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Abstract

compared with some naive deep learning methods.

task learning, Word embedding

Background: Biomedical semantic indexing is important for information retrieval and many other research fields in
bioinformatics. It annotates biomedical citations with Medical Subject Headings. In face of unbalanced category
distribution in the training data, sampling methods are difficult to apply for semantic indexing task.

Results: In this paper, we present a novel deep serial multi-task learning model. The primary task treats the
biomedical semantic indexing as a multi-label text classification issue that considers the relations of the labels. The
auxiliary task is a regression task that predicts the MeSH number of the citation and provides hints for the network
to make it converge faster. The experimental results on the BioASQ-Task5A open dataset show that our model
outperforms the state-of-the-art solution “MTI", proposed by the US National Library of Medicine. Further, it not only
achieves the highest precision among all the solutions in BioASQ-Task5A but also has faster convergence speed

Conclusions: Rather than parallel in an ordinary multi-task structure, the tasks in our model are serial and tightly
coupled. It can achieve satisfied performance without any handcrafted feature.

Keywords: Multi-label classification, Biomedical semantic indexing, Data mining, Natural language processing, Multi-

Background

In order to index citations in MEDLINE, a life science
and biomedicine journal database, National Library of
Medicine (NLM) developed Medical Subject Headings
(MeSH). Citations indexed by MeSH have been ap-
plied in fields such as query expansion [1], MEDLINE
document clustering [2], enhancing search strategies
for physical therapy [3] and so on. There are 28,472
MeSH main headings by 2017 [4]. Currently, the
indexing work is performed by a group of qualified
NLM staff, given the full text of each citation in
MEDLINE. The task is becoming more and more
tough on account of the annually increasing number
of citations in MEDLINE (869,666 in 2016, and has
approximately 8% increase over 2015 [5]). This fact
leads to the manual semantic indexing task to be very
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inefficient and financially expensive. For example, the
average cost of indexing each citation was reported to
be around $9.4 [6].

The main challenge of the BioASQ task can be
concluded as follows.

Insufficient information

The participants are only provided with the name of
the journal where the citations were published, the ti-
tles and the abstracts of the citations due to the limit of
authority. By contrast, MeSH indexing experts of NLM
have the full articles. Apparently, there are lots of use-
ful information in the full article, which is not available
to the participants.

The large amount of MeSH

There are 28,472 MeSH by 2017. On the contrary, the
average number of MeSH in each citation is 13 [6],
thus there are much more negative labels than
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positive labels for each citation which increase the
difficulty of indexing.

Unbalanced distribution of MeSH in the MEDLINE
According to the research of Ke Liu et al. [6], the most
frequent MeSH “Human” appears in 8,152,852 cita-
tions, while the 25,000th frequent MeSH “Pandanaceae”
appears only in 31 citations in total 12,504,999 MED-
LINE citations. As a result, there are not enough posi-
tive samples to learn the correct assignment of the
infrequent MeSH.

Many research works have addressed the problem of
biomedical semantic indexing by a wide variety of
methods, and the most recent powerful methods have
mainly used machine learning methods.

For example, the “Medical Text Indexers” (MTI) [7]
of NLM annotated biomedical citations with Unified
Medical Language System (UMLS) [8] using MetaMap
[9]. It used Restrict-to-MeSH approach and the
k-Nearest Neighbor (k-NN) algorithm. MTI is one of
the most advanced method for indexing biomedical ci-
tations. It is also the baseline solution of BioASQ chal-
lenge task A [10], an international competition for
automatically annotating new MEDLINE citations with
MeSH. Liu et al. [6] proposed model “MeSHLabeler”
which extracted several different features: the result of
a MeSH classifier, the scores from the nearest neighbor
citations, the MeSH and their synonyms directly found
in the title or abstracts. “MeSHLabeler” integrated these
features into a learning to rank framework [11]. It out-
performed the MTI of the day and got the best per-
formance in 2014 BioASQ challenge Task A.

