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Abstract

Background: Over the last two decades, an innovative technology called Tissue Microarray (TMA), which combines
multi-tissue and DNA microarray concepts, has been widely used in the field of histology. It consists of a collection of
several (up to 1000 or more) tissue samples that are assembled onto a single support – typically a glass slide –
according to a design grid (array) layout, in order to allow multiplex analysis by treating numerous samples under
identical and standardized conditions. However, during the TMA manufacturing process, the sample positions can be
highly distorted from the design grid due to the imprecision when assembling tissue samples and the deformation of
the embedding waxes. Consequently, these distortions may lead to severe errors of (histological) assay results when
the sample identities are mismatched between the design and its manufactured output. The development of a robust
method for de-arraying TMA, which localizes and matches TMA samples with their design grid, is therefore crucial to
overcome the bottleneck of this prominent technology.

Results: In this paper, we propose an Automatic, fast and robust TMA De-arraying (ATMAD) approach dedicated to
images acquired with brightfield and fluorescence microscopes (or scanners). First, tissue samples are localized in the
large image by applying a locally adaptive thresholding on the isotropic wavelet transform of the input TMA image.
To reduce false detections, a parametric shape model is considered for segmenting ellipse-shaped objects at each
detected position. Segmented objects that do not meet the size and the roundness criteria are discarded from the list
of tissue samples before being matched with the design grid. Sample matching is performed by estimating the TMA
grid deformation under the thin-plate model. Finally, thanks to the estimated deformation, the true tissue samples that
were preliminary rejected in the early image processing step are recognized by running a second segmentation step.

Conclusions: We developed a novel de-arraying approach for TMA analysis. By combining wavelet-based detection,
active contour segmentation, and thin-plate spline interpolation, our approach is able to handle TMA images with
high dynamic, poor signal-to-noise ratio, complex background and non-linear deformation of TMA grid. In addition,
the deformation estimation produces quantitative information to asset the manufacturing quality of TMAs.

Keywords: Tissue microarray, TMA de-arraying, Detection, Wavelet, Segmentation, Active contour, Deformation,
Thin-plate spline

Background
Tissue MicroArrays (TMA) history
The development of multi-tissue techniques was started
at the mid-1980s in order to address the scarcity issue
of diagnostic reagents and tissue samples. The pioneer
work was contributed by Dr Battifora who introduced,
in 1986, the multi-tumor “sausage” tissue block [1]. In
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this method, several rods of tissue, which were extracted
from paraffin-embedded tissue blocks (or shortened as
paraffin blocks), deparaffinized and rehydrated, were put
together and reparaffinized after being tightly wrapped
in small intestine of small mammals like a sausage. To
avoid deparaffinization and reparaffinization procedures
of Battifora’s “sausage” technique, in 1987, Wan et al. con-
ceived the punching technique [2] which used 16-gauge
needle for retrieving cylinders of tissue (also tissue cores)
from paraffin blocks and arraying them in a recognizable
pattern. Although Wan’s punching technique was a big
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footstep and was used in nearly all of today TMA tech-
niques, its tissue pattern was not a grid one which is more
structured and facilitates the identification of each tissue
sample. The first multi-tissue grid pattern is described by
Battifora and Mehta in their 1990’s paper under the name
of “checkerboard tissue block” [3] in which tissue rods
were manually aligned in a Cartesian coordinate system
(checkerboard pattern). By combining the punching tech-
nique of Wan and the “checkerboard” concept of Battifora
and Mehta, Kononen et al. invented in 1998 a machine
for assembling efficiently and accurately extracted tis-
sue cores in grid pattern [4]. The proposed technique
called “tissue microarray” (TMA) became therefore pop-
ular and widely used in most pathological laboratories.
In the last decade, different TMA techniques were devel-
oped to improve manufacturing process and minimize
manufacturing cost [5–15], but all of them were based
on Battifora’s, Wan’s and Kononen’s previous works. Since
in most TMA techniques, extracted tissue samples have
cylinder form, in the following, we use the terms “tissue
cores” or “TMA cores” (or even more shorter cores) to
refer TMA tissue samples.

