
Bertl et al. BMC Bioinformatics  (2018) 19:147 
https://doi.org/10.1186/s12859-018-2141-2

RESEARCH ARTICLE Open Access

A site specific model and analysis of the
neutral somatic mutation rate in
whole-genome cancer data
Johanna Bertl1*†, Qianyun Guo2† , Malene Juul1, Søren Besenbacher1, Morten Muhlig Nielsen1,
Henrik Hornshøj1, Jakob Skou Pedersen1† and Asger Hobolth2†

Abstract

Background: Detailed modelling of the neutral mutational process in cancer cells is crucial for identifying driver
mutations and understanding the mutational mechanisms that act during cancer development. The neutral
mutational process is very complex: whole-genome analyses have revealed that the mutation rate differs between
cancer types, between patients and along the genome depending on the genetic and epigenetic context. Therefore,
methods that predict the number of different types of mutations in regions or specific genomic elements must
consider local genomic explanatory variables. A major drawback of most methods is the need to average the
explanatory variables across the entire region or genomic element. This procedure is particularly problematic if the
explanatory variable varies dramatically in the element under consideration.
Results: To take into account the fine scale of the explanatory variables, we model the probabilities of different types
of mutations for each position in the genome by multinomial logistic regression. We analyse 505 cancer genomes
from 14 different cancer types and compare the performance in predicting mutation rate for both regional based
models and site-specific models. We show that for 1000 randomly selected genomic positions, the site-specific model
predicts the mutation rate much better than regional based models.
We use a forward selection procedure to identify the most important explanatory variables. The procedure identifies
site-specific conservation (phyloP), replication timing, and expression level as the best predictors for the mutation
rate. Finally, our model confirms and quantifies certain well-known mutational signatures.
Conclusion: We find that our site-specific multinomial regression model outperforms the regional based models.
The possibility of including genomic variables on different scales and patient specific variables makes it a versatile
framework for studying different mutational mechanisms. Our model can serve as the neutral null model for the
mutational process; regions that deviate from the null model are candidates for elements that drive cancer
development.
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Background
Cancer is driven by somatic mutations that convey a
selective advantage to the cell. However, in most cases
the somatic mutation rate in cancer cells is consider-
ably higher than in healthy tissues, while only a small
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fraction of the mutations are thought to be associated
with cancer development [1]. The majority of the muta-
tions are neutral and are caused by perturbed cell division,
maintenance and repair or over-expression of mutagenic
proteins (e.g. the APOBEC gene family [2]). A comprehen-
sive framework of the randommutation process in cancer
cells is key to identify the regions, pathways and func-
tional units that are under positive selection during cancer
development.
The mutation rate varies along the genome, depend-

ing on genomic properties of the position such as the
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sequence context (e.g. the 5’ and 3’ nucleotides; [3]), chro-
matin organisation [4] or replication timing [5]. Many
studies have investigated what determines the mutation
rate and what kind of models should be used [5] mod-
eled the mutation heterogeneity using local regression
with expression level and replication timing as explana-
tory variables [4] applied random forest regression on
mutation counts in 1Mb windows using histone modifi-
cations and the density of DNase I hypersensitive sites.
[6] predicted the number of mutations per element by a
beta-binomial distribution using replication timing and
noncoding annotations such as promoter, UTR and ultra-
conserved sites. Unlike these approaches that segmented
the genome into regions according to the explanatory
variables and estimated separate models for them, in a
site-specific regression model, this division is not neces-
sary [7] implemented a Poisson-binomial model on 50kb
windows, where they used logistic regression to predict
the position-specific mutation probability, based on base-
pair, replication timing and the presence and type of
transcript. Here, we propose a framework based on multi-
nomial regression that is able to model different types
of substitutions. Unlike region-based models, we can use
site-specific explanatory variables without dividing the
data into subsets. In this way, we use the full dataset to
estimate the regression coefficients for all the explanatory
variables. We include the trinucleotide context, GC con-
tent and CpG island annotations to describe the local base
composition. Local properties of the genome related to
transcription and replication are taken into account using
expression level, replication timing, DNase I hypersensi-
tivity and genomic element types. To study the differences
between somatic mutations and germline substitutions,
we include the conservation score phyloP. We also include
an explanatory variable to mask the repeat regions in the
genome as mutation calls at repeat regions are biased due
to technical reasons.
Generalized linear models also provide an interpretable

framework for modelling and hypothesis testing. For
example, we can estimate the mutation rates of CpG sites
within and outside CpG islands, and test if they are dif-
ferent, and a patient-specific intercept allows us to take
the large variation of mutation rates between patients into
account.
Here, we analyse 505 cancer genomes from 14 differ-

ent cancer types [8]. We compare the performance in
predicting mutation probabilities of region-based Poisson
models, site-specific binomial models and site-specific
multinomial models. The site-specific multinomial model
can predict both the overall mutation rate and mutation
types accurately. We use a forward model selection pro-
cedure to compare and identify the explanatory variables
that best explain the heterogeneity of the site-specific
mutational process (Fig. 1).

