
Singer et al. BMC Bioinformatics (2018) 19:532
https://doi.org/10.1186/s12859-018-2459-9

SOFTWARE Open Access

GLUE: a flexible software system for virus
sequence data
Joshua B. Singer* , Emma C. Thomson, John McLauchlan, Joseph Hughes and Robert J. Gifford*

Abstract

Background: Virus genome sequences, generated in ever-higher volumes, can provide new scientific insights and
inform our responses to epidemics and outbreaks. To facilitate interpretation, such data must be organised and
processed within scalable computing resources that encapsulate virology expertise. GLUE (Genes Linked by
Underlying Evolution) is a data-centric bioinformatics environment for building such resources. The GLUE core data
schema organises sequence data along evolutionary lines, capturing not only nucleotide data but associated items
such as alignments, genotype definitions, genome annotations and motifs. Its flexible design emphasises applicability
to different viruses and to diverse needs within research, clinical or public health contexts.

Results: HCV-GLUE is a case study GLUE resource for hepatitis C virus (HCV). It includes an interactive public web
application providing sequence analysis in the form of a maximum-likelihood-based genotyping method, antiviral
resistance detection and graphical sequence visualisation. HCV sequence data from GenBank is categorised and
stored in a large-scale sequence alignment which is accessible via web-based queries. Whereas this web resource
provides a range of basic functionality, the underlying GLUE project can also be downloaded and extended by
bioinformaticians addressing more advanced questions.

Conclusion: GLUE can be used to rapidly develop virus sequence data resources with public health, research and
clinical applications. This streamlined approach, with its focus on reuse, will help realise the full value of virus
sequence data.

Keywords: Virus sequence data, Virus evolution, Virus genotyping, Sequence database, Web-based bioinformatics

Background
The study of virus genome sequences is important in
medical, public health, veterinary and basic research
contexts. Recent advances in sequencing technologies
are driving a rapid expansion in the volume of avail-
able genomic sequence data for different viruses. Virus
genome sequencing is now a key technology for under-
standing virus biology and for facing the challenges pro-
vided by viral outbreaks and epidemics.
To realise the full value of virus genome sequencing,

sequence data must be processed within virus sequence
data resources: scalable software systems that encapsu-
late the appropriate virology expertise. The components
of these systems typically include both curated datasets
and automated analysis, but these vary according to which
species is targeted and the types of functionality offered.

*Correspondence: josh.singer@glasgow.ac.uk; robert.gifford@glasgow.ac.uk
MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, UK

Table 1 shows some examples of well-established virus
sequence data resources.
We have developed Genes Linked by Underlying Evolu-

tion (GLUE), a flexible software system for virus sequence
data (http://tools.glue.cvr.ac.uk). The aim of GLUE is to
facilitate the rapid development of diverse sequence data
resources for different viruses. The GLUE “engine” is an
open, integrated software toolkit that provides function-
ality for storage and interpretation of sequence data. The
engine itself does not include any components specific to a
particular virus. GLUE “projects”, on the other hand, cap-
ture data sets and other items relating to a specific group
of viruses. These projects are hosted within the GLUE
engine.
GLUE features several innovative aspects that differ-

entiate it from existing work; (i) whereas most public
virus sequence data resources do not make their inter-
nal software available, GLUE may be downloaded and
used by anyone to create a new resource; (ii) GLUE is

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-018-2459-9&domain=pdf
http://orcid.org/0000-0001-6989-475X
mailto: josh.singer@glasgow.ac.uk
mailto: robert.gifford@glasgow.ac.uk
http://tools.glue.cvr.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Singer et al. BMC Bioinformatics (2018) 19:532 Page 2 of 18

Table 1 Examples of virus sequence data resources

Resource name Virus species Functions References

REGA Genotyping HIV, HCV Genotyping, Alcantara et al., 2009 [1]
Tool and others Recombination analysis

The RNA Virus Many viruses Comparative analysis Belshaw et al., 2009 [2]
Database

Stanford HIV Drug HIV Sequence repository, Shafer et al., 2006 [3],
Resistance Database Sequence interpretation Gifford et al., 2009 [4]

Liu et al., 2006 [5]

Global Initiative Influenza Sequence repository, Shu and McCauley, 2017 [6]
on Sharing All Sequence interpretation,
Influenza Data Visualisation

Influenza Research Influenza Sequence repository Squires et al., 2012 [7]
Database Sequence interpretation,

Bioinformatics workbench

Virus Pathogen Many viruses Sequence repository, Pickett et al., 2012 [8]
Database and Sequence interpretation,
Analysis Resource Bioinformatics workbench

Nextstrain Influenza, Ebola, Molecular epidemiology, Neher et al., 2015 [9]
Zika and others Visualisation Hadfield et al., 2018 [10]

Geno2pheno[hcv] HCV Sequence interpretation Kalaghatgi et al., 2016 [11]

The Los Alamos HCV Sequence database Kuiken et al., 2005 [12]
hepatitis C
sequence database

The HIV Mutation Browser HIV Polymorphism database Davey et al., 2014 [13]

data-centric; all elements of a GLUE project are stored in
a standard relational database, including sequence data,
genome annotations, analysis tool configuration, and even
custom program code; (iii) to manage high levels of vari-
ation within virus types, GLUE organises sequence data
according to an evolutionary hypothesis, placing multi-
ple sequence alignments at the centre of its design; (iv)
the GLUE data schema is extensible, allowing projects to
host auxiliary data, for example geographical sampling
locations; (v) finally GLUE has a simple programmatic
interface, which can be used not only in a conventional
bioinformatics pipeline but also in web resources based on
GLUE.
To test these ideas we developed HCV-GLUE, a

sequence data resource for hepatitis C virus (HCV),
briefly presented here as a case study. HCV-GLUE offers
various data sets and computational functions includ-
ing maximum likelihood phylogenetics and drug resis-
tance analysis. Research bioinformaticians can download
HCV-GLUE for use within their labs while an interac-
tive web application (http://hcv.glue.cvr.ac.uk) provides
sequence data, analysis and visualisation to a wider range
of users.
GLUE provides a platform for the rapid development of

powerful, reusable virus sequence data resources. These
can inform virus research and also help us respond to
challenges posed by existing and emerging viruses of
concern.

Implementation
Scope
Virus sequence data resources vary along two major
dimensions: the types of virus sequence which are of inter-
est and the sequence data functionality which is offered.
A GLUE-based resource may relate to sequences from

a single virus species, e.g. human immunodeficiency virus
1, or from some higher-ranked grouping, e.g. the fam-
ily Retroviridae. It may encompass the whole genome of
the viruses of interest or only a single segment or gene.
In timescale terms it might cover only extant sequences
from a single contemporary outbreak over a few months
or years or, at the other extreme, hundreds of mil-
lions of years when the deeper evolutionary relationships
between viruses are being examined, for example across
lentiviruses infecting mammals [14].
A GLUE-based resource can fulfill a range of func-

tions within research, public health, medical or veterinary
contexts; any area where analysis of virus sequence vari-
ation is of value. One primary use of GLUE is to quickly
build bespoke repositories for consensus nucleotide data.
Sequence data may be derived from existing public
datasets, as in the Influenza Research Database [7], or may
be a product of research, clinical or public health activ-
ities. A key benefit of GLUE is that important genomic
aspects of sequences, such as protein translations of
specific genome regions, may be quickly computed and
made widely accessible. In clinical scenarios, this allows

http://hcv.glue.cvr.ac.uk

Singer et al. BMC Bioinformatics (2018) 19:532 Page 3 of 18

improved analysis of viral infections, for example in
detecting drug resistance of clinical relevance, as in HIVdb
or geno2pheno[hcv] [5, 11].
Within GLUE, sequences can also be linked to any

form of auxiliary data. Common examples of auxiliary
data include the disease status of infected organisms as
in the Los Alamos HCV database [12], and geographi-
cal or temporal data as in nextstrain [9, 10]. GLUE can
therefore serve as a bioinformatics platform for investi-
gating relationships between genomic variation and these
other variables. In public health, a GLUE-based resource
with epidemiology-related metadata may play a role in
real-time molecular surveillance as suggested in [15].
Sequence datasets can be combined with analysis func-

tionality in an integrated GLUE project. A core project
for a virus species would typically define a set of refer-
ence sequences, basic genome features and the important
agreed clades within the species. It may also provide clade
assignment functionality, as in the REGA genotyping tools
[1]. The project can then be disseminated for example
using public version control repositories [16]. Publication
of such a core project can then promote standards for
organising and analysing sequence data and allows the
community of interest to avoid recapitulating the basic
tasks of sequence data organisation for the virus each time
sequence analysis projects are undertaken.
Extensions to a core project can addmore specialist data

and new analysis modules. One direction for a project
extension is to catalogue specific genomic variations such
as amino acid polymorphisms, as in HIVmut [13], includ-
ing drug resistance as in HIVdb or geno2pheno[hcv] [3,
11] or epitopes as in IEDB [17].
The value contained within GLUE projects can be lever-

aged in a wide variety of computing contexts. To facilitate
this, GLUE relies on a minimal set of mature, high-quality,
cross-platform software components. GLUE can import
and export data in various formats and contains power-
ful scripting and command line capabilities which allow it
to be quickly integrated into a wider bioinformatics envi-
ronment. GLUE may also be deployed within a standard
web server, allowing its functionality to be exposed via
standard web service protocols for machine-to-machine
interaction. This capability can be used to build interac-
tive public websites or public programmatic services, or
to integrate GLUE into the wider computing infrastruc-
ture of an organisation as part of a microservices software
architecture.