Challenges of TMA de-arraying
In a TMA, assembled tissue cores are collected from
different donor blocks. It is thus highly important to
matching them with their proper meta-data for further
clinical or pathological analysis. To this end, grid pat-
tern was conceived to ease the localization of each TMA
cores. However, in spite of numerous technique improve-
ments [12, 16], TMAs manufactured recently by manual
or automated (semi-automated) machine are still sub-
jected to the deformation of the design tissue grid due
to bad positioning of the tissue cores with respect to
the design. Another main source of deformation is the
heat deformation of the paraffin waxes – commonly
used in TMA techniques – when embedding tissue cores
into recipient block. Sectioning paraffin-embedded tis-
sue blocks with a microtome to produce multiple slides
may also produce additional deformation. In fact, the
design grid may suffer geometric transformations such
as translation, rotation and shearing (linear or affine
deformations) combined with dilatation, distortion and
random perturbations (non-linear deformations). In addi-
tion, some fragile tissue cores may be lost or split
into several fragmented parts, making more difficul-
ties to recognize them. Figure 1 illustrates a typical
image of TMA imaged in fluorescence. We can clearly
observe that the ideal TMA grid which is a square grid
is significantly distorted after the manufacturing pro-
cess and the present tissue cores do not have a per-
fectly circular shape as expected. These problems need
to be taken into account to develop robust de-arraying
methods.

State-of-art of TMA de-arraying methods
Closely similar to TMAs, DNA microarrays (also known
as bio-chips) are constructed by spotting DNA probes by
robots with high precision according to a grid pattern.
Numerous gridding methods for microarrays were used
to localize each DNA probes and find its row and column
coordinates with respect to the design grid. This proce-
dure is called “de-arraying”. Despite the similitude of these
microarray concepts, existing “de-arraying” methods for
microarrays are not adapted for TMAs because the grids
are more highly deformed. Along with the commercial-
ization of digital imaging devices for TMA analysis over
the last decade, several methods for TMA “de-arraying”
have been developed [17–22]. In general terms, a “de-
arraying” approach consists in two steps: (i) segmenta-
tion and localization of assembled tissue cores; (ii) array
coordinate (row and column coordinates) estimation of
each core.
Firstly, for segmenting tissues, existing de-arraying

methods usually assume that the histogram of a TMA
image is bimodal. Under this assumption, these methods
perform in general a thresholding by taking the local min-
imum between two highest peaks corresponding to the
background and the foreground, of the image intensity
histogram as global threshold. Various thresholding tech-
niques were proposed from a simple thresholding as in
[17] to more sophisticated methods such as the moment-
preserving thresholding in [19], the automatic threshold-
ing based on Savitsky-Golay filtered histogram in [20]
or Otsu’s method used in [21, 22]. To improve the seg-
mentation result, pre-processing like contrast enhance-
ment transform [22] or template matching [19] was
applied. Morphological operators were also used as post-
processing for removing outliers in the thresholded map
as in [17, 22]. However, this underlying assumption is
not satisfied in case of images acquired from novel flu-
orescence device because of their complex background.
Due to the nature of fluorescence imaging, pixels corre-
sponding to irrelevant objects – such as dusts, glue and
washing stains – in the background have often high inten-
sities resulting as a high peak in the intensity histogram; in
contrast, the intensities of pixels corresponding to tissue
cores could be relatively lower. Hence, as a consequence,
most of cores fail to be detected with a high threshold
and there is a number of outliers corresponding to a low
threshold value.
Secondly, for estimating row and column coordinates of

each TMA cores, themethodsmentioned above were gen-
erally based on distance and angle criteria to define the
average spacing between the cores and the orientation of
the observed grid. These criteria were derived simply from
the distance between neighbor tissue cores [19], or from
sophisticated measures such as the histogram of distance
and angle [17] or the coefficients of the Hough transform
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Fig. 1 Deformation of the TMA grid. An ideal TMA (left top) has tissue cores perfectly aligned in vertical and horizontal directions with equal spacing
according to a regular square grid (left bottom). The manufactured TMA (right top) is subjected to a non-linear deformation of the TMA grid
resulting to a distorted grid (right bottom). We aim at de-arraying the observed TMA by estimating the deformation which transforms the ideal grid
into the distorted grid

[18] or even the Delaunay triangulation [22]. To deal with
the case of missing tissue cores or the design of TMA
grid in which some positions are left empty [16], linear
or local bilinear interpolation were used as in [17, 22] for
completing the grid. Whereas these methods yield satis-
factory results for further pathological analysis, they can
not produce quantitative information about the deforma-
tion of the TMA grid which is an indicator for evaluating
the quality of the manufactured input TMA. For that
reason, we address this issue and develop a de-arraying
method which is able to provide quantitative information
about the deformation. Our approach allows manage-
ment of traceability and quality control of the whole TMA
manufacturing process.