Fig. 1Workflow of the forward model selection procedure. The
forward model selection is implemented on 2% of the data to
determine the explanatory variables included in the final model. In
each iteration of the model selection procedure, data tables are
generated to summarize the site-specific annotations. The
performance of the models is measured with the deviance loss
obtained by cross-validation. The explanatory variable with the best
performance is included in the set of variables for the next iteration.
Parameter estimation for the final model is based on the remaining
98% of the data

The forward model selection procedure is implemented
using 2% of the data while the final model fit is obtained
from the remaining 98%. We find that site-specific con-
servation (phyloP), replication timing and expression level
are the best predictors for the mutation rate. In gen-
eral, the framework allows formal testing for inclusion
of explanatory variables and also interaction terms. The
impact of different explanatory variables can be inferred
from the parameter estimates of our final model as the
multiplicative changes in mutation rate. Our analysis con-
firms some known mutational signatures and it identifies
associations with genomic variables like replication tim-
ing. It can also be used as the null model for cancer driver
detection [9] and other applications that rely on amodel of
the mutation rate (e.g. identification of the tissue of origin
for tumors of unknown primary, [4]).

Results
Heterogeneity of the mutation rate
We observe significant heterogeneities of the mutation
rate at multiple levels (Fig. 2). The mutation rate varies
among cancer types (Fig. 2a): skin cutaneous melanoma,
colorectal cancer and lung adenocarcinoma are the can-
cer types with the highest mean mutation rates (5–10
mut/patient/Mb) while thyroid carcinoma, prostate ade-
nocarcinoma and low-grade glioma have the lowest (0.5–1
mut/patient/Mb). The mutation rate also differs between
samples from the same cancer type, with the largest varia-
tion seen for skin cutaneous melanoma (the mutation rate
ranges from 1 mut/patient/Mb to 150 mut/patient/Mb).
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Figure 2 (See legend on next page.)
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(See figure on previous page.)
Fig. 2 Heterogeneity of the mutation rate and explanatory variables. a Heterogeneity among cancer types and samples. Violin plot for the mutation
probability for 14 cancer types. b Heterogeneity along the genome and the correlation with categorical explanatory variables. Relative proportion of
mutations from nucleotide C or T in the neighboring context A,G,C,T (2 · 4 · 4 = 32 possibilities), relative proportion of mutations of six different
genomic elements, and relative proportion of mutations within and outside repeat regions or CpG islands. c Heterogeneity correlated with
continuous variables. Left column: continuous variables. Middle column: The continuous annotations are discretized into bins according to quantiles
for site-specific regression models. Each bin is represented by the mean value within the bin. Grey transparent histograms: distribution of the
continuous values of the annotation along the genome. Black transparent histograms: distribution of the discrete bins of the annotation (binning
scheme in italics in the column “Annotation”). Black diamonds: Discrete value used for the binning. Right column: Predicted (lines) and observed
(points) mutation rate for each cancer type and explanatory variables. The regression lines are generated under a multinomial logistic regression
model using only the corresponding explanatory variable. Details about the different data types can be found in “Somatic mutation dataset” section

Themutation rate also varies between different genomic
contexts (Fig. 2b). As previously shown, we find thatmuta-
tional signatures are cancer type specific by looking into
the mutation rate for different trinucleotide contexts. For
instance, the mutation rate at TC* sites is particularly high
in skin cutaneous melanoma, with the largest proportion
of mutations at TCC positions of all cancer types. The
mutation rate at CpG sites is elevated in all the cancer
types. In colorectal cancer, we observe a high propor-
tion of mutations at TCG and TCT sites. These can be
attributed to mutations in the POLE gene that cause DNA
polymerase ε deficiency [10]: we find an increased over-
all mutation rate, a very high proportion of T[C>A]T and
T[C>T]G mutations and a high contribution of COS-
MIC signature 10 in six out of 42 colon cancer samples
[11]. Five of those (and three of the other colon cancer
samples) have a nonsynonymous mutation in POLE and
one of them in addition in POLD1, which encodes the
DNA polymerase δ (Additional file 1: Figure S1). When
the samples with POLEmutation pattern are removed, the
mutation pattern of the remaining colon cancer samples
is very similar to most cancer types with a high pro-
portion of mutations at CpG positions (Additional file 1:
Figure S2).
The mutation rate also differes between genomic envi-

ronments defined by the explanatory variables (Fig. 2b, c).
Coding regions tend to have fewer mutations in all can-
cer types. Mutation rates are elevated for simple repeat
regions, which might be related to mapping artefacts
and ensuing technical challenges during mutation calling.
The effect of CpG islands varies between different can-
cer types. The mutation rate in CpG islands is higher than
in regions outside for thyroid carcinoma, prostate adeno-
carcinoma, low-grade glioma and kidney chromophobe,
while for colorectal cancer, lung adenocarcinoma, lung
squamous cell carcinoma and skin cutaneous melanoma
the situation is reversed. Regions that are late replicated,
GC rich, evolutionarily less conserved, inside DNase
1 peaks and lowly expressed have an elevated muta-
tion rate. The explanatory power of the variables varies
across cancer types as shown by the regression lines
in Fig. 2c.

Granularity of regression models
We model the mutation probability in cancer genomes
using a set of regression models. The most coarse-grained
description of the number of mutations in a region is
a Poisson regression count model and the most fine-
grained is a binomial or multinomial site-specific regres-
sion model. Here we describe and investigate in detail
the (dis)advantages of these three models. A conceptual
overview of the models is given in Fig. 3a.

