.29%) 21 (21.65%) 43 (78.18%) 19 (23.75%)

C3 17 (26.98%) 7 (7.22%) 2 (3.64%) 60 (75%)
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The strength of this research include the following: the
ability to model the over-dispersion in transcriptomic
data through the use of a Negative Binomial distribution
for development of the mixture modeling framework for
model-based clustering; the completion of an extensive
simulation study to assess the performance of NBMB;
the application of NBMB to two existing transcriptomic
studies; and the ability for researchers to apply this
method using the R package NB.MClust. The computa-
tion efficiency of NBMB, as implemented in R package
NB.MClust, and GMM, as implemented in R package
mclust with the function “Mclust”, was assessed by clus-
tering the TCGA OV dataset with 295 samples and 1000
genes. User/system time (in seconds) for clustering with
K = 3 for NB.MClust was 29.01/0.03, while Mclust had a
time of 0.97/0.19. For the case when clustering was run
for K selected from K = 3, 4, 5, the time (in seconds) for
NB.MClust was 88.06/0.01, while Mclust had a time of
3.31/0.33. It should be noted that the package mclust
was being well-developed and upgraded in computation
for the past decades [7, 8, 41, 42].
In this study, the simulation results present a decrease

in performance metric ARI for each method along with
an increase in cluster components, as shown in Fig. 1.
The reason for this trend is that adding more cluster
components leads to smaller cluster sizes for a fixed
total of samples, and consequently results in lower com-
putation power. This performance change also sheds
light on the range of K specified in model-based cluster-
ing methods for a given sample size. For example, for N
= 50 the suggested range is K = 2, 3, 4 as the mean ARI
by each method is below 0.5 for all K > 4 scenarios in

Fig. 1. On the other hand, for a larger-scale study
with N ≥ 150, it is necessary to include K = 5, 6 into the
expected range of K in the application of NBMB or
GMM with log transform. Hence, we used this guidance
to set the range to select the optimal K in the clustering
analysis of two transcriptomic studies. Furthermore,
NBMB is superior to the other methods when a tran-
scriptomic study contains no more than 3 subgroups.
However, if there are K ≥ 4 subgroups in the T2D
small-cohort study, the clusters given by each model-
based method may deviate from the true subgroup as-
signment due to the limited sample size (N = 96). In con-
trast, if we expect K ≥ 4 subtypes in the TCGA OV
large-scale study (N = 295), GMM on log-transformed
data may be the optimal method to discover latent sub-
types and the result is valid. The heatmap patterns in
Fig. 2 (a) and Fig. 3 (b) illustrate that the T2D study con-
tains two subgroups correctly identified only by NBMB,
while the latent four subtypes of TCGA OV subjects are
better discovered by GMM.
While this research provides a framework for model-

based clustering of samples using a Negative Binomial
distribution, future research is needed to extend NBMB
in the following ways. First, research is needed to imple-
ment a gene selection approach within the NBMB model
with a semi-surprised approach or a variable selection /
shrinkage approach [30]. Secondly, research is needed
into extending this model to the Bayesian framework
wherein prior distributions could be used for the num-
ber of clusters or by modeling the number of clusters
(i.e., infinite mixture model) as an infinite Dirichlet
process [43]. Finally, further research is needed to

Fig. 3 Heatmap for TCGA OV Study: Ordered by CLOVAR Subtypes. Heatmap of the 1000 top MAD genes for the 295 samples in TCGA ovarian
cancer study with CLOVAR subtypes and clustering results by (a) NBMB, (b) GMM log-transform, (c) GMM non-transformed, (d) GMM Blom-
transformed displayed at the top. Rows represent genes and columns are subjects
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extend the model to take into account the correlated na-
ture of gene expression data.

Conclusion
The NBMB clustering method fully captures the
over-dispersion in RNA-seq expression and outperforms
Gaussian model-based methods with the goal of cluster-
ing samples, particular when the sample size is small or
the differences between the clusters (in terms of the
mean) is small.
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