Design overview
The GLUE engine is the software package on which all
GLUE-based virus sequence data resources depend. Its
features are intended to be useful across a broad range
of GLUE-based resources without being specific to any
virus or usage scenario. Interaction with the GLUE engine

is mediated via the command layer, its public interface.
The command layer can be used to manipulate and access
stored data, and to extend the data schema associated with
a project. It also provides a range of fine-grained bioin-
formatics functions along with mechanisms for adding
custom analysis functionality.
A GLUE project is essentially a dataset focused on a

particular virus and/or analytical context and held within
the GLUE data schema. Project development requires the
collation and curation of heterogeneous data: sequences,
metadata, genome annotations, clade definitions, align-
ments, phylogenetic trees and so on. Command scripts
are then used to load project data into the GLUE database
and integrate it using relational links. A project may be
further extended with configuration of functionality such
as clade assignment methods, the design of data schema
extensions and the implementation of any custom analysis
functionality.
This separation of concerns has a range of benefits.

GLUE project developers focus on using the GLUE com-
mand layer to develop their projects. So, while GLUE
projects depend on the syntax and semantics of the com-
mand layer they do not depend directly on the internal
details of the GLUE engine, which is implemented in Java.
System-wide aspects such as database access and schema
management, interfacing with bioinformatics software
and the provision of web services are handled by the
GLUE engine. GLUE-based resources benefit from these
without significant effort from project developers.
GLUE projects may be hosted in local repositories or

cloud-based public or private repositories such as GitHub
[16], allowing controlled collaborative development of
these resources. Individual GLUE projects are version-
controlled separately from the GLUE engine and from
each other, so that individual projects can be maintained
at a readily comprehensible scale.

Data-centric architecture
GLUE has a data-centric, model-driven architecture. It
defines a data schema and set of functions that sup-
port the common requirements of diverse virus sequence
data resources. All information required for sequence
processing, including both data and analysis configura-
tion, is stored in a standard relational database structured
according to this schema. Functions retrieve the required
information from the database as required during any
computation. There are several benefits to this approach.
Standard database mechanisms such as structured

queries, relational joins, paging and caching may be
employed, simplifying the implementation of higher-level
logic. Cross-cutting concerns are simplified. For exam-
ple referential integrity validation, query syntax and data
exporting are all handled in a uniform way. Finally, the
deployment of a GLUE-based resource on a new computer

Singer et al. BMC Bioinformatics (2018) 19:532 Page 4 of 18

system is as simple as installing GLUE and then copying
across the database contents; this is sufficient to ensure
that all required data and analysis functionality is in place.
The GLUE core schema (Fig. 1) is a fixed set of object

types and relationships available in every GLUE project.
The schema brings a certain level of evolution-oriented
organisation to virus sequence data and captures the
objects and relationships most commonly required to
utilise them.
The design is model-driven in the sense that the seman-

tics of the core schema reflect concepts inherent to
virus biology. This knowledge capture approach is simi-
lar to systems such as Gene Ontology [18, 19], Sequence
Ontology [20] and Chado [21]. However, the set of con-
cepts in the GLUE core schema is small and targeted at
the requirements of virus sequence data resources. Fur-
thermore, the semantics are flexible and intended to be
adapted on a per-project basis, in contrast with these
more formal ontologies. In presenting the core schema,
we will first discuss why sequence alignments are central
in its design, and then outline the main object types and
their semantics.

The role of sequence alignments
Nucleotide-level multiple sequence alignments are
hypotheses about evolutionary homology and are crit-
ical for interpreting virus sequence data. The pairwise

alignment of a new sequence with a well-understood
existing sequence allows the location of genomic features
within the new sequence to be inferred. The construction
of multiple sequence alignments allows more complex
comparative analyses to be performed. For example, com-
parative approaches can be used to investigate properties
such as phylogenetic relationships, selection pressures,
and evolutionary conservation.
The creation of high-quality alignments can require a

significant investment of effort. Distinct virus genome
regions or sets of sequences may require different
techniques, for example alignment of distantly related
sequences typically requires a degree of human oversight,
whereas closely related sequences may be reliably aligned
automatically. Nucleotide alignments for coding regions
are best performed with the knowledge of the translated
open reading frame. The process of creating alignments
also has a complex interdependency with tree-based phy-
logenetics: an alignment is a prerequisite for running a
phylogenetics method and yet the incorporation of a new
sequence into an alignment is strongly informed by the
phylogenetic classification of that sequence.
Because alignments are critical to virus sequence data

resources, GLUE places these high cost and high value
resources at the centre of its strategy for organising
sequence data. A key aim of the GLUE core schema
is to capture as much nucleotide homology as possible

Fig. 1 The GLUE core schema. The main object types, fields and relationships in the core schema of GLUE, represented as a Unified Modelling
Language (UML) entity-relationship diagram. Object types are represented as blue boxes with fields specified inside. Relationships between types
are represented as lines connecting the associated object types. A diamond indicates a composition relationship. Relationship lines are annotated
with “multiplicities” indicating how many objects participate in a single instance of the relationship; an asterisk indicates any number of objects

Singer et al. BMC Bioinformatics (2018) 19:532 Page 5 of 18

amongst the sequences of interest, and to integrate it into
a single data structure.
GLUE object types are denoted in italicised CamelCase,

e.g. FeatureLocation, and their fields are denoted by lower
case italics with angle brackets, e.g. <sequenceID>.

Sequences and Sources
As discussed above, viral nucleotide sequences form the
foundation of a GLUE project. Each GLUE Sequence
object is a viral nucleic acid, RNA or DNA. Sequencesmay
originate from a variety of methodological approaches
as long as consensus nucleotide strings are produced.
A set of Sequences is grouped together within a Source
object: Sequences are identified by the Source to which
they belong, together with a <sequenceID> field that is
unique within the Source.

Features
Feature objects represent parts of the viral genome with
established biological properties. Coding Features are
introduced for regions that are translated into proteins;
there may also be Features for non-coding promoters,
untranslated regions, introns and others. Features may
be arranged in a hierarchy, reflecting the containment
relationships of the corresponding genome regions (e.g.
specific domains within a protein, or individual proteins
within a precursor polyprotein).

ReferenceSequences and FeatureLocations
GLUE uses ReferenceSequence objects to organise, link
and interpret sequence data within a project. A Refer-
enceSequence is based on a specific Sequence. The choice
of which Sequence objects to use for ReferenceSequence
objects can vary based on conventions within the virus
research field or pragmatic concerns. ReferenceSequences
contain FeatureLocation objects that provide specific co-
ordinates for Features. Typically, multiple ReferenceSe-
quences will contain FeatureLocations for the same Fea-
ture, but with different co-ordinates as necessary. Addi-
tionally, a certain Featuremay be represented by Feature-
Locations on a subset ofReferenceSequences since a certain
gene for example may be present in the genomes of only
certain viruses within the project.

Alignments and AlignmentMembers
Evolutionary homology proposes that a certain block of
nucleotides in one sequence has the same evolutionary
origin as a certain block in another sequence. Align-
ment objects aggregate statements of evolutionary homol-
ogy between Sequences. An Alignment contains a set of
AlignmentMember objects; each AlignmentMember asso-
ciates a member Sequence with the containing Alignment.
Each Alignment has a reference coordinate space and
the AlignmentMembers contain AlignedSegment objects
representing statements of homology within this space.

Each AlignedSegment has four integer fields: <refS-
tart>, <refEnd>, <memberStart> and <memberEnd>. An
AlignedSegment states that the nucleotide block <mem-
berStart>:<memberEnd> in the member Sequence is to
be placed at location <refStart>:<refEnd> in the refer-
ence coordinate space of the containing Alignment. This
indirectly relates member sequence nucleotides with each
other: blocks of nucleotides from distinct Sequences are
homologous within an Alignment when they are placed at
the same reference coordinate location.
Alignment objects in GLUE are data structures which

store nucleotide homologies between sequences. The pos-
sible sources of these homologies include popular com-
putational methods such as MAFFT [22] but also manual
techniques.
There are two types of GLUE Alignment. In “uncon-

strained” Alignments the reference coordinate space is
purely notional; not based on any particular Sequence.
Nucleotide position columns in this coordinate space may
be added in an unrestricted way in order to accommodate
any homology between member Sequences.
A “constrained” Alignment is associated with a “con-

straining” ReferenceSequence. This provides a concrete
coordinate space for the Alignment. AlignedSegment
objects within a constrained Alignment propose a homol-
ogy between a nucleotide block on a member Sequence
and an equal-length block on the constraining Reference-
Sequence.
Unconstrained Alignments have the advantage of being

able to represent the full set of homologies between
any pair of member sequences. However they must
utilise an artificial coordinate space to achieve this,
and this coordinate space must expand to accommodate
every insertion, potentially leading to a large, unman-
ageable set of columns. Conversely, constrained Align-
ments use a fixed, concrete coordinate space but can-
not represent homologies for nucleotide columns con-
tained within insertions relative to the constraining
ReferenceSequence.