Poisson count regressionmodel
In Poisson regression, the number of mutations in a
genomic region of fixed length is modeled. The whole
genome is divided into regions of pre-fixed length or
according to the value of explanatory variables (e.g. seg-
mented by genomic element types). Regression modelling
is facilitated by summing the mutation counts and sum-
marizing the annotations over the region.
We model the mutation count Nr,sam in the r-th

genomic region with length Lr in sample sam. Further-
more, can is the cancer type of the sample. Mutations
arise randomly with probability pr,sam. As pr,sam is small
and Lr is large, we have the Poisson approximation of the
binomially distributed number of mutations

Nr,sam ∼ Bi(Lr , pr,sam) ≈ Po(Lrpr,sam).

For J explanatory variables, the expected mutation
count λr,sam = Lrpr,sam can be modeled by Poisson
regression with a log-link:

log λr,sam = μsam + β1,canxr,1 + · · · + βJ ,canxr,J
where for the jth explanatory variable, xr,j is the average
value of the annotation across region r if the explana-
tory variable is continuous and for categorical explanatory
variables, xr,j is derived from the proportions of different
levels of the annotations in region r, j = 1, . . . , J . μsam is
the sample-specific intercept.

Site-specific binomial regressionmodel
In site-specific regression models, the mutation probabil-
ity is modeled in each position of the genome. We enable
regression modelling by binning the continuous anno-
tations, such that we are able to sum mutation counts
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Figure 3 (See legend on next page.)



Bertl et al. BMC Bioinformatics  (2018) 19:147 Page 6 of 15

(See figure on previous page.)
Fig. 3 Comparison of Poisson regression model, site-specific binomial logistic regression model and site-specific multinomial logistic regression
model. aMotivation (site-specificity) and conceptual explanation of the different models. Consider a 1.2 Mb region on Chromosome 3. We observe
a number of mutations and the value of the explanatory variables replication timing, GC content and phyloP score. Given the values of the
explanatory variables we use Poisson, site-specific binomial logistic regression or site-specific multinomial logistic regression to predict the number
of mutations in a region (Poisson), the probability of a mutation in a single site (binomial) or even the probability of the three types of mutation in a
single site (multinomial). b Predicted versus observed number of mutations for the three models for 100 kb regions. c Site-specific models perform
substantially better in 1000 randomly selected sites. d The prediction for different mutation types with binomial logistic regression model in 1000
randomly selected sites. e The prediction for different mutation types with multinomial logistic regression model in 1000 randomly selected sites

over positions with the same combination of annotations,
and thereby reduce the size of the data set. We consider
both site-specific binomial and multinomial regression
models.
We model the mutation probability pi,sam at a site i in

sample sam of cancer type can.With a logit link, themuta-
tion probability can be modeled by logistic regression:

log
pi,sam

1 − pi,sam
= μsam + β1,canxi,1 + · · · + βJ ,canxi,J

where xi,j is the value of the jth explanatory variable at
site i.

Site-specific multinomial regressionmodel for
strand-symmetric mutation types
We model the mutation probability for different muta-
tion types. Assuming strand-symmetry, we are not dis-
tinguishing between e.g. A>G (A to T) mutations and
T>C mutations, pA>G = pT>C . We consider the strand
with the C or T nucleotide, and the mutation probability
matrix is

A G C T
A
G
C
T

⎛
⎜⎜⎝

pT>T pT>C pT>G pT>A

pC>T pC>C pC>G pC>A

pC>A pC>G pC>C pC>T

pT>A pT>G pT>C pT>T

⎞
⎟⎟⎠

with only 6 types of mutations.
We model these mutation probabilities by setting up

a multinomial logistic regression model, where dummy
variables are used to distinguish between mutations from
(G:C) base pairs andmutations from (A:T) base pairs. The
(G:C) basepairs are modelled with probabilities

(
pC>A
i,sam, pC>G

i,sam, pC>C
i,sam, pC>T

i,sam

)

for (G:C) position i in sample sam. With J explanatory
variables, the mutation probability at G:C position i in

sample sam of cancer type can can be written as:

log
pC>A
i,sam

pC>C
i,sam

= μC>A
sam + βC>A

1,canxi,1 + · · · + βC>A
k,canxi,J

log
pC>G
i,sam

pC>C
i,sam

= μC>G
sam + βC>G

1,canxi,1 + · · · + βC>G
k,canxi,J

log
pC>T
i,sam

pC>C
i,sam

= μC>T
sam + βC>T

1,canxi,1 + · · · + βC>T
k,canxi,J .

Note that the probability for no mutation pC>C
i,sam is the

reference. Similarly, (A:T) basepairs are modeled with
probabilities

(
pT>A
i,sam, pT>G

i,sam, pT>C
i,sam, pT>T

i,sam

)

and the reference is the probability for no mutation pT>T
i,sam.

We compare the performance of the three models on 2%
of the whole genome data.
The setting for the three models is shown in Fig. 3a.