Yuqing Mao and Zhiyong Lu [12] proposed “MeSH
Now” which obtains an initial list of MeSH candidates
from similar documents found by k-NN. A learning to
rank algorithm is used to rank these MeSH candidates,
and some hand-crafted rules are used for post-processing
and top-ranked MeSH selection.

The “MetaLabeler” proposed by Tsoumakas [13] ad-
dressed the multi-label classification problem as N bin-
ary classification problems [14] and solved them using
linear Support Vector Machine(SVM), where N is the
number of MeSH. The MeSH were ranked in terms of
the SVM prediction score of each classifier. A regres-
sion model which is independent of the classification
models was trained to predict K, the number of MeSH
for each citation, and used it to select the top K MeSH
in the ranked list.

The methods mentioned above successfully inte-
grated machine learning model with the knowledge re-
source and achieved encouraging results. However,
they have two kinds of shortcomings. Firstly, they can’t
represent the semantic of citations well by treating
words as atomic symbols that ignore the words
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relation. Secondly, the machine learning methods cur-
rently used, such as SVM, k-NN and learning to rank
model, need feature engineering in which researchers
have to choose the features that fed to the machine
learning model. The tedious feature engineering task
not only requires domain knowledge but also lacks
flexibility because some of the machine learning
models lack interpretability in feature selection.

In this paper, we propose a deep learning model [15]
with a serial multi-task learning structure to address
the deficiency of the common methods for large-scale
biomedical semantic indexing. We represent the cita-
tions as a sequence of word2vec [16] vectors. A bidirec-
tional Gated Recurrent Unit (BGRU) [17] is used to
take words order into consideration and generate the
hidden representation of the citations. Finally, we de-
sign a serial multi-task structure [18] to get the model’s
output, which contains a primary multi-label classifica-
tion task and a serial auxiliary regression task. The
model outperforms the state-of-art MTI in F-measure and
precision, and it achieves the highest precision among all
the solutions in BioASQ Task 5A. Furthermore, the exper-
iments show that the deep neural network with a serial
multi-task paradigm converges significantly faster.

We also try an interesting experiment in which the
semantic indexing task is seen as generating labels
given the representation of a citation. We use Wasser-
stein Generative Adversarial Nets(WGAN) to address
the label generating issue.

Methods

We proposed a deep serial multi-task learning model
(SMTL) to solve biomedical semantic indexing prob-
lems. The outline of it is illustrated in Fig. 1.

We map the words in each citations to word2vec
vectors that were pre-trained on 10,876,004 English
abstracts in PubMed [19]. We use word embedding in
consideration of the fact that it has overwhelming
advantages [20] over other count based word represen-
tation methods.

We truncate or pad the input sequences to 360 words
and feed the sequences to Bidirectional Recurrent
Neural Network (BRNN) [21] to get the hidden repre-
sentation. Gated Recurrent Units (GRU) [22] is used as
the RNN cell. We stack three fully connected layers on
top of the bidirectional GRU to perform the classifica-
tion task. In order to alleviate the impact of the unbal-
anced data and to let multiple relevant tasks inform
each other, we design an auxiliary regression task which
adds up the elements of the output vector by the pri-
mary multi-label classification task. In addition, we use
backpropagation algorithm to optimize the regression
loss and the batch normalization [23] are adopted to
speed up the training process.
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which the rightmost one is the output layer of the auxiliary regression
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Fig. 1 Deep Serial Multi-Task Learning Model (SMTL). The purple part is the sequence of word embedding (seq) that represents the training
citation. The pink part is the masking layer for unifying the length of each seq. The yellow part denotes the BGRU and the two directions of
which are separated by a red line. The gray part is the output of the BGRU, which is the hidden state. The green part includes three fully
connected layers and the rightmost one is the output layer of the primary classification. The blue part represents the structure of the SMTL, of

Neural semantic word embedding

Word2vec word embedding can be seen as a predict-
ive-based language model for the word and the con-
text, which embedded the semantic information of
the words. The most famous example of word2vec
embedding is “vector(“king”) — vector(“man”) + vec-
tor(“woman”) ~ vector(“queen”)” [24]. Baroni et al.
[20] showed that this kind of neural semantic word
embedding is superior to count-based distributional

representation in most of the Natural Language Pro-
cessing tasks.Word2vec has two kinds of models and
they are the Continuous Bag-of-Words model
(CBOW) and the Skip-Gram model [16].