Variations
Patterns of residues within virus sequences, at both the
nucleotide and amino acid levels, are associated with
specific functions or phenotypes. Knowledge about such
residue patterns is typically derived from testing specific
laboratory-derived or -modified virus strains in specific
assays or observing their specific phenotypes. As these
patterns become more established in the literature, it is
informative to investigate the extent to which they may
be present in a broader set of related viruses. A Varia-
tion is a named nucleotide or amino-acid residue pattern.
Variationsmay also describe insertions or deletions at the
nucleotide or amino-acid level. GLUE contains functions
to analyse Variations in sequence data.

Singer et al. BMC Bioinformatics (2018) 19:532 Page 6 of 18

Patterns associated with a Variation may be defined as
concrete strings of nucleotides or amino acids. Alterna-
tively, for greater expressive flexibility, regular expressions
may be used. These are patterns to be matched within a
target string, with a standardised syntax and semantics.
The biological properties of a Variation pattern may be
captured via a data schema extension as discussed in the
following section.
Each Variation is contained within a FeatureLocation

object belonging to a specific ReferenceSequence, in order
to anchor it to a genomic location. This allows docu-
mented residue patterns from the research literature to be
quickly incorporated into a GLUE project using standard-
ised reference coordinates.

Schema extensions
Virus sequence resources often contain important aux-
iliary data items which cannot be captured within the
GLUE core schema. These project-specific data objects
may have highly structured relationships with objects in
the core schema and with each other. GLUE provides a
powerful yet easy-to-use mechanism for extending the
data schema on a per-project basis. New fields may be
added to tables in the core schema. New custom object
types may be added, with their own data fields. Finally,
custom links may be added between pairs of object types
in the schema.
For example Rabies lyssavirus is a negative-sense single-

stranded RNA virus in the Rhabdoviridae family infecting
a variety of animal species including humans. The wide
host range of this virus suggests that a GLUE project for
the virus may need to represent the host species from
which each viral sequence was originally obtained. A cus-
tom object type can be introduced with an object for
each possible host species. A custom many-to-one link
can associate each viral sequence with the host species
from which it was sampled. Host species objects them-
selves could then be annotated with ecological factors or
associated with host genus or host family objects if these
higher-rank taxonomic groups are of interest.

Object-relational mapping
Object-relational mapping (ORM) is a standard tech-
nique which allows application software to use object-
oriented constructs such as classes, objects, fields and
references to query and manipulate relational database
entities such as tables, rows, columns and relationships.
Internally, GLUE uses Apache Cayenne [23] as its ORM
system. Data items from the core schema or extensions
are represented as objects with fields and relationships,
providing a convenient abstraction for GLUE commands
and scripting logic. One example where this abstraction
may be used is in filter logic supplied to GLUE com-
mands. If the host species schema extension mentioned

above is in place, the list sequence command may
use a --whereClause filter option written in Cayenne’s
expression language to request all sequences where the
host species is, for example, within the family Canidae:
list sequence --whereClause

''host_species.family.id = 'Canidae'''
This applies a filter to the Sequence table, requiring

each selected object to be associated with a host species
object, which is in turn associated with the host fam-
ily object with ID “Canidae”. The filter logic is expressed
in object-oriented terms, but translated into SQL JOIN
syntax internally.

The alignment tree
GLUE projects have the option of using a structure
called an “alignment tree”, which links together nucleotide
homologies in an evolution-oriented way. The align-
ment tree captures established evolutionary relationships
between sets of sequences and integrates these with
nucleotide-level homology data.
An alignment tree is built by first creating constrained

Alignment objects for each of the established clades for
the viruses of interest. Where a parent-child relation-
ship between two clades exists within the evolutionary
hypothesis, a special relational link is introduced between
the corresponding pairs of Alignment objects. Sequence
objects are then assigned to clades by adding them as
AlignmentMembers of the corresponding Alignment.
It is important to note the processes by which

clades within an evolutionary hypothesis are established.
Homologies recovered from nucleotide sequence data
offer a starting point for generating a detailed branching
phylogenetic tree via a variety of computational methods,
such as RAxML [24]. In using suchmethods, the intention
is that this tree approximates the underlying evolutionary
history. However, such techniques are subject to errors
and uncertainties arising from various sources including
the sequence sample set, the alignment and the choice of
substitution model. Despite these limitations, some clear
and robust phylogenetic evidence can emerge for clade
relationships within a virus species as well as for clades
at higher taxonomic ranks. The status of the evolution-
ary hypothesis concerning a set of viruses can therefore
be at any point along a spectrum, depicted in stylised
form in Fig. 2. At one extreme, the “clade resolution”
is minimal: the evolutionary history is unknown except
that all sequences in the set belong to a single group. At
intermediate points on the spectrum, some phylogenetic
relationships between sequences remain unresolved, but
virus sequences have been assigned to well-understood,
widely-agreed clades, and the phylogenetic relationships
between these clades have been established. At the far
end of the spectrum, at the point of maximal clade res-
olution, a detailed phylogenetic tree has been established

Singer et al. BMC Bioinformatics (2018) 19:532 Page 7 of 18

Fig. 2 Different levels of clade resolution amongst viral evolutionary hypotheses. At minimal resolution, the set of viruses are known only to belong
to the main clade. At maximal resolution, all phylogenetic relationships between viruses are known

with each sequence on a leaf of the tree, and each internal
node carrying a high degree of support.
An alignment tree can represent the virus evolutionary

hypothesis at any point along this spectrum. Sequences
may remain as members of the same Alignment as long
as their precise evolutionary relationship remains unclear.
As the finer structure of the phylogeny emerges, perhaps
as new strains are sequenced, new Alignment objects may
be introduced to represent the newly-established clades,
and sequences may be moved according to their clade
assignment.
An invariant is a logical property of a software sys-

tem which is always true. The GLUE engine enforces the
“alignment tree invariant” in its operations on constrained

Alignments: If Alignment A is a child of Alignment B the
Sequence acting as the constraining ReferenceSequence of
Alignment A must also be a member sequence of Align-
ment B. In this way, a parent Alignment is forced to
contain representative member sequences from any child
Alignments. The object structure of an example alignment
tree, demonstrating the invariant, is shown in Fig. 3.
In practice, Alignments at the tips of the tree contain the

bulk of Sequences, as their memberships are determined
by some clade assignment process. An Alignment at an
internal position represents a putative ancestral clade, and
only needs to directly relate together representatives of
its descendent clades; sequences within these descendent
clades are indirectly considered members of the ancestral

Fig. 3 The object structure of an example alignment tree. The constrained Alignment at the root represents an entire virus species. Two child
Alignments represent established clades: genotypes 3 and 4. Genotype 3 is further subdivided into two subtypes, 3a and 3b. Each constrained
Alignment has a constraining ReferenceSequence. Within each Alignment node there are various AlignmentMember objects, each one records the
pairwise homology between the member Sequence and the constraining ReferenceSequence. The alignment tree invariant requires for example that
the constraining ReferenceSequence of subtype 3a is also a member of its parent, genotype 3

Singer et al. BMC Bioinformatics (2018) 19:532 Page 8 of 18

clade. It may also be useful to place other sequences at an
internal node if their membership of a more specific clade
cannot be established.
As discussed, a constrained Alignment is unable to rep-

resent homologies which exist at positions within inser-
tions relative to the ReferenceSequence. This is unlikely for
member sequences of tip Alignments as long as the Ref-
erenceSequence is a close relative. A group of sequences
within an Alignment may contain an insertion relative to
the ReferenceSequence. If the insertion contains data of
interest to the project, this may warrant a new child Align-
ment with an appropriate constraining ReferenceSequence,
containing the insertion. For Alignments at internal posi-
tions, one approach in future could be to use an ancestral
reconstruction as the ReferenceSequence; consistent sets
of insertions relative to this may then correspond to a new
clade.
A significant advantage of the alignment tree is to fix

the known evolutionary relationships between sequences
and thereby avoid recomputing these in later analysis.
The alignment tree also provides a pragmatic means to
integrate different alignments computed using different
techniques. Where sequences are closely related, reli-
able alignments can often be quickly built using simple
pairwise methods to align sequences within an Align-
ment to the constraining ReferenceSequence, for exam-
ple based on BLAST+ [25]. To obtain homologies for
Alignments at internal positions where the relation-
ship is more distant, manual or automated alignment
methods, possibly operating at the protein level, may
be more appropriate. In either case GLUE allows the
corresponding nucleotide homologies to be imported
and stored as AlignedSegments within the appropriate
AlignmentMember.
Over the whole genome, two distantly-related virus

sequences may be so divergent that it is impossible
to fully align them reliably and analyse them together.
However they may be much more conserved at specific
genome regions. Internal or root nodes of the align-
ment tree can capture the homology for these conserved
regions across a broad range of clades. Alignment tree
nodes nearer to the tips may capture homology for a
larger fraction of the genome, but for a narrow range of
clades.
The alignment tree invariant guarantees that between

any two Sequence objects, there is a path of Align-
mentMember associations and corresponding pairwise
sequence homologies. A simple transitivity idea composes
homologies along the path into a single homology. For
example if nucleotide block 21:50 on sequenceA is homol-
ogous to block 31:60 on sequence B, and block 41:70
on sequence B is homologous to block 1:30 on sequence
C, then block 31:50 on A is homologous to block 1:20
on C. GLUE applies this technique in various situations

which require a homology between Sequences in different
Alignments within the tree.