Overview of the method
In this paper, we propose a fast and efficient approach
for automated TMA de-arraying with the emphasis on
fluorescence TMA images and modeling of TMA grid
deformation. The proposed approach called ATMAD is
based on the following image processing operations: core
detection, core segmentation and estimation of the grid
deformation. For the tissue localization step of the de-

arraying procedure, we combine the detection and seg-
mentation tasks to produce reliable inputs for the second
step – the computation of the array coordinate of each
tissue core. This second step is performed by using the
deformation estimation module followed by a segmenta-
tion task to refine the result. The outline of our approach
is shown in Fig. 2 which describes the two steps of the
de-arraying procedure and the combination of the three
image processing operations.
The “detection” operation (i.e. the detection) is based

on a wavelet approach. In order to process images hav-
ing large dynamic range, complex background and high
noise level such as fluorescence images, we compute a
stationary wavelet transform of the input TMA image at
an appropriate scale to the tissue size – the average tis-
sue core radius given by the manufacturer. By choosing
the mother wavelet as a difference of Gaussians, we can
deduce the closed-form expression of the wavelet atom
at any desired scale and use it to perform directly the
wavelet decomposition. Our technique is faster and more
accurate than the well-known “à trous” algorithm [23].
The wavelet transform map is then locally thresholded to
spatially adapt to the contrast between the foreground –
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Fig. 2 Overview of our TMA de-arraying approach. The proposed ATMAD approach consists in two steps : (i) tissue core localization; (ii) estimation of
array coordinates of tissue cores. The localization step is performed by combining a fast wavelet-based detection and an ellipse-shaped active
contour to produce accurate core positions for the second step. The second step is dedicated to the estimation of the deformation of the TMA grid.
The objective is to refine the de-arraying result by providing additionally potential positions of tissue cores which were not recognized at the first
step. The de-arraying result is presented as a regular array to facilitate the seeking of row and column coordinates of each core

corresponding to TMA cores – and the inhomogeneous
background. The position of potential tissue cores is
defined as the center of the connected components in the
thresholded wavelet transform map.
To delineate the boundary of each tissue core and

improve detection result, an ellipse-shaped active contour
[24] is used for segmenting the detected object at each
position obtained from previous step. The segmented
objects, which are too large or too small than the given
average size of tissue sample or too elongated, will be con-
sidered as false detection and be discarded from the list
of potential positions. This removal is essential to discard
potential outliers and enhance the reliability of the input
for the estimation of row and column coordinates of TMA
cores.
Instead of estimating directly the row and column coor-

dinates of each core from the position list, we approximate
the deformation of the TMA grid using the thin-plate
model. In fact, the deformed grid is the image (in the sense
of set theory) of the regular grid of design by the defor-
mation. Given the deformation at some arbitrary points
of the grid, the thin-plate interpolation allows to estimate
it at other points [25]. The more points we have known,
the more precisely we estimate the deformation. Once
the deformation is approximated, the computation of row

and column coordinates of each tissue core is therefore
straightforward. By reformulating as an approximation
problem and solving it iteratively, our method is robust
to high non-linear deformations which were observed in
most real TMA images. Moreover, according to the thin-
plate model, the approximation yields information such
as the average translation, the rotation angle, the bend-
ing energies along the horizontal and vertical axes, etc.
These information are useful to assess the quality of the
manufactured TMAs.
The remainder of this paper is organized as follows. In

the next section, we describe the de-arraying approach
including a technical presentation of the “detection, “seg-
mentation”, “deformation estimation” tasks. We also figure
out how the proposed approach is adapted for TMA
images acquired with brightfield microscopes. In “Results
and discussion” section, we present the experimental
results obtained from simulated and real data. Finally,
the last section gathers the conclusions drawn from this
research and details the future work.

Methods
In our approach, the estimation of core positions on
the input TMA image is subsequently refined in suc-
cessive tasks by considering different image domains
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(i.e. patches or regions) in the input original image. Such
a strategy allows not only to avoid unnecessary processing
on non-content regions but also to reduce the acquisi-
tion time, storage and processing time of high resolution
data. To distinguish the inputs and outputs of each task
and facilitate the comprehension of the technical details,
we present in Fig. 3 a diagram which illustrates a few
notations which will be used throughout the paper.

TMA core detection
The detection of approximately circular TMA cores can
be performed by spot detection algorithms. Spot detec-
tion is a well-known topic in image processing (see [26] for
a recent review). Over past decades, number of spot detec-
tion methods have been proposed [27–31]. To produce
satisfactory results, most of these methods require fine
adjustment of a critical parameter: the detection scale cor-
responding to the size of the objects of interest. Automatic
selection of the detection scale is a challenging problem
since the objects of interest may have different sizes or
they may have the same size as the irrelevant objects in
the background. Few methods of automatic scale selec-
tion [32–34] have been proposed recently. However, in the
context of tissue microarrays, the diameter of assembled
TMA cores is defined by the size of the needle used for
extracting cores from paraffin tissue blocks. The determi-
nation of the scale parameter used for spot detection is
straightforward from this measure which is often given by
the manufacturer. We propose here a fast algorithm for
tissue core detection by performing directly the wavelet

Fig. 3 Illustration of core positions and notations. The image u is
defined on a rectangular domain � (shown in black rectangle). For
each detected position cn (red small dots), a patch Pn (red dashed
squares) centered at cn is extracted. The ellipse �n (light blue ellipses)
with center x0,n (blue crosses) is optimized to fit the object of interest
which is located inside the patch Pn

decomposition at the appropriate aforementioned scale
and computing a locally-adaptive threshold of the wavelet
coefficients.