The CBOW model makes use of both the previous
and subsequent nwords around the target word to
predict the target word w,. Conversely, the Skip-Gram
model uses the center word to predict the surround-
ing words. They are shown in Fig. 2.

semantic models and other kinds of semantic The objective function of CBOW is represented as Eq. 1.
X
w(t-n) w(t-n)
w(t-1) \ w(t-1)
\‘ W) w(t)
w(t+1) 7 w(t+1)
w(t+n) w(t+n)

cBOW

Skip-gram

Fig. 2 The CBOW Model and the Skip-gram Model. The CBOW Model uses the previous n words w(t-1)...w(t-n) and the subsequent n words w(t + 1)...
w(t + n) to predict the target word wi(t). The Skip-gram Model uses the target word w(t) to predict the surrounding words w(t-n)...w(t-1), w(t + 1)...w(t + n)
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Jo = TZ lOgP(Wt|Wt—na RN PRE PR Wt+n)
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(1)

The objective function of Skip-Gram model is
represented as Eq. 2.

Jo = %Z i logp(wejlwe) , (j=0) (2)

t=1 j=-n

In order to get the word embedding, it is needed to
maximize the objective function by maximizing the
conditional probability. After the process of
maximization, the network parameters correspond-
ing to the words are the expected word embedding.
We can simply implement the objective function
using softmax function as illustrated in Eqgs. 3 and 4,
where wodenotes the surrounding words, w;denotes
the center word, vrepresent the input embedding,
vrepresents the output embedding and Vrepresents
the size of the vocabulary.

'T
exp VW,VWI
> w
w;eV exp Vw,»VWo

p(wilwo) =
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exp (vfovwl)
p(wolwr) = — ;
>t exp(Viva,)

(4)

However, softmax function is computationally com-
plex since the denominator involves all the words in the
vocabulary which could be huge in practice, thus word2-
vec actually uses other more efficient methods instead of
softmax function to represent the objective function.

In this paper, we use the pre-trained word embedding
of 1,701,632 words provided by BioASQ which are
trained on 10,876,004 English abstracts of biomedical ar-
ticles from PubMed using skip-gram algorithm.

Bidirectional gated recurrent unit

Gated recurrent unit (GRU) is designed to resist gradient
vanishing and exploding problems of the Recurrent
Neural Network (RNN) and it has the ability to learn to
forget or update the recurrent hidden state according to
the context. The unit of GRU is illustrated in Fig. 3.

It can be seen that the GRU unit has an update gate and a
reset gate. The update gate z{decides how much the unit up-
date its content where frepresents the time step ¢ and j de-
notes the jthelement of the update gate vector z,. The reset

gate r/decides how much the new candidate value ;l; con-
sider the previous hidden state /2, .

The update gate z{ is computed by Eq. 5.

A
X
| ®
r Z n?
t t
(o] [

/

\

Ty

Fig. 3 The unit of GRU. Zis an update gate, where the superscriptjiindicates the update gate is the jthelement in the update gate vectorz, the
subscript tindicates the time step t. r/denotes a reset gate. h/_; represents a hidden state of the time step t- 1, h{ represents a hidden state of

the time step t and Bﬁis a candidate activation
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zl = o(W.x, + Uh,y)/ (5)

where W denotes the input weights matrix, Uz denotes
the recurrent weights matrix for the update gate, x, is
the input vector of the unit on the time step ¢ and ode-
notes the element-wise sigmoid function.

Similarly, the reset gate r{ is computed by Eq. 6.
rl = o(W,x, + Uh,_;)/ (6)

where W, denotes the input weights matrix, U, denotes
the recurrent weights matrix and h, ; is the hidden
state of the previous time step.