The command layer
The command layer forms the programmatic interface
of the GLUE engine. Commands cover a range of fine-
grained functions including the manipulation and query-
ing of any element in the project data set or the
project schema extensions. Other commands perform
more high-level functions; some examples are listed in
Table 2.
A significant amount of functionality in the com-

mand layer is provided via the “module” mechanism.
The current release of the GLUE engine provides more
than 40 module types (documented online). When a
module is created, commands associated with the module
type become available. Modules are stored data objects,
each module contains a configuration document which
modulates the operation of the module commands, for
example providing a set of rules or numeric parameter set-
tings. In this way built-in functionality can be adapted on
a per-project basis. GLUE module commands perform a
wide variety of functions and can include any use of or
update to the project dataset, operations on data obtained
from the local file system or attached to an incoming web
request, and operations involving external bioinformatics
programs such as BLAST+. Examples of module types are
given in Table 3.

The command layer in use
GLUE contains an interactive command line environ-
ment focused on the development and use of GLUE
projects by bioinformaticians. This provides a range of
productivity-oriented features such as automatic com-
mand completion, command history and interactive pag-
ing through tabular data. It could be compared to inter-
active R or Python interpreters [29, 30], or command line
interfaces provided by relational database systems such as
MySQL [31].

Table 2 Examples of GLUE commands with high-level functions

Command Description

inherit
feature-location

Creates a new FeatureLocation for a specific
feature F on a ReferenceSequence R1 based
on an existing nucleotide homology in the
project between R1 and another
ReferenceSequence R2 which already defines
a FeatureLocation for F.

show member
feature-coverage

Calculates percentages for the nucleotide
coverage of a specific FeatureLocation by
AlignmentMemberswithin a given Alignment.

amino-acid
frequency

Computes the frequency of different amino
acid residues within a specific
FeatureLocation for a set of
AlignmentMembers.

Singer et al. BMC Bioinformatics (2018) 19:532 Page 9 of 18

Table 3 Examples of GLUE module types

Module type Description

fastaProteinAlignmentExporter Creates amino-acid level alignments from Alignments within the GLUE project. A
protein-coding FeatureLocation is specified along with a set of
AlignmentMember objects selected from a given Alignment and its descendents.
A translated amino-acid alignment is generated based on the stored
homologies for the selected member sequences, which can then be exported
to a file or used in further computation.

blastProteinFastaAlignmentImporter Imports amino-acid level alignments into the GLUE project to be stored as
nucleotide alignments. For each row of this input alignment a GLUE Sequence
object is identified. TBLASTN is used to compare the alignment row with the
nucleotides of the identified sequence. In this way, the nucleotide-level
homologies implicit in the file are identified and AlignedSegment objects
representing this homology are created within an unconstrained GLUE
Alignment.

ncbiImporter Runs an eSearch query on the GenBank database [26, 27], based on a
configurable search term. Records are downloaded in GenBank XML format and
stored as GLUE Sequence objects.

genbankXmlPopulator Operates on a set of Sequence objects which are stored in GenBank XML format.
According to configurable rules, it extracts data items from the GenBank XML,
executes transformations on them and updates auxiliary data fields or
associations on the corresponding Sequence object.

samReporter Provides functionality for interpreting SAM/BAM files [28] containing high
throughput sequencing data. One example is the amino-acid command,
which will translate those reads in the file which map to a specific
protein-coding feature in the project. The command outputs the proportions of
amino acid residues found at each location.

AGLUE-based resource may have project-specific anal-
ysis or data manipulation requirements. For example the
assembly of the alignment tree set may need to iterate
over a certain set of clades to process each associated
tip alignment. Analysis logic may need to extract align-
ment rows from the data set and compute a specific
custommetric for each row. To address such requirements
GLUE project developers may write JavaScript programs,
based on the ECMAScript 5.1 standard [32]. These pro-
grams may invoke any GLUE command, and access the
command results as simple JavaScript objects. The pro-
grams may then be encapsulated as GLUE modules with
their code stored in the project database. They provide
functionality to higher level code in the form of module
commands.
Web services have become a de facto standard

for machine-to-machine interaction, using HyperText
Transfer Protocol (HTTP) to carry JavaScript Object
Notation (JSON) or eXtensible Markup Language (XML)
requests and responses between computer systems. A
software resource may offer its application programming
interface (API) as a web service to allow integration with
other systems either over the public web or on a private
network as part of a microservices architecture. GLUE
may be embedded in a standard web server. In this case its
command layer becomes accessible as a web service. Com-
mands are sent as JSON documents attached to an HTTP
POST request, using a uniform resource locator (URL)

identifying a data object within a GLUE project. The com-
mand result document is encoded as JSON attached to the
HTTP response.

Maximum-likelihood clade assignment
The assignment of a set of sequences to the same clade
asserts that they have a common ancestor which is more
recent than any ancestor shared with a sequence assigned
to an external clade. Maximum likelihood is a popular
evaluation criterion for selecting an evolutionary tree to
explain the origins of extant sequence data. As such it
has played a strong role in studies which aim to iden-
tify clades with strong support [33]. Sequences may be
assigned to clades using a simple similarity criterion, as
in geno2pheno[hcv] [11]. While identity-based measures
between sequences clearly do correlate with membership
of real clades, maximum likelihood techniques provide
a more principled methodology for placing sequences
within an evolutionary hypothesis.
Building on existing maximum likelihood software, we

have developed a new algorithmic method called Maxi-
mum Likelihood Clade Assignment (MLCA). An imple-
mentation of this MLCA is integrated into the GLUE
engine. RAxML [24] is a highly optimised implementa-
tion of maximum likelihood phylogenetics. The core use
of RAxML is to generate a full phylogenetic tree from a
multiple sequence alignment. RAxML also contains a fea-
ture called the Evolutionary Placement Algorithm (EPA),

Singer et al. BMC Bioinformatics (2018) 19:532 Page 10 of 18

which suggests high-likelihood branch placements for a
new sequence on a fixed reference tree. EPA allows us
to apply maximum likelihood without reconsidering the
whole tree. In this sense EPA is well-suited to the problem
of virus sequence clade assignment and forms the core of
the MLCA method.

MLCA overview
The role of MLCA is to assign one or more query
sequences to clades defined in a reference dataset.
Although in some contexts MLCA may be applied to
batches of query sequences, it is important to note that
MLCA computes a clade assignment for each query
sequence individually, and does not perform any phyloge-
netic analysis aimed at relating query sequences within a
batch to each other.
Clades can be defined at various phylogenetic levels. For

this reason, we introduce the concept of a clade category.
A clade category encapsulates a set of named clades which
are mutually exclusive. Within a virus species, an example
clade category would be “Genotype” which contains the
major genotypes of the virus; Genotype 1, Genotype 2 etc.

MLCA inputs
• A set of reference sequences R1,R2, . . .
• A multiple sequence alignment of these reference

sequences
• A strictly bifurcating tree Tfull with the reference

sequences labelled at the tips of the tree.

• A set of named clade categories C1,C2, . . . and for
each clade category, a set of clades. Each clade
category additionally defines certain numeric
parameters:

– A distance cut-off d
– A distance scaling exponent s
– The final clade cut-off f

• For each clade c, a subtree Tc (i.e. internal node) of
Tfull is specified, which corresponds to this clade. The
subtrees associated with the clades within a clade
category must be mutually exclusive. The reference
sequences which are leaf nodes of Tc are implicitly
assigned to clade c (see Fig. 4).

• One or more query sequences Q1, Q2, . . .

MLCA outputs
• For each query sequence Q, a (possibly empty) set of

strictly bifurcating trees, each tree consisting of Tfull
plus one additional branch for query Q, placed
anywhere within Tfull.

• For each query sequence Q and clade category C:

– An assignment of sequence Q to one of the
clades in category C, or possibly no such
assignment.

– Percentage weights assigned to a subset of the
member clades of C, or possibly an empty set
of percentage weights.

Fig. 4 Graphical illustration of the MLCA algorithm. The evolutionary hypothesis for a virus within a GLUE project consists of an alignment of
reference sequences R1, . . . , R7, a reference phylogeny with these sequences as leaf nodes and a set of clade definitions. In its initial alignment step,
MLCA extends the reference alignment with a row for query sequence Q. Next, the placement step (RAxML EPA) suggests a branch for Q within the
reference phylogeny. Finally, the Neighbour-weighting step assigns clades to Q by analysing the location of the additional branch in relation to
neighbouring reference sequence taxa

Singer et al. BMC Bioinformatics (2018) 19:532 Page 11 of 18

MLCA algorithm
The MLCA algorithm has three stages: alignment, place-
ment and neighbour-weighting. A graphical illustration of
the algorithm is presented in Fig. 4.
The alignment stage takes as input the multiple

sequence nucleotide alignment of the reference sequences
R1,R2, . . . and produces as output an extended alignment
which includes additional rows for the query sequences.
In the GLUE implementation of MLCA, this step is
based on the MAFFT software package [22]. We use
the --add MAFFT option, which maintains the state
of the initial alignment unchanged in the output and
the --keeplength MAFFT option to avoid introduc-
ing additional nucleotide columns. A query sequence may
include an insertion relative to the reference sequences
but these are of no relevance to MLCA. Finally, if a batch
of query sequences has been submitted to MLCA, we use
a separate run of MAFFT for each query sequence, in
order to keep the alignment computations for each query
sequence independent.
The placement stage takes as input the extended align-

ment from the previous stage together with the tree
Tfull. The aim of the placement stage is to find, for each
query sequence Q, a set of placements P1,P2, Each
placement P specifies a tree TP comprising Tfull, plus a
single additional branch for Q. The set of placements is
selected such that the positions and lengths of the new
branches maximise the likelihood of the extended tree
given the extended alignment. The placement stage is
implemented using the EPA subsystem of RAxML [24].
EPA operates by visiting each edge in Tfull and inserting
each query sequence at that edge in turn. After a query
sequence is inserted, the insertion point and length of
the new branch are optimised using RAxML’s maximum-
likelihood infrastructure to find the maximum likelihood
score possible for insertion at that edge. At the end
of the process, a small set (possibly empty) of n high-
likelihood placements P1,P2, . . .Pn are retained for each
query sequence.