Pre-processing
Wavelet-based detection techniques are known to be
robust to non-stationary noises like Poisson noise
or mixed-Poisson-Gaussian noise as in TMA images,
acquired by brightfield or fluorescence. Pre-processing
operations such as image denoising or variance stabi-
lization transform are thus not mandatory. However, our
algorithm is primarily designed for detecting bright spots
over a dark background, and especially adapted for flu-
orescence images. brightfield TMA images, in which the
tissue cores are darker than the background, are first
inverted before further processing.

Scale selection
Nowadays, standard TMAs are manufactured with a
diameter of tissue core typically from 0.6 to 1.5 mm. Given
an imaging resolution (pixel size), the optimal scale of
wavelet decomposition can be determined according to
the core radius. If we denote rcore the expected average
radius (in pixels) of TMA cores, the optimal scale index
ĵ of the wavelet decomposition that best fits the size of
TMA cores is defined as:

ĵ = argmin
j∈N∗

∣
∣rcore − 2j−1σ1

∣
∣ , (1)

where σ1 is selected according to the pixel size.

Fast isotropic wavelet decomposition
In contrast to multiresolution approaches, our detection
method requires only the wavelet decomposition at the
appropriate selected scale. To compute the decomposi-
tion at a desired scale, usual wavelet transform techniques
perform a sequence of successive convolutions which are
used for computing iteratively the decomposition from
the smallest scale to the coarsest scale. These techniques
are time consuming when dealing with large images and
high number of scales. Instead, to address to this compu-
tational issue, we build a dyadic isotropic wavelet frame
{

ψj
}

j≥1 by choosing the scaling function φj as a Gaussian
function whose variance v2j is a function of scale j ∈
{1, . . . , jmax} and jmax is the maximum index of the highest
scale:

φj(x) = Gvj(x) = 1
2πvj

exp
(

−‖x‖22
2v2j

)

, (2)

where ‖ · ‖2 denotes the Euclidean norm, x ∈ � ⊂ R
2 is

the pixel location in the rectangular domain � and
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v2j =
j
∑

k=1
σ 2
k =

j
∑

k=1
4k−1σ 2

1 = σ 2
j + v2j−1 (3)

with σk = 2k−1σ1. Thanks to the semi-group property of
Gaussian functions, the relationship between the scaling
functions at subsequent scales can be expressed as:

φj(x) = G√
σ 2
j +v2j−1

(x) (4)

= Gσj 	 Gvj−1(x) = Gσj 	 φj−1(x),

where 	 denotes the convolution operator. Therefore, the
wavelet decomposition 
ju of u : � ⊂ R

2 → R at the
scale j ∈ {1, . . . , jmax} is obtained by convolution of u with
the wavelet atom ψj as:


ju(x) = ψj 	 u(x) = (

φj−1 − φj
)

	 u(x)
= (Gvj−1 − Gvj) 	 u(x),

with the conventions v20 = 0 and G0(·) = δ(·) (Dirac
delta function). For more technical details on the pro-
posed wavelet frame and the wavelet decomposition and
reconstruction algorithms, please refer to the Additional
file 1.

Locally-adaptive thresholding
While the wavelet decomposition plays the role of a fil-
tering which reduces the noise and enhances the objects
of interest, a common way to detect objects is to thresh-
old the filtered image – the wavelet decomposition of
the input TMA image in our case. As depicted in [32],
a global threshold is not appropriate to handle complex
situations, especially when dealing with images acquired
in fluorescence context because of their inhomogeneous
background. To overcome this difficulty, we propose to
define an adaptive threshold according to the local distri-
bution of the wavelet decomposition
ĵu previously com-
puted. Accordingly, we consider the following statistical
test at each point x of the TMA image u:
{

H0 : x belongs to the background,
H1 : x corresponds to tissue core (foreground).