The activation 4 of the GRU is a linear interpolation
between candidate activation itiand the previous activa-
tion hf_lz

h = (1-z{) W+ 2 (7)

The candidate update activation izi is computed by

Eq. 8.
i, = tanh(Wx, + U(r,+h, 1))’ (8)

where W is the input weights and U is the recurrent

weight matrix, « means elementwise multiplication.

The structure of GRU has the ability to capture de-
pendencies over different time scales. In the units that
learn to capture short-term dependencies, the reset gates
tend to be active frequently. Meanwhile, in the units that
capture long-term dependencies, the update gates tend
to be more active. Most importantly, GRU can effectively
alleviate the gradient vanishing and exploding problem
which is the main disadvantage of standard RNNs. It
makes the training process much easier.

Bidirectional recurrent neural network (BRNN) in-
creases the amount of information available to the hid-
den representation of each time step allowing the
recurrent units to use both the previous and the future
information in the sequence. A bidirectional diagram is
illustrated in Fig. 4.

Here, H,; denotes the output of the recurrent hidden
units that propagate the information forward in time
(from the left to the right) and H, denotes the output of
the recurrent hidden units that propagate the informa-
tion backward in time(from the right to the left). Thus
at each time stept, the output activations are computed

by considering both the recurrent activation H;H)of the
previous time step and the recurrent activation Hﬁ””of
the next time step. In this paper, we use GRU as the

units of the BRNN, and concatenate H; and H, to get
the hidden state H.
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H(t-l—l)

1= (e zH®

X(t_l)

Fig. 4 The Structure of BRNN. The pink circles annotated with x
denotes the input vectors, the blue circles annotated with H, and H,
denote the output of the recurrent hidden units in two different
directions, and the green circles annotated with H denotes the
output of the BRNN, which is the hidden state vector generated by
concatenating the recurrent hidden states from two directions

«(® < (t+1)

The bidirectional structure utilizes more information,
thus strengthening the neural network’s ability of repre-
sentation. Some researchers have claimed that they got
better performance in the research fields of machine
translation [25], speech recognition [26] and so on. We
also find that Bidirectional GRU has better performance
than plain unidirectional GRU in our model.

Deep serial multi-task learning model

In multi-task learning (MTL) paradigm [18], more than
one tasks are trained at the same time. The related tasks
share part of the network structure, representation and
the features extracted from each other so that these
tasks can inform each other to learn better. Because the
representation considers the need for all the tasks, the
multi-task neural network tends to have a higher ability
of generalization. Unrelated tasks can also benefit from
the multi-task learning paradigm, too [27].

The loss of the MTL network is given by Eq. 9.

n

Lyrr = Lyri + Z/lkLk 9)
=

where L,,; refers to the loss of the primary task and Lj
refers to the loss of the kth auxiliary task, Ay is the
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relative importance factor of the auxiliary task with re-
spect to the primary task.

MTL has two main paradigms and the first one is the
hard parameter sharing MTL paradigm, which shares
the hidden layers among all the tasks and keeps several
task-specific output layers as illustrated in Fig. 5.

The other one is the soft parameter sharing MTL
paradigm [28], in which each task has its own relatively
independent model and there are extra structures and
parameters among these models for learning to share
information.

Neural network based multi-label classification is
naturally a multi-task learning process, in which the
classification of each label can be seen as one task
which shares the representation with the other classifi-
cation tasks for other labels. The multi-label classifica-
tion process in the neural network considers the
relation between different labels, thus it has better per-
formance over traditional machine learning methods
that treat the multi-label classification as independent
binary classifications.

As for the model we propose in this paper, we com-
bine two related tasks in the novel serial multi-label
learning structure. The primary task is the multi-label
classification task, in which each label refers to a candi-
date MeSH. When a label is assigned the value of 1, it
means that the corresponding MeSH should be assigned
to the citation.