Finally, the neighbour-weighting stage summarises the
outputs of the placement phase in the form of clade
weightings and assignments. For a given query sequence
Q and clade category C, neighbour-weighting will pro-
duce relative percentage weights for each clade c in C.
Such a weight denotedWc,Q represents the strength of evi-
dence that Q is a member of clade c. If the weight for a
particular clade within C exceeds the final clade cut-off
f, neighbour-weighting then recommends assigning Q to
that clade.
The phylogenetic trees which RAxML produces use

mean substitutions per site for branch lengths. The sum of
branch lengths along the path between any two leaf nodes
in the tree is the evolutionary distance between a pair of
sequences, a measure of genetic relatedness.
This neighbour-weighting algorithm is based on the

observation that a placement of a given query sequence
Q implicitly ranks neighbouring reference sequences by
increasing evolutionary distance from Q. Since each ref-
erence sequence R which neighbours Q is itself already
assigned to a clade c, if R is a close neighbour, this con-
tributes evidence to the assignment of sequence Q to
clade c.
The pseudocode procedure CLADEWEIGHTS in Fig. 5

specifies how the evolutionary distances to nearby refer-
ence sequences are combined to produce clade weights
for a given query placement. The idea is modulated by
applying d as a cut-off distance above which reference
sequences are not considered to be a relevant neighbour.
The s parameter is applied as a negative exponent to the
evolutionary distance, allowing us to amplify the weight of
nearer reference sequences.
The EPA procedure used in the placement stage actu-

ally generates n placements P1,P2, . . . ,Pn for each query
in the general case and also likelihood weight ratios
L1, L2, . . . , Ln for the placements such that these sum
to 1 across the placement set. The neighbour-weighting
stage combines the weights produced by CLADEWEIGHTS
across all placements within the set, to give a single

Fig. 5 Procedure to assign clade weights for a query sequence. Given a placement P for a query sequence Q, a weightWc,P,Q is calculated for each
for clade c within a clade category C

Singer et al. BMC Bioinformatics (2018) 19:532 Page 12 of 18

weight for the query Q within each clade c. Wc,Q =∑n
i=1Wc,Pi,QLi. These weights are then normalised to per-

centages that sum to 100% across C. Finally f is used
as a cut-off to determine whether a percentage weight is
sufficient to recommend a clade assignment.

Results
HCV-GLUE (http://hcv.glue.cvr.ac.uk) is a virus sequence
data resource for hepatitis C virus (HCV) with both clin-
ical and research applications. It is discussed here as a
case study, to illustrate how GLUE-based resources may
be developed. A rich set of web-based sequence data
resources exists already for HCV [1, 8, 11, 12, 26]. HCV-
GLUE complements these with a range of novel aspects.
Key items in the HCV-GLUE data set are taken from

an accepted classification of HCV [33]. These items are
the genotype and subtype clade definitions, a set of ref-
erence sequence definitions and an unconstrained mas-
ter alignment of these reference sequences. From these
items, an alignment tree is derived, with appropriate Ref-
erenceSequences for each of the constrained Alignment
nodes.
A large set of public HCV sequences is stored with asso-

ciated metadata. These sequences are assigned to clades
using a maximum-likelihood phylogenetic method, which
is also made available in an online genotyping tool. The
stored sequences are linked to each other via pre-built
sequence alignments within the alignment tree.
The 5’ and 3’ untranslated regions are defined as GLUE

Features, as are the open reading frame encoding the pre-
cursor polyprotein, which in turn has child Features for
the 10 mature viral proteins derived from the polyprotein.
GLUE provides commands for the analysis of amino acid
residues within sequences; within HCV-GLUE these com-
mands use the standardised numbering scheme proposed
by Kuiken et al. [34].
HCV-GLUE provides online analysis of drug resistance

for the direct-acting antiviral drugs (DAAs) that are avail-
able to treat HCV-infected patients. HCV-GLUE is the
first sequence-based resistance analysis resource derived
from European Association for the Study of the Liver
(EASL) guidelines [35].
Besides the HCV-GLUE interactive website, the full

dataset and analysis functions are available for any user
to download and use on a private computer. The HCV-
GLUE resource has been used in research articles: to
characterise the public sequence data for drug target
genes [36] and to predict the effectiveness of broadly neu-
tralising antibodies which may play a role in a vaccine
strategy [37].

Clade Assignment
The MLCA method is implemented within HCV-GLUE
and is used to assign genotypes and subtypes to

sequences. The details of MLCA are described in the
“Implementation” section.
Within HCV-GLUE, MLCA uses the polyprotein-

coding region of the master unconstrained alignment.
The reference phylogeny was generated from this align-
ment via a GLUE module that uses RAxML [24] with
GTRGAMMA+I as the substitution model and 1000
bootstrap replicates. The placement step runs RAxML
EPA with the GTRGAMMA+I substitution model. For
the neighbour-weighting step Genotype and Subtype are
defined as the two clade categories shown in Table 4.
We evaluated the MLCA method for HCV-GLUE by

comparing its outputs against two other sources of clade
assignments. One source of assignments was the GenBank
metadata (referred to as Metadata); in many cases geno-
type and subtype have been supplied by the submitter of
the sequence. A second source was the HCV genotyping
procedure of the Virus Pathogen Database and Analysis
Resource (ViPR [8]). This combines a distance-based phy-
logenetic tree computation approach with the branching
index metric [38, 39] to produce genotype and subtype
assignments.
The comparison was performed on the set of all

GenBank sequences classified as HCV, of 500 bases
or longer, downloaded on 19th December 2016. For
each sequence we automatically extracted any genotype
and subtype assignments from the Metadata. We also
obtained genotype and subtype results generated by the
ViPR HCV genotyping method for each sequence. After
patent-related sequences and known recombinants were
excluded, there were 82,928 sequences in the comparison
set.
Tables 5 and 6 show comparisons of assignments for

the sequence genotype and subtype respectively. Each
source of clade assignment may return a null result for
genotype or subtype, and so the tables are separated into
sections defined by the set of methods that returned non-
null results. Within each section we report the number of
sequences for which the different possible combinations
of methods are in agreement.
For the majority of sequences, clade assignments were

in agreement across all three methods; the proportion of
such sequences was 72.91% for genotype and 66.92% for
subtype. HCV-GLUEmost frequently assigned a genotype

Table 4 HCV-GLUE clade categories for MLCA

Clade Number Distance Distance scaling Final clade
category of clades cut-off d exponent s cut-off f

Genotype 7 0.4 -3.0 80%

Subtype 139 0.26 -3.0 80%

The Subtype category comprises 84 confirmed, 13 provisional and 42 unassigned
subtypes, Also shown are category-specific numeric parameters for the
neighbour-weighting step

http://hcv.glue.cvr.ac.uk

Singer et al. BMC Bioinformatics (2018) 19:532 Page 13 of 18

Table 5 Comparison of HCV-GLUE genotype assignment with
GenBank Metadata and assignment from ViPR

Methods giving Method agreement Number of
sequencesnon-null

assignment
results

Metadata &
HCV-GLUE & ViPR

Metadata = HCV-GLUE = ViPR 60 464

Metadata = HCV-GLUE �= ViPR 518

Metadata �= HCV-GLUE = ViPR 71

Metadata = ViPR �= HCV-GLUE 0

Metadata �= HCV-GLUE �= ViPR 2

Total 61 055

Metadata &
HCV-GLUE

Metadata = HCV-GLUE 5019

Metadata �= HCV-GLUE 26

Total 5045

Metadata & ViPR Metadata = ViPR 6

Metadata �= ViPR 7

Total 13

HCV-GLUE & ViPR HCV-GLUE = ViPR 13 977

HCV-GLUE �= ViPR 986

Total 14 963

Metadata only Total 25

HCV-GLUE only Total 1792

ViPR only Total 4

All assignment
results null

Total 31

Grand total 82 928

(99.91%), followed by ViPR (91.69%) and finally Metadata
(79.75%). Similarly, HCV-GLUE most frequently assigned
a subtype (99.34%), followed by ViPR (91.69%) and finally
Metadata (75.82%).
The higher frequency of a subtype assignment is par-

tially explained by the fact that HCV-GLUE includes
unassigned subtypes in its reference phylogeny and clade
definitions. These are subtypes containing fewer than 3
distinct full-genome sequences and which have therefore
not been given an official name. HCV-GLUE may assign a
sequence to such a subtype. As of January 2018, there were
about 200 such assignments, but HCV-GLUE has not
yet revealed any unassigned subtype with 3 full-genome
sequences.
In cases where all three methods assigned a genotype,

there were two sequences where all methods disagreed.
These were KJ678196 and KJ678224, from the same sub-
mission, both 822 bases in length. Aside from these, HCV-
GLUE either agreed with the Metadata assignment or
with ViPR.