Pixels corresponding to tissue cores have strong posi-
tive responses in the wavelet decomposition. Under the
null hypothesisH0, the wavelet coefficient 
ĵu(x), which
follows the local distribution of the wavelet-decomposed-
image background with mean μ(x) and variance ν2(x),
is lower than a certain value τ(x). Let P

(


ĵu(x) < τ(x)
)

be the probability for a pixel x to be classified as “back-
ground” class. The threshold τ(x) is used to control
the number of misclassification. Given a probability of
false alarm pFA > 0, the corresponding threshold τFA

is selected such that the misclassification probability
P
(


ĵu(x) ≥ τFA(x)
)

is lower than pFA . By applying the
conventional probabilistic Tchebychev’s inequality, we
get, ∀κ(x) > 0:

P
(∣
∣
ĵu(x) − μ(x)

∣
∣ ≥ κ(x)

) ≤ ν2(x)
κ2(x)

. (5)

It follows that

P
(


ĵu(x) ≥ μ(x) + κ(x)
) ≤ P

(∣
∣
ĵu(x) − μ(x)

∣
∣ ≥ κ(x)

)

.

Now, let us define τFA(x) = μ(x) + κ(x) and assume
(

ν2(x)/κ2(x)
) ≤ pFA such that P

(


ĵu(x) ≥ τFA(x)
) ≤ pFA .

Finally,

τFA(x) ≥ μ(x) + ν(x)√pFA
(6)

and the adaptive threshold τFA(x) is controlled by the
p-value inferred from the significance level α of the test,
and set by the user. If pFA < α, this suggests that the null
hypothesis (i.e. a pixel x is classified as a “background”
pixel) may be rejected. In practice, one typically sets pFA =
0.05 (or 0.01) which corresponds to a significance level
α = 5% (or 1% respectively).
To determine the threshold τFA(x), the local mean μ(x)

and the local variance ν2(x) of the image background on
the wavelet decomposition 
ĵu are required. However,
prior knowledge about the image background distribution
is unfortunately not available in most cases. We consider
thus empirical estimations of μ and ν2 at each point x
from 
ĵu:

μ̂(x) = g 	 
ĵu(x) , (7)

ν̂2(x) = g 	
(


ĵu
)2

(x) − μ̂2(x) , (8)

where g(·) is a weighting positive function (i.e. ‖g(·)‖1 =
1, ‖ · ‖1 is the L1 norm and g(x) ≥ 0,∀x ∈ �) mainly used
to avoid the estimation of the background distribution
statistics being biased from coefficients corresponding
to the foreground. By construction, μ̂(x) and ν̂2(x) are
weighted estimators derived from 
ĵu which is a filtered
version of u by the band-pass filter ψĵ in order to enhance
the objects of radius rcore. It is thus convenient to define
the weighting function g according to the wavelet atom
ψĵ . By using an affine transform which implies the pos-
itivity and the normalization conditions, we propose a
candidate for g(·) as follows :

ĝ(x) = −ψĵ (x) + supψĵ
∥
∥−ψĵ + supψĵ

∥
∥
1

, (9)

where supψĵ = ‖ψĵ‖∞ denotes the supremum (L∞
norm) of ψĵ and

∥
∥−ψĵ + supψĵ

∥
∥
1 is the normalization

factor to ensure ‖ĝ(·)‖1 = 1. The choice of this candidate
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Fig. 4Wavelet atom and corresponding weighting function used for estimating the local distribution wavelet transform of a circular spot image.
From left to right : the image of a circular spot, its wavelet atom at the appropriate scale and its corresponding weighting function on the top
row;and their radial profile on the bottom row (red dashed lines delineate the radius of the spot)

is clarified in Fig. 4 showing the wavelet atom and its
derived weighting function according to a given circu-
lar spot. The proposed weighting which is constructed
from the wavelet atom has the same size of the consid-
ered spot and has a hollow shape at the center (see right
column in Fig. 4). This specific shape allows to reduce
the impact of high wavelet coefficients corresponding to
foreground pixels on the estimation of the background
statistics.
By substituting the empirical estimators to μ(x) and

ν2(x), we obtain the estimated detection threshold:

τ̂FA(x) = μ̂(x) + ν̂(x)√pFA
. (10)

Thresholding the wavelet decomposition 
ĵu with
respect to τ̂FA results in a binary image IFA : � → {0, 1}:

IFA(x) =
{

1 if 
ĵu(x) ≥ τFA(x)
0 otherwise (11)

where each connected component in IFA represents a
regionwhich is potentially a tissue core of the TMA image.
The gravity centers of these regions (or detection position)
will be used as inputs for estimating the array coordinates
of TMA cores. However, the detection reliability has a
great impact on the de-arraying outcome: few false detec-
tions may lead to severely inaccurate results. Removing
false detections (i.e. outliers) is then crucial. To this end,
the size of detected regions seems to be a relevant crite-
rion since the core size is given in most cases by the TMA
manufacturer. Although, due to the complexity of back-
grounds, it may be highly different from the true core size.

Instead of exploiting the imprecise information derived
from the binary detection map IFA , we perform an active-
contour-based segmentation to delineate the objects at
each detected position. Also, we re-use the segmentation
results to confirm and improve the preliminary detection
results.