The structure of the serial multi-task paradigm is
shown in Fig. 6. The count layer implements the oper-
ation described in Eq. 10. The primary classification task
can be formalized as P(seq|®), where 0 denotes the

Task A Task B

|

Task-
+ specific
layers

Shared
layers

Fig. 5 The Ordinary Hard Parameter Sharing MTL Structure. Task A
and B share the stationary hidden layers and keep some task-specific
output layers
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weights of the neural network and seq denotes the se-
quence of word embedding which is the input of the
model.

The auxiliary task is a regression task and we formalize
it as A(seq| 0). The calculation of the auxiliary task is
shown in Eq. 10.

R = A(seq|0) = P(seq|0) - v (10)

where R is a scalar which denotes the output of the
auxiliary regression task, and it is the prediction for the
total number of the labels (MeSH) that the citation has.
Here, v is the vector (1,1, -+, 1) with 28,472 dimensions.

The operation demonstrated by Eq. 10 is equal to the
process that counts the total number of the labels pre-
dicted by the primary classification task P(seq|0)and
uses it as the output of the auxiliary regression task
A(seq| 0).

During the optimization, the weights of the network
will be updated to ensure the low loss of both the pri-
mary and auxiliary task. Thus this serial multi-task
structure can deal with the primary task by knowing the
total number of labels for the corresponding citations.
The auxiliary task can inform the primary task and the
generalization ability of the network is higher. We name
the structure as the Serial Multi-Task Learning model
(SMTL) for multi-label classification.

We use cross-entropy to measure the loss of the pri-
mary classification network, mean square error is used
to measure the loss of the auxiliary regression network.

Therefore, the loss function of SMTL is:
L= Lpri + Laux (11)

Here, L,is the cross-entropy loss of the primary clas-
sification network and L,,,is the mean square loss of the
auxiliary regression network.

1 QL (y logP(seqi|9)j

Lyri = -+ Ly 2 +(1—y§) log(l—P(sequG)j)
(12)
Lowe = iXN: —A (seq ‘o ) (13)
N i=1

Here, yrepresents the ground true label of the primary
classification task and z represents the label of the re-
gression task, seqdenotes the input of the model which
is a word embedding sequence representing the training
citation. The superscript i denotes the ithtraining sample
of a selected mini-batch, and the subscript indicates the
element in the corresponding vector.

The SMTL model makes use of the hard parameter
sharing MTL paradigm, but it differs from the ordinary
hard parameter sharing MTL model. The ordinary one’s
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Regression
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(auxiliary
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A(seq | 0 ) = P(seq|6)-v
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Multi-label

Pieecle) [( JC ()

classification
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Fig. 6 The structure of the multi-task learning paradigm. The primary multi-label classification task is denoted as P(seq| ), the auxiliary regression
task is denoted as A(seq| 8)and the relationship between Pand Ais described in eq. 10

task)

Shared
layers

tasks are parallel while the tasks in our model are serial
and the auxiliary task is based on the primary task. It
informs the primary task more directly and makes the
network learn faster. SMTL shows high performance in
the experiment.

The algorithm of SMTL is described in Algorithm 1.

Wasserstein Generative Adversarial Networks (WGAN)
[29] is a promising generative model in which a generative
model G captures the data distribution, and a dis-
criminative model D estimates the probability that a
sample came from the training data rather than G.
We try to address the semantic indexing issue via

Algorithm 1. Serial Multi-Task Learning Algorithm

Symbol definition:

® FC* (input_dim, output_dim) indicates the kth fully connected layer with input_dim input neuron and output_dim output

neuron.

e Se( denotes the input of the model which is a word embedding sequence representing the training citation.

e [ denotes the ith training sample of a selected minibatch.