Table 6 Comparison of HCV-GLUE subtype assignment with
GenBank Metadata and assignment from ViPR

Methods giving Method agreement Number of
sequencesnon-null

assignment
results

Metadata &
HCV-GLUE & ViPR

Metadata = HCV-GLUE = ViPR 55 495

Metadata = HCV-GLUE �= ViPR 1389

Metadata �= HCV-GLUE = ViPR 1079

Metadata = ViPR �= HCV-GLUE 47

Metadata �= HCV-GLUE �= ViPR 4

Total 58 014

Metadata &
HCV-GLUE

Metadata = HCV-GLUE 4508

Metadata �= HCV-GLUE 206

Total 4714

Metadata & ViPR Metadata = ViPR 7

Metadata �= ViPR 13

Total 20

HCV-GLUE & ViPR HCV-GLUE = ViPR 16 677

HCV-GLUE �= ViPR 1306

Total 17 983

Metadata only Total 129

HCV-GLUE only Total 1667

ViPR only Total 18

All assignment
results null

Total 383

Grand total 82 928

A non-null subtype assignment implies a non-null genotype assignment

For sequences where all methods assigned a subtype,
there were 2 sequences where the methods agreed on
the genotype but all disagreed on the subtype, these were
AM401743, 576 bases in length and KP347290, 684 bases
in length. Aside from these, HCV-GLUE agreed either
with the Metadata assignment or with ViPR, with the
exception of a group of 47 sequences. These sequences
were derived from the same study [40], and each sequence
was 543 bases in length. The sequence Metadata and
ViPR assigned the sequences to subtype 1b whereas HCV-
GLUE assigned them to subtype 1d. The HCV-GLUE
assignment is plausible, for example geno2pheno[hcv]
[11], which uses a BLAST-based approach, also assigns
all 47 sequences to subtype 1d. Subtype assignments for
shorter sequences such as these can be difficult to resolve.
The high level of agreement, at both genotype and sub-

type level, of HCV-GLUE assignments with ViPR and/or
Metadata assignments supports the credibility of the
HCV-GLUE clade assignment method.

Singer et al. BMC Bioinformatics (2018) 19:532 Page 14 of 18

Public sequence data repository
HCV-GLUE acts as a downstream repository for HCV
sequence data from GenBank, one of the principal pub-
lic repositories for sharing virus sequence data [26, 27].
HCV-GLUE synchronises itself with GenBank HCV data
on a daily basis, downloading any viral sequences of 500
bases or longer. HCV-GLUE adds value to the GenBank
sequence set in several ways. Metadata is extracted from
the GenBank XML format, normalised and added to cus-
tom columns of the HCV-GLUE Sequence table. Each
sequence is then assigned a genotype and subtype where
possible using the HCV-GLUE MLCA method and the
sequence is added to the appropriate alignment tree node.
A combined nucleotide and codon-aware BLAST-based
method is used to generate a pairwise homology between
the new sequence and the clade reference sequence.
The web application relies on the HCV-GLUE align-

ment tree as a navigational structure for accessing geno-
typed sequence data. Users may navigate to a specific
clade and then apply simple web dialogs to filter sequences
within the clade based on criteria including coverage of
virus genome region, global region of origin and collection
year.
Various data sets may then be downloaded based on the

selected sequence set: a simple FASTA file of nucleotide
data, metadata for the sequences in tabular format or a
constrained multiple sequence alignment. The alignment
may be composed of nucleotide or amino acid sequences
and can be restricted to specific genome regions, for
example mature proteins such as NS5A and sub-regions
of these proteins.

Automated genotyping and interpretation
The HCV-GLUE web application enables users to sub-
mit HCV nucleotide FASTA files for clade assignment
and detailed sequence interpretation. Genotype and sub-
type assignments are presented to the user along with
the closest neighbouring reference sequence and relative
clade weightings produced by the MLCA procedure. Any
atypical nucleotide or amino-acid polymorphisms are pre-
sented, along with a visual presentation of insertions and
deletions (see Fig. 6).

Identification of resistance-associated substitutions
The high rates of successful cure achieved by DAA treat-
ment have transformed the landscape for management
and outlook for HCV-infected patients. However certain
virus genome polymorphisms are associated with lower
rates of sustained virological response (SVR). Therefore,
there is considerable interest in identifying and monitor-
ing polymorphisms that give resistance to DAAs from
both the clinical and scientific communities.
At present, the HCV-GLUE dataset contains a catalogue

of 162 resistance-associated substitutions (RASs), drawn

from three recent survey articles [41–43]. These are rep-
resented using the GLUE Variation object type. Each RAS
is defined by one or more virus genome locations and spe-
cific amino acid residues at these locations. Additionally,
HCV-GLUE includes a schema extension which links each
RAS Variation object with a characterisation of the evi-
dence base for drug resistance, taken from the research
literature and from current clinical guidance documents.
This allows the web-based sequence interpretation system
to present authoritative guidance and other relevant infor-
mation about the RAS to the user (see Fig. 7). The aim will
be to regularly update HCV-GLUE as guidelines become
refined with options for DAA therapy and identification
of any novel RAS.

Comparison with other resources
Our case study resource HCV-GLUE can be compared
with a number of existing resources. Sequence reposi-
tory features similar to those of HCV-GLUE are found
in the Los Alamos and ViPR HCV resources [7, 12];
sequences and metadata are extracted from GenBank
and a clade assignment method is applied, subsets of
sequences and alignments may be extracted based on var-
ious criteria. Both the ViPR HCV resource [7] and the
REGA tools [1] provide a genotyping service for submitted
sequences. HCV-GLUE clade assignment is comparable;
on the one hand HCV-GLUE uses a slightly more sophis-
ticated phylogenetic method but on the other hand it
does not yet handle recombinant sequences. Drug resis-
tance analysis for submitted sequences is provided by
geno2pheno[hcv] [11] but has a slightly different empha-
sis from that of HCV-GLUE; geno2pheno[hcv] predicts
the overall level of resistance of the virus to each drug
based on the virus sequence and a set of rules. HCV-
GLUE aims to highlight the evidence base relating to
resistance-associated substitutions found within the virus
sequence. One particular benefit of HCV-GLUE is that
the entire GLUE project with all its data and analy-
sis capabilities can be downloaded for use on a local
computer.

Further work
Interpretation of virus genome data often involves virtual
translation of coding domains. In many viruses, such as
HCV, this is straightforward to model. However, in some
viruses, protein expression is complicated by a number
of transcriptional and post-transcriptional phenomena,
many documented in the ViralZone resource [44]. One
example is transcriptional editing in the glycoprotein (GP)
region of the Ebola virus genome. Another example is
RNA splicing, for example in the tat protein in HIV-1.
To model these phenomena in GLUE, the Feature and
FeatureLocation object types could be extended in the
core schema to allow transcriptional editing, RNA splicing

Singer et al. BMC Bioinformatics (2018) 19:532 Page 15 of 18

Fig. 6 Genome visualisation of the NS5A viral protein within a subtype 3a query sequence via the HCV-GLUE web report. The submitted query
sequence in green is contrasted with a user-selected reference sequence in blue. Differences between the query and reference are highlighted in
inverted grey. In a the 93H RAS is highlighted by a red annotation bar and is shown to have arisen from a single nucleotide change relative to the
subtype 3a reference (NC_009824) in the first nucleotide position within the codon. In b the query sequence contains amino-acid differences
relative to the subtype 3a reference sequence at positions 231, 239 and 240. There are nucleotide differences within codons 234 and 235 but these
are synonymous. The amino acid differences at 231 and 239 are atypical for subtype 3a as indicated by the yellow annotation bars, whereas the
Arginine (R) at position 240 is typical for the subtype. In c the subtype 3a query sequence is shown alongside the HCV master reference
(NC_004102); an insertion of 5 amino acids in the query sequence between codon locations 407 and 408 is shown; the consecutive nucleotide
positions 7478 and 7479 in the master reference are also given to clarify the insertion

and other phenomena to be specified in accordance with
experimentally observed molecular processes.
GenBank sequence records have the capability of repre-

senting coding domains and other phenomena in the form
of genome annotations. However these may be inconsis-
tent across sequences even within the same virus species.
Generating these annotations can be a significant bottle-
neck in the process of submitting sequences. GLUE is in a
good position to help with the production of these anno-
tations; if new sequences are stored in a GLUE alignment,
GLUE may infer an annotation for the new sequence
based on its homology with a reference sequence. GLUE
is also a natural staging area for sequence metadata. We
therefore think a new GLUEmodule type which generates

GenBank submission files could improve the submission
process.
Alignments are at the centre of any GLUE project,

however these necessarily contain a level of uncertainty,
with areas of poor quality. There are now a number of
tools for assessing the quality of alignments and suggest-
ing improvements, for example GUIDANCE2 [45] and
trimAl [46]. These could be integrated into GLUE via
new module types, allowing GLUE project developers to
quickly establish a high-quality alignment before moving
to downstream analysis.
The arrangement of sequences within a single align-

ment tree presumes a straightforward model of evolution
in which different sections of the genome of a given virus