Segmentation of TMA cores
As depicted in previous section, the detection binary
image IFA does not allow us to accurately determine the
size of detected objects. Active contours [35] are typically
well appropriate in our context since they can evolve to
closely delineate the object borders and thus yield an esti-
mation of the TMA core size. The family of parametric
active contours presented below will help to refine the
detected position and the size of TMA cores and eventu-
ally to determine the orientation of the potential core if it
was deformed during the manufacturing process.
Since the seminal paper of Kass,Witkin, and Terzopoulos,

active contour models (or snakes) [35] have been suc-
cessfully used to detect discontinuities, detect objects of
interest or segment images, especially in bioimaging [36]).
General purpose closed contours are generally controlled
by elastic forces based on local curvature and image based
potentials [35, 37–39]. The curve evolves from its initial
starting position towards the target object. The optimiza-
tion of the underlying energy functional is traditionally
performed using variational principles and finite differ-
ences techniques, which needs an appropriate initializa-
tion to converge to a relevant solution. At the end of the
nineties and beginning of the 2000’s, geodesic active con-
tours [40] based on the theory of surfaces evolution and
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geometric flows have been introduced to segment an arbi-
trary number of highly complex objects in the image. In
our TMA context, the 2D shapes of tissue cores can be
actually well estimated by ellipse-shaped active contours
which belong to the family of parametric deformable
templates.
Application-tailored parametrized templates intro-

duced by Yuille et al. [41] were proposed in cases where
strong a priori knowledge about the shape being ana-
lyzed is available (e.g. eyes or lips in human faces [41]).
The models are hand-built using simple parametrized
2D geometric representations. Another line of research
focused on models of random deformations for a given
initial shape (deformable template). Grenander et al.
[42, 43] obtained the first promising results in image seg-
mentation by considering statistical deformable models
which describe the statistics of local deformations applied
to an original template. Markov models and Monte-Carlo
techniques have been introduced in this context to derive
optimal random deformations estimates from image data
[42–46]. In the approach initially proposed by Cootes
et al. [47] and successfully applied to object tracking
[45], the shape structure and the parameters describing
its deformations are learned from a training set of rep-
resentative shapes. Meanwhile, Staib and Duncan [48]
proposed to combine parametric snakes (B-splines) to
the standard decomposition on a Fourier basis to analyze
deformable biomedical structures. All these methods are
generally robust to noise but computationally demanding
if stochastic iterative procedures are used to conduct the
minimization and no initial guess close to the optimal
solution is provided. Very recently “snakescules” [49]
combined to fast algorithms and Markov point process
[50] have been proposed along the same philosophy
but dedicated to the detection of cells or nuclei in
fluorescence microscopy images.
Finally, the ellipse fitting concept has been furthemore

introduced by Thévenaz et al. as an extension of the sim-
ple circle-shaped active contour [49] which can be defined
just by two points [24]. As a consequence, a triplet of
points is necessary to parametrize the ellipse-shaped ver-
sion. However, this parametrization which has an extra
degree of freedom increases the complexity of the model
and makes the optimization of ellipse parameters more
challenging when compared to the circle-shaped model.
To overcome these difficulties, an alternative way was pro-
posed in [51]: the ellipses are configured by their center,
their axes and the angle between their major axis and
the horizontal. Under this configuration, the cost function
introduced in [24], and defined below (see Eq. (12)) as
the contrast between the core and the ring defined by
the pair of ellipses (see Fig. 5) – and the derivatives with
respect to the ellipse parameters could be calculated effi-
ciently by using the Green’s theorem [48]. Nevertheless,

Fig. 5 Pair of concentric and coaxial ellipses. The outer ellipse � (red
curve) has an area twice larger than the inner ellipse �′ (blue curve).
These ellipses determine two domains of the same area : an elliptical
outer ring (shown in light gray) and an elliptical inner core (dark gray)

the Green’s theorem cannot be applied with no error
in the discrete setting and digitized images. In order to
handle properly the ellipse parametrization described in
[51] instead of [24] in the discrete setting, we propose
a pixel-based smooth approximation of the underlying
cost energy functional. Our approximation allows us to
calculate properly the derivatives of the cost function
with respect to the ellipse parameters and is not based
on the Green’s theorem also used in [48] for energy
minimization.