Since we are mainly interested in their predictive per-
formance, we have not included overdispersed models.
Overdispersion is a way to model unexplained vari-
ance in the data, but it does not qualitatively change
the predictions of a model. Each model is trained
with replication timing, phyloP, and context information
from the reference genome. For the region-based Pois-
son model, continuous annotation values are averaged
over the selected region and GC percentages are calcu-
lated for each region. For the site-specific models, we
use the site-specific annotations for each site. Contin-
uous values are discretized to simplify the estimation
process.
The results are shown in Fig. 3b-e. We compare the per-

formance of these models at different resolutions using
different datasets. In Fig. 3b, we predict the mutation
counts in large windows of length 100kb. In Fig. 3c, d, e,
we predict the mutation counts in sets of 1000 ran-
domly sampled individual sites. When predicting muta-
tion counts in large windows (100 kb), the three regression
models perform similarly. For prediction in a randomly
selected small number of sites (1 kb), the two site-specific
models out-perform the region-based model (Fig. 3c).
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The site-specific models can capture the mutational het-
erogeneities between sites and provide a more accurate
mutation probability at any resolution. This is in con-
trast to the region-based model where a large number of
sites are required for accurate predictions. In addition to
predicting the probability for mutation events, the multi-
nomial regression model can also predict the probabilities
of different mutation types. It outperforms the binomial
model by taking the different mutation rates into account
(Fig. 3d, e).

Model selection
We consider the site-specific multinomial regression
model to predict mutation probabilities for different
mutation types at a single site. We implement a forward
model selection procedure to determine the explanatory
variables in the final model (Fig. 1). In each step, we
add all possible new variables to the previous model in
turn and rank the resulting new models. We identify and
include the explanatory variable with the best fit and
iterate the procedure several times. With forward model
selection, we avoid the preparation of large analytical
data tables that contain all potential explanatory vari-
ables (“Preparation of the analytical data table” section).
We choose the deviance loss that measures the predictive
performance of the model to assess the fit. By estimat-
ing it by cross-validation, we avoid overfitting, because
it assesses the fit on an independent subset of the data
(“Cross validation” section).
By construction, the fit improves during the model

selection procedure (Fig. 4a). We also evaluate McFad-
den’s pseudo R2 as a measure of the explained vari-
ance that is valid in categorical regression models
(“McFadden’s pseudo R2” section).
As a reference model, we start out with a single muta-

tion rate for the whole genome in all samples (Model 1;
Fig. 4a). This model cannot explain any of the varia-
tion in the mutation rate between samples and positions,
so McFadden’s pseudo R2 = 0. After including the six
strand-symmetric mutation types in the model (Model 2),
we add cancer and sample specific intercepts (Model 3
and Model 4) to make sure that we account for sample-
specific mutation rates. In the next step, we include the
left and right neighboring base-pair for each cancer type
(Model 5).
Starting with Model 5, additional annotations are added

using forward model selection. We consider the phy-
loP score, replication timing, expression, genomic seg-
ments, GC content in 1 kb, CpG islands, simple repeats
and DNase I hypersensitivity. For each of these vari-
ables, cancer specific regression coefficients are esti-
mated to allow for differences in the mutational process
between cancer types. For expression, we use data
directly obtained from matching tumor types, so we also

take expression differences between cancer types into
account.
The annotation with the largest decrease in the deviance

loss function is the phyloP score (Model 6). Subse-
quently, replication timing (Model 7) and gene expression
(Model 8) are added. At this point, we stop the model
selection procedure to avoid the time-consuming creation
of larger count tables (see “Preparation of the analyti-
cal data table” section for details) as we also see that
the improvement of the fit levels off. Detailed results for
each step of the forward selection procedure are provided
in Additional file 1: Section S2.1. To assess the robust-
ness of the results, we rerun the forward model selection
procedure five times on randomly selected regions that
cover 2% of the whole genome. The ranking of the vari-
ables is constant for all the experiments (Additional file 1:
Section S2.2).
Adding the context in model 5 gives a substantial

improvement over model 4. When the phyloP score is
added in model 6, it can be seen in Fig. 4b that it consid-
erably changes the predicted mutation rate for the same
nucleotide triplet at two positions with different phyloP
score. While the trinucleotide context and the phyloP
score vary on a basepair scale, both replication timing and
expression vary on a kilo-base scale. Even though much of
the per-base-pair variation in the mutation rate is already
captured in Models 5 and 6, the long-range variation is
considerably better explained in Model 7 and Model 8
(Fig. 4b). We can see that adding replication timing in
Model 7 considerably changes the predicted mutation rate
obtained from Model 6 that is relatively uniform in the
1.1 Mb region shown in the figure, by taking the replica-
tion timing gradient in the region into account. Finally, in
Model 8, the mutation rate in highly expressed regions is
lowered, which again improves the prediction.
Driver detection methods, such as MutSigCV [5] and

ncdDetect [9], are generally based on a model of the neu-
tral mutation rate in tumors. We use two typical cancer
genes, the oncogeneKRAS and the tumor suppressor gene
TP53, to contrast the observed mutation pattern in a
driver to the predicted neutral mutation rate.
In Additional file 1: Figure S4, it is obvious that the pre-

dicted mutation rate is lower at the gene body of KRAS
than right outside of it. A zoom onto exon 2 shows a
cluster of mutations at positions 25,398,281-5, with 25
mutations at position 25,398,284-5 which cause a change
of protein. This cluster is highly unlikely under our neutral
model.
ForTP53, we also find a lower predictedmutation rate at

the gene body of TP53 and the overlapping geneWRAP53
(Additional file 1: Figure S5). Here, the observed muta-
tions are more spread than in KRAS, but they mainly
occur in highly conserved exonic regions, where the neu-
tral model predicts a low mutation rate.
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Fig. 4Model selection results. a Improvement of the fit during forward model selection. In each iteration, we estimate the deviance loss by cross
validation to determine which explanatory variable to include in the next model. b Explanatory variables and predicted vs observed number of
mutations along the genome in an example region on chromosome 3 for models 6–8. Zoom: DNA sequence, phyloP score and predicted mutation
probabilities from models 5 and 6