Singer et al. BMC Bioinformatics (2018) 19:532 Page 16 of 18

Fig. 7Web-based drug resistance report generated by HCV-GLUE. In this case the submitted sequence has been assigned to Genotype 3. The 93H
substitution in the NS5A viral protein was detected; the report highlights that this is associated in the EASL guidance with resistance to both
velpatasvir and daclatasvir

have the same evolutionary history. This assumption is
introduced for pragmatic reasons, as it is inmany phyloge-
netic analyses of viruses. However, the well-documented
phenomena of of reassortment and recombination break
this assumption.
So called “segmented” viruses (e.g. influenza, rotaviruses)

possess a genome that is partitioned across physically dis-
tinct genomic segments. In these cases, multiple virus
strains co-infecting the same cell can “reassort” and gen-
erate virus progeny that is distinct from the parental
strains. In applying GLUE to such viruses we propose
that each Sequence object should contain only the genetic
material from one segment. A separate alignment tree
should be introduced to capture the evolutionary hypoth-
esis for each segment, containing only AlignmentMem-
ber objects for Sequences of that segment. Sequence
objects representing different segments derived from
the same biological sample can be linked via the use
of schema extensions, which then facilitates analysis of
reassortment.
Some viruses with non-segmented genomes (e.g.

dengue, HIV-1) exhibit genetic recombination; within a
host containing different strains, a new strain may appear
containing genetic material from multiple “parent” virus
strains in the same genomic fragment. In GLUE projects
relating to viruses where recombination is occasional,
this could be modelled within a single alignment tree.
For a recombinant Sequence, multiple AlignmentMember
objects would be created in order to assign different

regions of the genome to different constrained Alignments
reflecting the distinct origin of these regions. In GLUE
projects where recombination is widespread, it may be
more expedient to introduce separate alignment trees for
those genes or genomic regions for which integrity tends
to be preserved across recombination events.

Discussion
The advent of powerful, affordable approaches for
sequencing nucleic acids has exerted an enormous impact
on virology and enabled new approaches for tackling viral
disease. Accordingly, recent years have seen the emer-
gence of a diverse range of databases and computational
tools that are centred around virus genome data. These
sequence data resources are being developed for a range
of different reasons, in an environment characterised by
rapid change and considerable uncertainty, and this cre-
ates numerous challenges and inefficiencies. In this paper,
we have presented GLUE, a software system that has
been designed specifically for the production of such
resources.
The core schema of GLUE has been developed to cap-

ture the most important aspects of virus sequence data
analysis. In particular, since comparative evolutionary
analysis is typically central to sequence interpretation,
GLUE places multiple sequence alignments at the cen-
tre of the data model. This means that common analysis
functions such as variation scanning and clade assignment
can be set up quickly for different virus projects.

Singer et al. BMC Bioinformatics (2018) 19:532 Page 17 of 18

To the best of our knowledge, GLUE is unique in terms
of design and aims. The software underlying nextflu [9]
has been generalised across multiple viruses [10] and is
open source. It has a strong emphasis on real-time molec-
ular epidemiology and graphical visualisation on the web,
in contrast with the broader aims of GLUE. Some mod-
ules of the open source Chado project [21] overlap the
core schema design of GLUE and the Chado schema could
play a role in virus sequence data resources, since post-
transcriptional phenomena such as splicing have been
carefully modelled. However Chado only aims to solve the
schema design problem while much additional function-
ality is required to build a resource such as HCV-GLUE.
By defining a restricted set of fundamental compo-

nents, the core schema of GLUE introduces a degree of
order and standardisation to the way in which sequence
data resources are developed. Furthermore, each GLUE-
based resource may define its own specific data exten-
sions and analysis functionality, whilst also benefitting
from the cross-cutting concerns addressed within the
GLUE engine such as common bioinformatics function-
ality, database mechanisms, the interactive command line
and web service integration. This high-level of flexibil-
ity should increase the versatility of GLUE as a system
for constructing virus sequence data resources. These
ideas have been validated in HCV-GLUE, a sequence data
resource for hepatitis C virus with clinical and research
applications.

Conclusions
GLUE is a unified software environment supporting the
rapid development of virus sequence data resources and
promoting the efficient use and reuse of virus sequence
expertise. We propose that GLUE can facilitate a step-
change in the efficiency with which genomic data are used
to advance research and public health.

Availability and requirements
See the table below for details of the GLUE software
availability and requirements.
Project name: GLUE (Genes Linked by Underlying Evo-
lution)
Project home page: http://tools.glue.cvr.ac.uk
Operating system(s): Linux, Mac OSX, Windows
Programming language: Java
Other requirements: Java Platform Standard Edition
1.8.0 or later
MySQL Server Community Edition 5.7 or later
BLAST+ 2.2.31 or later
MAFFT 7.299b or later
RAxML 8.2.8 or later
License: GNU Affero General Public License 3.0
Any restriction to use by non-academics: None beyond
license terms

Abbreviations
API: Application programming interface; BLAST: Basic Local Alignment Search
Tool; DAA: Direct-acting antiviral; DNA: Deoxyribonucleic acid; EASL: European
Association for the Study of the Liver; EPA: Evolutionary Placement Algorithm;
GLUE: Genes Linked by Underlying Evolution; GP: Glycoprotein; HCV: Hepatitis
C virus; HIV: Human immunodeficiency virus; HTTP: HyperText Transfer
Protocol; IEDB: Immune Epitope Database; JSON: JavaScript Object Notation;
MAFFT: Multiple Alignment using Fast Fourier Transform; MLCA: Maximum
Likelihood Clade Assignment; ORM: Object-relational mapping; RAS:
Resistance-associated substitution; RAxML: Randomized Accelerated
Maximum Likelihood; RNA: Ribonucleic acid; SQL: Structured query language;
SVR: Sustained virological response; URL: Uniform resource locator; ViPR: Virus
Pathogen Database and Analysis Resource; XML: Extensible Markup Language

Acknowledgements
The authors would like to express their gratitude to Ellie Barnes and other
members of the STOP-HCV consortium for their valuable input into the
development of HCV-GLUE, to Ru Xu of the Guangzhou Blood Center who
contributed some metadata improvements for Genotype 6 sequences and to
David Robertson and Massimo Palmarini who provided valuable feedback on
the manuscript.

Funding
This work was funded by the Medical Research Council (MRC) of the United
Kingdom, award number MC_UU_12014/12. JBS was also part funded by a
MRC Confidence in Concept award to the University of Glasgow,
MC_PC_16045. ECT was funded by the Wellcome Trust (102789/Z/13/Z). The
funding bodies did not play any role in the design of the study or collection,
analysis and interpretation of data or in writing the manuscript.

Availability of data andmaterials
The datasets generated and/or analysed during the current study are available
as a MySQL database download from http://hcv.glue.cvr.ac.uk, or from the
HCV-GLUE GitHub repository, access to which will be provided by the
corresponding author on reasonable request.

Authors’ contributions
JBS designed and wrote the software and its documentation and wrote the
manuscript. ECT, JH and JM contributed to the specification of HCV-GLUE. ECT
designed the antiviral resistance analysis. ECT and JM tested the HCV-GLUE
web site. JH conceived the MLCA method. RJG conceived the GLUE concept,
contributed to the design of the core schema, tested aspects of the GLUE
implementation and supervised the project. All authors read and approved
the final version of the manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Received: 26 April 2018 Accepted: 2 November 2018

References
1. Alcantara LCJ, Cassol S, Libin P, Deforche K, Pybus OG, Van Ranst M,

Galvão-Castro B, Vandamme A-M, de Oliveira T. A standardized
framework for accurate, high-throughput genotyping of recombinant
and non-recombinant viral sequences. Nucleic Acids Res. 2009;37(Web
server issue):634–42.

2. Belshaw R, de Oliveira T, Markowitz S, Rambaut A. The RNA Virus
Database. Nucleic Acids Res. 2009;37(Database issue):431–5.

3. Shafer RW. Rationale and uses of a public HIV drug-resistance database.
J Infect Dis. 2006;194(s1):51–8.

http://tools.glue.cvr.ac.uk
http://hcv.glue.cvr.ac.uk

Singer et al. BMC Bioinformatics (2018) 19:532 Page 18 of 18

4. Gifford RJ, Liu TF, Rhee S-Y, Kiuchi M, Hue S, Pillay D, Shafer RW. The
calibrated population resistance tool: standardized genotypic estimation
of transmitted HIV-1 drug resistance. Bioinformatics. 2009;25(9):1197–8.

5. Liu TF, Shafer RW. Web resources for HIV type 1 genotypic-resistance test
interpretation. Clin Infect Dis. 2006;42(11):1608–18.

6. Shu Y, McCauley J. GISAID: Global initiative on sharing all influenza data –
from vision to reality. Eurosurveillance. 2017;22(13):30494.

7. Squires RB, Noronha J, Hunt V, García-Sastre A, Macken C, Baumgarth N,
Suarez D, Pickett BE, Zhang Y, Larsen CN, Ramsey A, Zhou L, Zaremba S,
Kumar S, Deitrich J, Klem E, Scheuermann RH. Influenza Research
Database: an integrated bioinformatics resource for influenza research
and surveillance. Influenza Other Respir Viruses. 2012;6(6):404–16.

8. Pickett BE, Sadat EL, Zhang Y, Noronha JM, Squires RB, Hunt V, Liu M,
Kumar S, Zaremba S, Gu Z, Zhou L, Larson CN, Dietrich J, Klem EB,
Scheuermann RH. ViPR: an open bioinformatics database and analysis
resource for virology research. Nucleic Acids Res. 2012;40(Database Issue):
593–8.