Definition of the ellipse-based energy
More formally, let � be the outer ellipse with parameters
{x0, a, b, θ} where x0 = (x0, y0) is the center, a and b are
the semi major and minor axes respectively, and θ is the
angle of rotation. The inner ellipse �′ is defined as a con-
centric and coaxial ellipse of � such the latter has an area
(denoted |�|) twice larger than the former: |�| = 2|�′| (see
Fig. 5). The factor 2 ensures that the area of the elliptical
outer ring is equal to the area of the elliptical inner core.
Let us consider a rectangular image patch P containing a
potential TMA core associated to a connected component
estimated by the detection method in the early stage. The
ellipse energy (or cost function) is defined as a normalized
image contrast between the two domains �′ ⊂ � ⊂ P
where P is a rectangular domain in the image domain �

which contains a single TMA core [24, 52]:

J(u,�) = 1
ab

(∫

�\�′
u(x) dx −

∫

�′
u(x) dx

)

(12)

= 1
ab

(∫

�

u(x) dx − 2
∫

�′
u(x) dx

)

.
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To handle discrete images, the continuous image u
defined in (12) can be replaced by its sampled version as
follows:

J(u,�)= 1
ab

∑

x∈P∩Z2

(1� [x] − 2 1�′ [x])u [x] (13)

where u [x] is the discrete sample of u(x) and 1 [·] denotes
the set indicator function such as 1� [x] = 1 if x ∈ �

and 0 otherwise. However, there are two major draw-
backs while considering this energy function. Firstly, the
calculation of the energy gradient is not trivial in the
discrete setting since the indicator functions in (13) are
piecewise constant which are not differentiable at some
points. Secondly, due to sampling effect, brutal switch of
the membership of some points from a domain to another
may happen just with an infinitesimal change in the ellipse
parameters, giving rise to severe numerical instabilities.
Smooth approximations of the underlying piecewise con-
stant functions is recommended to overcome both dis-
continuity and sampling problems. The calculations of
partial derivatives of the energy functional is facilitated if
we can define a fuzzymembership to avoid abrupt domain
switches (see Fig. 8a and b). Our goal is then to build an
approximation which favors the computation of the par-
tial derivative of the energy with respect to each ellipse
parameter as much as possible. First, we consider the
following quadratic form:

‖x‖2� =
∥
∥
∥
∥

[

a−1 0
0 b−1

] [

cos θ sin θ

− sin θ cos θ

]

x
∥
∥
∥
∥

2

2
. (14)

For a given point x, ‖x − x0‖� is a normalized met-
ric between x and the ellipse center x0 induced by the
geometry of the ellipse �. A pixel x belongs to the inte-
rior of the ellipse � if and only if ‖x − x0‖2� ≤ 1 since
‖x − x0‖2� is always positive. The term 1� [x] can be
then expressed by a function of ‖x − x0‖� as 1�[ x]=
1]−∞,1]

[‖x − x0‖2�
]

. Moreover, we need to find a smooth
function which closely approximates 1]−∞,1] as investi-
gated in [24, 38] and has simple derivative. We realized
that the graph of1]−∞,1] looks similar to theC∞ S-shaped
logistic curve whose the derivative is easy to compute. Let
us consider therefore the following logistic function:

Sε(t) = 1
1 + e

t−1
ε

−→
ε→0

1]−∞,1](t), (15)

where ε > 0 controls the steepness of the curve (see the
plot of t �−→ Sε(t) in Fig. 6 for several values of ε). The
smaller ε, the closer the curve Sε approaches the graph of
the indicator function 1]−∞,1]. Thanks to the property of
logistic functions, the derivative of Sε can be easily com-
puted as S′

ε(t) = −ε−1Sε(t) (1 − Sε(t)). Finally, the energy

Fig. 6 Approximation of the indicator function by logistic curves. The
smaller ε , the closer the S-shaped curve Sε approaches the graph of
1]−∞,1]

functional has the following form [24]:

J(u,�) = 1
ab

∑

x∈P∩Z2

wε

(‖x − x0‖2�
)

u [x] , (16)

with wε(t) = Sε(t) − 2Sε(2t) = 1
1 + e

t−1
ε

− 2
1 + e

2t−1
ε

.

For illustration, we present in Fig. 7 the plot of wε whose
the term wε

(‖x − x0‖2�
)

is nothing else than a smooth
approximation of the piecewise constant function x0 �−→
1�[ x]−2 1�′ [ x]. These weights are very similar to those
described in [38] and based on the arctan function.

Calculation of partial derivatives
By applying the derivation rules of composite functions,
the partial derivatives of the energy with respect to each
ellipse parameter {x0, a, b, θ} are given by:
⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂J(u,�)

∂x0
= 1

ab
∑

x u[ x]w′
ε

(‖x − x0‖2�
) ∂‖x−x0‖2�

∂x0 ,
∂J(u,�)

∂y0
= 1

ab
∑

x u[ x]w′
ε

(‖x − x0‖2�
) ∂‖x−x0‖2�

∂y0 ,
∂J(u,�)

∂θ
= 1

ab
∑

x u[ x]w′
ε

(‖x − x0‖2�
) ∂‖x−x0‖2�

∂θ
,

∂J(u,�)