Estimation results
Upon determining the final model from the model
selection procedure, we estimate parameters for the

multinomial logistic regression model on the remaining
98% of the genome. To study the difference between can-
cer types, all position-specific explanatory variables are
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stratified by cancer type. The coefficients represent multi-
plicative changes inmutation rate. Our results confirm the
large differences in mutation pattern both between sam-
ples and cancer types, but also between different genomic
and epigenomic regions.
We observe that regions that have been highly con-

served during human evolution have a lower mutation
rate in all cancer types and for all mutation types, and this
difference is nearly always significant (Fig. 5a). For kidney
chromophobe and prostate adenocarcinoma, it is reduced
to less than half for some of the mutation types. In breast
cancer, head and neck squamous cell carcinoma, kidney
chromophobe and thyroid carcinoma, this difference is
muchmore pronounced at A:T positions than at G:C posi-
tions, but there is no general pattern with respect to the
mutation type.
As previously described [5], we nearly always find a

positive association between replication timing andmuta-
tion rates (see regression lines in Fig. 2c; later replicating
regions have more mutations), but the regression coef-
ficient varies significantly between the different cancer
types and the mutation types (Fig. 5b). For the dummy
variable that distinguishes gene bodies, where expression
is measured, from intergenic regions, we see a mixed pat-
tern of insignificant and negative regression coefficients
where the mutation rate in gene bodies is reduced to up
to one third of the rate in intergenic regions (low-grade
glioma; Fig. 5c). The only exception is melanoma with a
slightly increased mutation rate in gene bodies.
Also when we consider regions within gene bodies, we

find a reduced mutation probability in highly expressed
regions for most cancer types. The most extreme example
is the probability of a C > T mutation in highly expressed
regions in melanoma, which is only one fifth of the proba-
bility in lowly expressed ones (Fig. 5d). Low-grade glioma,
prostate adenocarcinoma and thyroid cancer show the
opposite pattern for some of the mutation types, though.
However, this effect is dampened by the dummy variables
for the gene body that have comparably large coefficients
of the opposite sign for these three cancer types.
We find that the mutation rates differ between the dif-

ferent types of mutations, but also between the specific
contexts that we consider: CpG, to capture the pattern
of spontaneous deamination, and TpCp[AT], to capture
the APOBEC signature. We find that the C > T muta-
tion rate is higher in CpG sites than in other sites in
all cancer types. In skin cutaneous melanoma, we also
observe elevated mutation rate for CC context, which is
related to the elevated CC > TT mutation rate due to
UV light [12]. We observe elevated rates of mutations
that fit the APOBEC pattern in breast cancer, bladder
urothelial carcinoma, head and neck squamous cell carci-
noma, lung squamous cell carcinoma and skin cutaneous
melanoma.

Discussion and conclusions
We use a multinomial logistic regression model to anal-
yse the somatic mutation rate in each position of a cancer
genome. We consider various genomic features, such as
the local base composition, the functional impact of a
region and replication timing. Because of the site-specific
formulation, the model is the most fine-grained descrip-
tion of the mutation rate, while it can still take genomic
properties into account that vary or are measured on a
longer scale, like replication timing and expression levels.
The mutational spectrum and intensity are known to

vary considerably between cancer types as well as between
patients with the same cancer type [5]. In our analyses, we
capture a considerable part of the variance by including
cancer type and sample specific mutation rates.
We find the site-specific phyloP conservation scores to

explain more than any of the other explanatory variables
we tested. The conservation scores reflect the germline
substitution rate between species through evolution and
are designed to capture the effect of selection [13]. How-
ever, somatic evolution of the cancer genome is not sub-
ject to the same constraints as germline evolution. In
particular, purifying selection may be relaxed as many
genes and regulatory elements that are needed during the
organismal life cycle are dispensable for the growth of can-
cer cells [14]. Instead, the conservation scores’ explana-
tory power in our study may stem from their correlation
with genes and other functional elements, with special
properties that affect their mutation rate. In particular,
it is known that the mutation rate is elevated at tran-
scription factor binding sites in some cancer types [15].
Furthermore, the phyloP scores are also correlated with
expression regions and open chromatin, which both have
decreased mutation rates due to transcription-coupled
repair and other repair mechanisms [16].
The second explanatory variable added is replication

timing. This has not only been found for cancer genomes
[5], but also for germline mutations [17] and somatic
mutations in healthy tissue [18]. In late replicating regions,
single stranded DNA (ssDNA), which is susceptible to
mutagenic processes like deamination, accumulates [17].
Varying intensities of such mutational processes could
explain the differences in the impact of replication tim-
ing between the cancer types and the mutation types. The
different strengths of the associations between replication
timing and the mutation rate can also be attributed to dif-
ferences in replication timing between cell types [19] that
may be missed in the replication timing dataset at use,
which is obtained from HeLa cell lines [20].
Only after the phyloP score and replication timing, the

cancer type specific expression level is added to themodel.
This can be explained by the fact that the phyloP score
and expression are correlated, as mentioned above, and so
are replication timing and expression [21]: protein-coding