9. Neher RA, Bedford T. nextflu: real-time tracking of seasonal influenza
virus evolution in humans. Bioinformatics. 2015;31(21):3546–8.

10. Hadfield J, Megill C, Bell SM, Huddleston J, Potter B, Callender C,
Sagulenko P, Bedford T, Neher RA. Nextstrain: real-time tracking of
pathogen evolution. Bioinformatics. 2018;34(23):4121–4123.

11. Kalaghatgi P, Sikorski AM, Knops E, Rupp D, Sierra S, Heger E, et al.
Geno2pheno[HCV] - A Web-based Interpretation System to Support
Hepatitis C Treatment Decisions in the Era of Direct-Acting Antiviral
Agents. PLoS ONE. 2016;11(5):e0155869. https://doi.org/10.1371/journal.
pone.0155869.

12. Kuiken C, Yusim K, Boykin L, Richardson R. The Los Alamos hepatitis C
sequence database. Bioinformatics. 2005;21(3):379–84.

13. Davey NE, Satagopam VP, Santiago-Mozos S, Villacorta-Martin C,
Bharat TAM, Schneider R, et al. The HIV Mutation Browser: A Resource for
Human Immunodeficiency Virus Mutagenesis and Polymorphism Data.
PLoS Comput Biol. 2014;10(12):e1003951. https://doi.org/10.1371/journal.
pcbi.1003951.

14. Gifford RJ. Viral evolution in deep time: lentiviruses and mammals. Trends
Genet. 2012;28(2):89–100.

15. Gardy J, Loman NJ, Rambaut A. Real-time digital pathogen surveillance—
the time is now. Genome Biol. 2015;16(1):155.

16. GitHub Inc. The GitHub Web Site. https://github.com/. Accessed 25 Sept
2017.

17. Vita R, Overton JA, Greenbaum JA, Ponomarenko J, Clark JD, Cantrell JR,
Wheeler DK, Gabbard JL, Hix D, Sette A, Peters B. The immune epitope
database (IEDB) 3.0. Nucleic Acids Res. 2015;43(Database issue):405–12.

18. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP,
Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L,
Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM,
Sherlock G. Gene ontology: tool for the unification of biology. Nat Genet.
2000;25(1):25–9.

19. The Gene Ontology Consortium. Expansion of the Gene Ontology
knowledgebase and resources. Nucleic Acids Research. 2017;45(Database
Issue):331–8.

20. Eilbeck K, Lewis SE, Mungall CJ, Yandell M, Stein L, Durbin R, Ashburner M.
The Sequence Ontology: a tool for the unification of genome
annotations. Genome Biol. 2005;6(5):44.

21. Mungall CJ, Emmert DB, Consortium TF. A Chado case study: an
ontology-based modular schema for representing genome-associated
biological information. Bioinformatics. 2007;23(13):337–46.

22. Katoh K, Standley DM. MAFFT multiple sequence alignment software
version 7: Improvements in performance and usability. Mol Biol Evol.
2013;30(4):772–80.

23. Apache Cayenne Team. Apache Cayenne: Object Relational Mapping,
Persistence and Caching for Java. Apache Softw Found. http://cayenne.
apache.org/. Accessed 25 Sept 2017.

24. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and
post-analysis of large phylogenies. Bioinformatics. 2014;30(9):1312–3.

25. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K,
Madden TL. BLAST+: architecture and applications. BMC Bioinforma.
2009;10(1):421.

26. Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW. GenBank.
Nucleic Acids Res. 2016;44(Database Issue):67–72.

27. NCBI Resource Coordinators. Database resources of the National Center
for Biotechnology Information. Nucleic Acids Research. 2016;44(Database
Issue):7–19. https://academic.oup.com/nar/article/44/D1/D7/2503096.

28. The SAM/BAM Format Specification Working Group. SAM/BAM and
Related Specifications; 2017. http://samtools.github.io/hts-specs/.
Accessed 25 Sept 2017.

29. R Core Team. R: A Language and Environment for Statistical Computing. R
Found Stat Comput. http://www.R-project.org/. Accessed 25 Sept 2017.

30. Python Core Team. Python: A Dynamic, Open Source Programming
Language. Python Softw Found. http://www.python.org/. Accessed 25
Sept 2017.

31. MySQL Team. MySQL: The World’s Most Popular Open Source Database.
Oracle Corp. http://www.mysql.com/. Accessed 25 Sept 2017.

32. ECMA International. In: Terlson B, Farias B, Harband J, editors. Standard
ECMA-262 - ECMAScript Language Specification, 5.1; 2011.

33. Smith DB, Bukh J, Kuiken C, Muerhoff AS, Rice CM, Stapleton JT,
Simmonds P. Expanded classification of hepatitis C virus into 7 genotypes
and 67 subtypes: Updated criteria and genotype assignment web
resource. Hepatology. 2014;59(1):318–27.

34. Kuiken C, Combet C, Bukh J, Shin-I T, Deleage G, Mizokami M,
Richardson R, Sablon E, Yusim K, Pawlotsky J-M, Simmonds P,
database group LAH. A comprehensive system for consistent numbering
of HCV sequences, proteins and epitopes. Hepatology. 2006;44(5):
1355–61.

35. EASL recommendations on treatment of hepatitis C 2016. J Hepatol.
2017;66(1):153–194.

36. Niebel M, Singer JB, Nickbakhsh S, Gifford RJ, Thomson EC. Hepatitis C
and the absence of genomic data in low-income countries: a barrier on
the road to elimination?. The Lancet Gastroenterol Hepatol. 2017;2(10):
700–1.

37. Cowton VM, Singer JB, Gifford RJ, Patel AH. Predicting the Effectiveness
of Hepatitis C Virus Neutralizing Antibodies by Bioinformatic Analysis of
Conserved Epitope Residues Using Public Sequence Data. Front
Immunol. 2018;9:1470.

38. ViPR team. Flavivirus Genotyping SOP. 2015. https://www.viprbrc.org/
brcDocs/documents/ViPR_Flavivirus_Genotype_SOP2015.pdf. Accessed
25 Oct 2016.

39. Hraber P, Kuiken C, Waugh M, Geer S, Bruno WJ, Leitner T. Classification
of hepatitis C virus and human immunodeficiency virus-1 sequences with
the branching index. J Gen Virol. 2008;89(9):2098–107.

40. Chevaliez S, Brillet R, Lázaro E, Hézode C, Pawlotsky J-M. Analysis of
ribavirin mutagenicity in human hepatitis C virus infection. J Virol.
2012;81(14):7732–41.

41. Lontok E, Harrington P, Howe A, Kieffer T, Lennerstrand J, Lenz O,
McPhee F, Mo H, Parkin N, Pilot-Matias T, Miller V. Hepatitis C virus drug
resistance–associated substitutions: State of the art summary.
Hepatology. 2015;62(5):1623–32.

42. Sarrazin C. The importance of resistance to direct antiviral drugs in HCV
infection in clinical practice. J Hepatol. 2016;64(2):486–504.

43. Pawlotsky J-M. Hepatitis C virus resistance to direct-acting antiviral drugs
in interferon-free regimens. Gastroenterology. 2016;151(1):70–86.

44. Hulo C, de Castro E, Masson P, Bougueleret L, Bairoch A, Xenarios I,
Le Mercier P. ViralZone: a knowledge resource to understand virus
diversity. Nucleic Acids Res. 2011;39(Database issue):576–82.

45. Sela I, Ashkenazy H, Katoh K, Pupko T. Guidance2: accurate detection of
unreliable alignment regions accounting for the uncertainty of multiple
parameters. Nucleic Acids Res. 2015;43(W1):7–14.

46. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimal: a tool for
automated alignment trimming in large-scale phylogenetic analyses.
Bioinformatics. 2009;25(15):1972–3.

https://doi.org/10.1371/journal.pone.0155869
https://doi.org/10.1371/journal.pone.0155869
https://doi.org/10.1371/journal.pcbi.1003951
https://doi.org/10.1371/journal.pcbi.1003951
https://github.com/
http://cayenne.apache.org/
http://cayenne.apache.org/
https://academic.oup.com/nar/article/44/D1/D7/2503096
http://samtools.github.io/hts-specs/
http://www.R-project.org/
http://www.python.org/
http://www.mysql.com/
https://www.viprbrc.org/brcDocs/documents/ViPR_Flavivirus_Genotype_SOP2015.pdf
https://www.viprbrc.org/brcDocs/documents/ViPR_Flavivirus_Genotype_SOP2015.pdf

	Abstract
	Background
	Results
	Conclusion
	Keywords

	Background
	Implementation
	Scope
	Design overview
	Data-centric architecture
	The role of sequence alignments
	Sequences and Sources
	Features
	ReferenceSequences and FeatureLocations
	Alignments and AlignmentMembers
	Variations
	Schema extensions
	Object-relational mapping

	The alignment tree
	The command layer
	The command layer in use

	Maximum-likelihood clade assignment
	MLCA overview
	MLCA inputs
	MLCA outputs
	MLCA algorithm

	Results
	Clade Assignment
	Public sequence data repository
	Automated genotyping and interpretation
	Identification of resistance-associated substitutions
	Comparison with other resources

	Further work
	Discussion
	Conclusions
	Availability and requirements
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors' contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher's Note
	References