1. Make every training citation as a sequence of pre-trained word embedding.

2. Randomly initialize @ in the primary classification network P(seq|8)-

3. for epoch=1...M do

3.3 for training sample from 1 to N do

e (Calculate the output of the auxiliary regression:
A(seqi | 0) = P(seqi | 0) v

end for
3.4 Update @ by minimizing the loss:

L = Lpri + Laux

where L pri

end for

3.1 Select a random minibatch of N seq-label pairs (training samples).

3.2 Truncate or pad every S€( to the length of 360 words by using masking layer.

e Feed training sample to bidirectional GRU and get the output from two directions H, and H, .
e Concatenate H, with H, and get a hidden layer H with 540 dimensions.

e Connect 3 fully connected layers FC' (540, 540), FC? (540, 54()), FC? (54(), 28472) to H and get P(seq’ |6)

and L 2 18 computed by equation 12 and 13 separately.
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Fig. 7 The classification loss during the training process for different Model. The result shows that network with SMTL converges faster and has
better performance than networks with an ordinary parallel multi-task learning structure (Model A) and network without a multi-task structure
(Model B). It also shows that BGRU has better performance than unidirectional GRU (Model C) in SMTL

Wasserstein Generative Adversarial Nets (WGAN). Results and discussion

The hidden state of the recurrent network in the Data set and details of the experiment

trained SMTL model is a representation of the input We use BioASQ Task 5A dataset [10] as training set,
citation, and we use it as the input of the generator and the entire dataset contains 12,504,999 labeled cita-
to achieve a label combination. A discriminator is tions annotated by NLM staff.

trained to distinguish the generated label combina- The 2017 BioASQ challenge Task A released the
tions and the real label combinations. In the inference test data in many batches, and the participants’ sub-
stage, we use the trained generator to predict the mitted solutions were evaluated by the performance

label combinations of the citations. on the batches. In order to compare our solution with
055
2.3 0.7697
Precision
0.7683
0.7787
0.5199
Recall 0.1637
0.4148
0.4349
0.622
0.2696
F-measure
0.5387
0.5578
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
SMTL " Model A Model B Model C
Fig. 8 Performance comparison of different models. SMTL performs better than Model A, B and C. The tightly coupled serial structure informs the
tasks more so that the model spends less time learning the relationship between the primary and auxiliary tasks
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Table 1 Performance comparison with different solutions in
2017 BioASQ task 5A

System Precision Recall F-measure
SMTL 0.7750 05199 0.6220
DeepMeSH1 0.7052 06135 0.6561
auth3 06277 06366 0.6321
Default MTI 0.6408 06021 0.6209
MTI First Line Index 0.6624 0.5534 0.6030
iria-2 04853 0.5721 0.5251
Optimize Micro AUC 0.2890 02739 02812
Search system 1 0.2488 0.2907 0.2681

other participants’ approaches sufficiently, we choose
the last batch which is “week 5 batch 3” as the test
data since more teams joined this evaluation than any
other test batches.

With regard to the detail of the experiment, we use
200 dimensions word2vec embedding to represent the
word. We use the masking layers to generate citations
with variable length. The batch normalization layers are
used to make the network less fragile during the train-
ing process and it also alleviates the overfitting prob-
lem. For the initialization of the GRU, we initialize the
weights for the input vectors with Xavier uniform
initializer [30]. The bias is initialized with zero vector.
The hidden state of GRU is a vector of 270 dimensions,
so that after the concatenation of the two directions,
the hidden state is a vector of 540 dimensions. The two
fully-connected layers are both of 540 dimensions. For
the optimization process, we use Adam optimizer [31].

Page 9 of 93

The deep learning library Theano [32] and Keras [33] are
used to build our model. We use the first 3 million out of
the total 12 million data in the Bioasq dataset as the train-
ing data and the model is trained on a Nvidia 1080ti GPU.

Experimental results
We design several other models and compare them with
SMTL in the experiment.

SMTL: Our final model, which utilize a serial
multi-task learning structure and bidirectional GRU.

Model A: An ordinary hard parameter sharing MTL
model with Bidirectional GRU, and the MTL structure is
demonstrated in Fig. 5 where Task A denotes the
multi-label classification and Task B denotes the regres-
sion task.

Model B: A multi-label classification model with
Bidirectional GRU.

Model C: A SMTL model which has a unidirectional
GRU instead of a bidirectional GRU.