Bertl et al. BMC Bioinformatics  (2018) 19:147 Page 10 of 15

a

b

c

d

e

Fig. 5 Parameter estimation results. a Neutral vs. conserved regions. The height of the bars give the fold change in mutation rate in conserved
regions (phyloP score = 1.3838, mean of the highest quintile, see Fig. 2c compared to neutral regions (phyloP score = 0). b Early vs. late replicating
regions. The height of the bars give the fold increase/decrease in mutation rate in late replicating regions (replication timing = 1) compared to early
replicating regions (replication timing = 0). c Intergenic vs. gene body. The height of the bars give the fold increase/decrease in mutation rate in
gene bodies compared to intergenic regions. d Low vs. high expression. The height of the bars give the fold increase/decrease in mutation rate in
highly expression regions (expression value = 15, approx. the mean of the highest quintile, see Fig. 2c compared to lowly expressed regions
(expression value = 0). Here, only gene bodies are considered. eMutation type are considered as the combination of substitutions and neighboring
sites. The horizontal line indicates the average mutation rate for each cancer type. The height of the bars give the fold increase/decrease in
mutation rate for a specific mutation type. Panel 1: Different substitution types. Panel 2: C>T mutations in different contexts. Panel 3: C>G
mutations in all contexts and in TpCp[AT] contexts
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genes are concentrated in early replicating regions. How-
ever, the expression levels that we use are tissue specific
and might therefore improve the fit of the model further.
By separately estimating a regression coefficient for the

gene-body and one for the expression level within gene
bodies, we can potentially distinguish the general proper-
ties of genes, like location with respect to replication tim-
ing origins and sequence composition, and the intensity of
transcription-coupled repair (TCR). Since TCR is a sub-
pathway of nucleotide excision repair (NER), it is expected
to act on helix-distorting mutations like for example the
well-known UV light induced CC > TT mutations in
melanoma. Thus, the cancer specific differences that we
see might be explained by varying effectiveness of TCR,
but also by different proportions of mutations that create
bulky distortions. For example, the rate of C > T muta-
tions is further decreased in highly expressed regions in
melanoma than the other mutation types.
The parameters can be interpreted as multiplicative

mutation rate changes. By using interaction terms, it is
straightforward to analyse and test differences inmutation
rate between cancer types, samples or specific genomic
regions of interest. Furthermore, generalized linear mod-
els come with a natural framework for hypothesis testing,
e.g. to compare two subcohorts of interest within the same
model, like POLE mutated versus POLE wildtype col-
orectal cancer samples, or NER deficient tumors versus
NER proficient ones. It would be interesting to com-
pare our model-based description of the mutation rate to
unsupervised learning of mutational signatures by matrix
factorization [3].
In the logistic regression model, we can estimate cancer

type specific regression coefficients to capture the differ-
ences between cancer types. We can also include tissue
specific explanatory variables if there are measurements
for the corresponding cancer tissue or matching healthy
tissue available. This is of particular interest for epigen-
tic measurements like histone modifications, where the
tissue of origin has been shown to be informative [4].
Patient-specific characteristics can also be added as

explanatory variables. The age of the patients could be
used to study clock-like mutational processes [11]. Known
somatic or germline mutations that are associated with
specific mutational processes or repair pathways can also
be used as explanatory variables, e. g. a germline deletion
of APOBEC3B that fuses APOBEC3A with the 3’ UTR
of APOBEC3B has been found to be associated with an
increased number of APOBEC-type mutations [22]. The
impact of this mutation could be studied by including an
interaction term with the TpCp[AT] positions.
Our model is very flexible and versatile and the explana-

tory variables can be customized according to different
applications. We provide software that facilitates similar
position-specific analyses on new mutation datasets with

a user-specified set of genomic annotations as explana-
tory variables. First, an analytical data table is created for
the whole genome or a specified set of genomic regions
(implemented in python). This table can be updated with
new samples at any time. Then, a multinomial logistic
model can be estimated. This is implemented in R and
mimics the interface of standard R functions like glm.
An important application of the model is the prediction

of the somatic mutation probability under the assumption
of neutrality. In our driver detection method ncdDetect
[9], we use the position-specific predictions that we obtain
from the multinomial model to evaluate if the muta-
tion rates or their distributions are significantly different
from the expectation under neutrality. This allows a flex-
ible analysis of regions of any size. Even non-contiguous
regions with very different properties than the overall
genomic patterns can be investigated.

Methods
Data
Somatic mutation dataset
We use SNV calls from 505 tumor-normal samples
across 14 different cancer types [8]. We build our data
set based on the UCSC hg19 assembly. We removed
regions with low mappability, ultra-high mutation rates
and lacking annotation. Problematic regions for NGS
alignments identified for the ENCODE project [23] were
subtracted. Low mappability regions, defined by the GEM
tool [24] and CRG Alignability track from UCSC with
mappability less than 0.5 in 100-mers, were also sub-
tracted. Hyper-mutated genomic segments containing
Immunoglobulin/T-cell receptor (IG/TR) genes defined
by GENCODE together with 10 kb flanking regions, com-
bined when less than 100 kb in distance, were excluded
from analysis. We also excluded sites on ChrX and ChrY,
because for some of the annotation files we lack informa-
tion for one or both of the sex chromosomes.
A total number of 14,200,393 SNVs are observed in the

subtracted regions for 505 samples across 14 cancer types.

Genomic element types We divided the genome into
six types of genomic elements: coding, 5’ UTR, 3’UTR,
ncRNA, intron and intergenic. Based on the GEN-
CODE v.19 transcripts, coding regions, 5’ UTR regions
and 3’ UTR regions as well as introns were defined
for protein-coding transcripts. Non-coding RNA regions
were defined as all remaining regions in the full transcript
set. All remaining bases were categorized as intergenic.

GC content We calculate the percentage of G:C base
pairs in 1 kb windows based on the reference genome.
Regions with GC percentage less than 10% are annotated
with value 0. Other regions are discretized into quartiles.
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CpG islands We segmented the genome by presence or
absence of CpG islands. The CGI Mountain annotation
from CgiHunter (http://cgihunter.bioinf.mpi-inf.mpg.de/)
was used. The CGI Mountain score quantifies if a region
is a CpG island. Scores above zero indicate a CpG island.
We use a dummy variable derived from the CGI Moun-
tain score in our analysis indicating whether the CGI
Mountain score is larger than zero.

Simple repeats We annotated the simple repeat regions
in the genome according to RepeatMasker (http://www.
repeatmasker.org), which defines the interspersed and
low-complexity repeats in hg19.We use a dummy variable
to indicate whether a genomic site is in a region masked
as simple repeats.

DNase I peaks We defined DNase I peaks according
to the DNase I annotation from the Roadmap Epige-
nomics project [25]. We use the score from HoneyBad-
ger2 to indicate the DNase I signal strength for regions
with a DNase I peak (http://www.broadinstitute.org/~
meuleman/reg2map/). The regions not annotated in the
HoneyBadger2 were masked as “no peak” regions in our
analysis. The values of peaks are approximatedly between
0.4 and 1, with 1 being highly accessible.

PhyloP score The conservation score phyloP (phyloge-
netic p-values) is part of the PHAST package (http://
compgen.bscb.cornell.edu/phast/). We used the score
from the multiple alignments of 99 vertebrate genomes
to the human genome [13]. We use the version of phy-
loP100way which covers 99.8% of the subtracted regions.

Replication timing We adjust the replication timing data
from [20] to the hg19 assembly. The replication timing
values range from 0 to 1, indicating earlier to later repli-
cating regions. The replication timing annotation covers
91.2% of the subtracted regions.

Gene expression We define the gene expression level
according to TCGA RNAseq expression data. Expression
data was log2(x+1) transformed. For each cancer type, the
median expression was calculated for all genes. If multiple
annotations of a gene exist, the longest annotation is used.
For overlapping genes, the expression is a cumulative sum.
As in [8], we collapse colon (COAD) and rectal carci-

noma (READ) to a joint cancer type CRC by averaging
across the expression values.

Preparation of the analytical data table
In order to facilitate the model fitting procedure, we sum-
marized the genomic data into count tables. In Poisson
count models, each row in the count table represents a
pre-defined region. For continuous explanatory variables,

such as replication timing, the annotations are averaged
over the region. For categorical explanatory variables, the
annotations are transformed to the percentage for dif-
ferent levels of the variables, e.g, the binary explanatory
variable indicating whether the site is a (G:C) base pair
or not is transformed to GC content of the window. In
site-specific regression models, we discretized continuous
variables into bins according to quartiles or quintiles. Each
row in the count table represents the counts of mutations
under a certain combination of levels of all the explana-
tory variables. As we are summarizing the whole genome
in the count table, we expect to see all the combinations
of the levels for all the explanatory variables. Thus, the
sizes of the count tables grow significantly when adding
new explanatory variables. The generation of the count
tables also takes much longer time with more explanatory
variables. Because of the space and time consumption, a
large count table including all the explanatory variables
is computationally infeasible. We implemented the for-
wardmodel selection procedure to avoidmany huge count
tables. For each iteration in the forward model selection
procedure, wemade new count tables only for the selected
sets of explanatory variables from previous step and one
new candidate explanatory variable. We then added the
best candidate in the explanatory variable set and repeated
for the next step. We used 2% of the whole genome in
the model selection and made a final count table with
the remaining 98% sites only for the explanatory variables
that were determined from the model selection proce-
dure. The generation of the count table for the final model
takes 6000 CPU hours on our cluster (2.5 GHz CPUs).

Multinomial regression model
Estimation
The observations in the regression model are indexed by
the genomic position i(1 ≤ i ≤ 2.56 · 109) for all posi-
tions on chr1 to chr22 after excluding problematic regions
and the samples sam(1 ≤ sam ≤ 505), so the total num-
ber of observations is 1.3 · 1012. Starting from Model 4,
sample specific intercepts for the six mutation types sum
up to 6 · 505 = 3030 parameters. The regression coef-
ficients for explanatory variables are indexed by the 14
cancer types. In Model 5 each cancer type has 4 ·4 ·6 = 96
parameters for the neighboring context and the mutation
type (4 for the left neighboring site, 4 for the right neigh-
boring site and 6 for the mutations), so the total number
of parameters in this model is 6 · 505 + 14 · 96 = 4374.
From Model 6 to Model 8 we use 1 parameter for each
of the continuous explanatory variables phyloP, replica-
tion timing and expression level. We also add 1 dummy
variable for expression level indicating whether the given
site is potentially expressed or not. In Model 6 we have
4374 + 14 · 6 = 4458 parameters. In Model 7 we have
4458 + 14 · 6 = 4542 parameters. In the final model we