The binary cross-entropy loss of the multi-label classi-
fication task in different models during the training
process is demonstrated in Fig. 7.

The main evaluation metrics in the BioASQ challenge
Task A are Precision, Recall, and F-measure.

The performance evaluation results are demonstrated
in Fig. 8.

The performance comparison with other solutions
submitted by different participant teams in 2017 [34] is
shown in Table 1 and Fig. 9. It’s worth noticing that the
solution “DeepMeSH1” [35] is the champion in the
2017 BioASQ Task 5A competition. Our experimental

f-measure equipotential plot

Recall

among solutions of all the participants in 2017 BioASQ Task 5A

10 A1
0.8 1 o
8]
v,
A
= 0.6
Qo
a B SMTL
[0
& 04 - ® DeepMeSH1
A auth3
¢ »  Default MTI
0.2 1 o ¥ MTI First Line Index
' iria-2
4 Optimize Micro AUC
0.0 1 . . . ' . . ® Search system 1
0.0 0.2 04 06 0.8 10

Fig. 9 F-measure equipotential plot of different solutions in 2017 BioASQ Task 5A. The best solutions from each team are exhibited in the Fig. 9.
The plot shows that without any hand-craft feature or any sophisticated rule design, SMTL (the blue rectangle) achieves the highest precision
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result labelled as “SMTL” achieves the highest precision
among all the other solutions.

As demonstrated in Table 1 and Fig. 9, our SMTL out-
performs the state-of-art solution MTI proposed by NLM
on both precision and F-measure. As a reference, only the
solutions from two participant teams [35, 36] beat MT1 on
F-measure in the 2017 BioASQ Task 5A challenge and nei-
ther of them adopted deep learning methods. Bidirectional
GRU is good at capturing long term dependency in se-
quence data and does not need explicit feature extraction.
SMTL structure increases the generalization ability of the
model and makes the model converge faster in practice.

We use mean square error(MSE) as the metric for the
auxiliary regression task, and the MSE loss on the test
set is 27.54.

As depicted in Fig. 1, the recurrent neural network
gives a representation of the input word sequences(ci-
tations). We use it as the input of the fully connected
layers. And then the classification issue can also be
viewed as training a generative model to generate a
vector of 28,472 dimensions as the labels assigned to
the citations.

We also try to use a WGAN framework to resolve the
semantic indexing problem. The presentations in the
trained SMTL are used as the prior vectors of G in
WGAN to generate the 28,472 dimension label vectors.
And 3 layers of fully connected neural networks are de-
signed as a discriminative network to evaluate the au-
thenticity of the generated vector.

The performance of the WGAN framework with the
recurrent presentation is illustrated in Table 2 along
with SMTL.

Since the model G and D in our WGAN framework
are just fully connected neural networks with only 3
layers, it still remains great potential of the WGAN with
the recurrent presentation.

Conclusions

We propose a novel deep serial multi-task learning
model to address the issue of biomedical semantic
indexing. The traditional methods ignore the relations
among labels and need complicated feature engineer-
ing. Our model uses the word2vec word embedding to
represent the words in the citations, and the Bidirec-
tional GRU is used to create the representation of the
data. This multi-task learning structure is different

Table 2 Performance comparison between WGAN framework

and SMTL

System Precision Recall F-measure
WGAN Framework 06376 0.5486 0.5898
SMTL 0.7750 0.5199 0.6220
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from an ordinary one because the auxiliary task origi-
nates directly from the primary task and the two tasks
compose a serial structure. The regression task is mo-
tivated by dynamic threshold for classification task on
unbalanced data. Without any handcrafted feature, our
model outperforms the state-of-art baseline solution
MTI in F-measure, and it has higher precision than the
best solution “DeepMeSH1” in 2017 BioASQ Task 5A.

Furthermore, we are going to explore more auxiliary
tasks to inform the multi-label classification task and
apply the attention mechanism to our model for higher
performance. And we will also pay more attention to in-
vestigate the possibilities of using WGAN for semantic
indexing task.
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