http://cgihunter.bioinf.mpi-inf.mpg.de/
http://www.repeatmasker.org
http://www.repeatmasker.org
http://www.broadinstitute.org/~meuleman/reg2map/
http://www.broadinstitute.org/~meuleman/reg2map/
http://compgen.bscb.cornell.edu/phast/
http://compgen.bscb.cornell.edu/phast/
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have 6 · 505+ 14 · 96+ 14 · (3+ 1) · 6 = 4710 parameters
in total. To reduce memory usage and computation time,
the parameters are estimated in three separate binary
logistic regression models, but the variance-covariance
matrix of the parameters is estimated for the multino-
mial model [26]. We have implemented an R-package for
the estimation [27] that is based on the function glm4
from the contributed package MatrixModels [28]. It
also includes estimation of the variance-covariancematrix
using the package Matrix for efficient handling of large
and sparse matrices [29].

Dirichlet prior and pseudo counts
If a model with many explanatory variables and interac-
tion terms among them is estimated (e.g. sampleID ×
neighbors × strong), it can easily occur that for a cer-
tain combination of levels of categorical variables, there
have been no mutations of a certain type observed. This
case is especially likely, if the sampleID is involved. This
causes numerical problems in the maximum likelihood
estimation [30].
To solve this problem while still obtaining a posi-

tive mutation probability, we add pseudo counts to the
observed mutation counts. This is equivalent to specify-
ing a Dirichlet prior for the multinomial model, so it leads
to the same point estimates as the posterior mean would
in a Dirichlet-Multinomial model [31].
To reduce the impact of the pseudo counts, we only add

them to combinations of levels with no observed muta-
tions and we do not use a uniform distribution, but let
them be proportional to the observed mutation counts
from all samples of the corresponding cancer type. The
mutation counts from the sample and from the cancer
type are equally weighted.
Let nK ,sam =

(
nC>A
K ,sam, n

C>G
K ,sam, n

C>C
K ,sam, n

C>T
K ,sam

)
be the

number of each type of mutation for the combina-
tion of levels K in sample sam with at least one
of the mutation counts being zero, and nK ,can =(
nC>A
K ,can, n

C>G
K ,can, n

C>C
K ,can, n

C>T
K ,can

)
be the mutation counts for

combination K for all samples of cancer type can. Let
NK ,sam and NK ,can be the total count of mutations of cate-
gory K for the sample and cancer type, respectively. Then,
the new count vector ñK ,sam is defined as

ñK ,sam = 1
2
nK ,sam + NK ,sam

2NK ,can
nK ,can.

Consequently, the number of mutations per sample is
preserved. The new mutation counts can be non-integers,
but this can be handled by our implementation.

McFadden’s pseudo R2

To assess the fit of a model, we report McFadden’s
pseudo R2

R2
McFadden = 1 − log LM

log L0
,

where LM is the likelihood of the model under investiga-
tion and L0 is the likelihood of a model with no predictors
[32]. To measure the improvement of a model in compari-
son with the binomial model where there is no distinction
between the mutation types, we use the same mutation
probability for each mutation type in the model without
predictors.

Forward variable selection
To speed up data preparation, forward variable selec-
tion is conducted on a subset of approximately 2% of
the genome, which is constructed by randomly selecting
60,000 windows of size 1 kb.
The cancer types kidney chromophobe, low-grade

glioma, prostate adenocarcinoma and thyroid carcinoma
have very low mutation counts, so they are disregarded
during variable selection. We use cross-validation for
forward variable selection. The improvement of the fit
along the model selection procedure is measured with the
deviance loss.
Starting with Model 5,

logit
(
pmut. type
i,sam

)
= μ

mut. type
sam + β

mut. type
context,canxcontext,i,

additional terms of the form

β
mut. type
j,can xj,i

with explanatory variable j ∈ {phyloP, replication tim-
ing, genomic segment, expression, GC content, DNase 1,
simple repeats, CpG island}, are selected following the
forward selection scheme.
To test the robustness of the selectedmodel, the forward

variable selection procedure is repeated five times.

Cross validation
An assessment of the fit of a model can be obtained by
cross validation. Five-fold cross validation is used to select
the annotation with the highest explanatory power. To
this end, the 1 kb windows of the variable selection sub-
set are divided randomly among 5 sets. In turn, 4 of them
are joined as the training set, on which the multinomial
model is estimated, and the remaining set is used as the
validation set to estimate the loss function.
The deviance loss function for the observed site i in

sample sam is defined as

Di,sam = −2
∑
k

1(yi,s = k) log p̂(yi,s = k)

where k denotes all possible mutation events at site i,
yi,sam the observed event at site i in sample sam and
p̂(yi,sam = k) the probability of event k estimated under
the multinomial regression model [33]. Thus, it measures
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the prediction accuracy of the multinomial regression
model. The total deviance loss of a model is

D =
N∑
i=1

505∑
sam=1

Di,sam

with N being the number of genomic positions.
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