∂a
= 1

ab
∑

x u[ x]w′
ε

(‖x − x0‖2�
) ∂‖x−x0‖2�

∂a − J(u,�)
a ,

∂J(u,�)

∂b
= 1

ab
∑

x u[ x]w′
ε

(‖x − x0‖2�
) ∂‖x−x0‖2�

∂b − J(u,�)
b ,

Fig. 7 The weights wε . wε

(‖x − x0‖2�
)

approximates
1� [ x]−2 1�′ [ x] whose the normalized radial profile is presented by
the graph of the piecewise constant function
t �−→ 1]−∞, 1](t) − 2 1]−∞, 0.5](t)
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where w′
ε(t) = 4Sε(2t) (1 − Sε(2t)) − Sε(t) (1 − Sε(t))

ε

= 1
ε

⎡

⎢
⎣

4e
2t−1

ε

(

1 + e
2t−1

ε

)2 − e
t−1
ε

(

1 + e
t−1
ε

)2

⎤

⎥
⎦

and the calculation of partial derivatives of ‖x − x0‖2�
are detailed in the Additional file 1. As depicted in
Fig. 8c, for a given parametrization {x0, a, b, θ}, the term
w′

ε

(‖x − x0‖2�
)

vanishes for most of points x. Thus,
the computation of the partial derivatives J(u,�) takes
account only few points near the ellipse boundaries where
w′

ε

(‖. − x0‖2�
)

is non-zero. Our smooth approximation
which is adapted for discrete images produces similar
expressions of the partial derivatives of the ellipse energy
when comparing with those described in [51] for contin-
uous images. It can be viewed as the expression of the
Green’s theorem in the discrete setting and an alternative
to the optimization presented in [44].

Multi-ellipse segmentation for multi-tissue core analysis
Let {cn}1≤n≤N be the centroids of the connected com-
ponents of the binary detection map IFA . In the original
image u, we extract a rectangular patch Pn centered at cn
with a radius ρ larger than the given tissue core radius rcore
(for example, ρ = 2rcore). Let us define

�ρ,cnu = {u [x] , ‖x − cn‖∞ ≤ ρ} , (17)

where x = (x, y) ∈ Pn, ‖x‖∞ = sup(|x|, |y|) and �ρ,cn ·
denotes the patch extraction operator with center cn and
radius ρ. In order to perform a multi-object segmenta-
tion, we consider the following multi-ellipse optimization
problem:

argmin
�1,...,�N

N
∑

n=1

{

1
anbn

∑

x
wε

(

‖x − x0n‖2�n
)

�ρ,cnu [x]

}

(18)
subject to (�1,�2, . . . ,�N ) ∈ ϒ ,

where
{

x0,n, an, bn, θn
}

are the parameters of the ellipse
�n and ϒ is a set of constraints to ensure the ellipses fall
into an acceptable range of configurations. In practice, we
typically set

ϒ = { ∥
∥x0,n − x0,n′

∥
∥
2 > ρ;

∥
∥x0,n − cn

∥
∥∞ ≤ ρmax;

rmin ≤ an, bn ≤ rmax;
θmin ≤ θn ≤ θmax

}

1≤n,n′≤N ,

for some predefined values ρmax, rmin, rmax, θmin, θmax set
according to the extracted patch positions and the allowed
sizes and orientations of tissue cores. The constraint
∥
∥x0,n − x0,n′

∥
∥
2 > ρ which prevents the distance between

two ellipse centers being too close helps to avoid the over-
lapping of segmented tissue cores. In what follows, we
denote J (u,�1, . . . ,�n) the global cost function associ-
ated with the optimization problem (18).
By construction, the function J (u,�1, . . . ,�n) is differ-

entiable with respect to (�1, . . . ,�N ). The common way
to minimize J (u,�1, . . . ,�n) under the constraint set ϒ

is to use a gradient method whose performance depends
on how efficient is the computation of the gradient of
J (u,�1, . . . ,�n). Since J (u,�1, . . . ,�n) is a linear combi-
nation of separable functions, therefore, the gradient can
be simply obtained as:

∇J (u,�1, . . . ,�n) =
⎛

⎜
⎝

∇J(�ρ,c1u,�1)
...

∇J(�ρ,cN u,�N )

⎞

⎟
⎠ , (19)

a b c
Fig. 8 Inner and outer domain membership under discrete setting. Points in the inner core are marked by dark gray squares and those in the outer
ring are marked by lighter gray squares. From left to right : a abrupt domain switch for points in the neighbor of ellipse boundaries (red and blue
curves); b fuzzy membership with transition zones (marked by purple squares); and c first order derivative of the function wε (zero values are shown
in gray)
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where

J(�ρ,cnu,�n) = 1
anbn

∑

x∈�n

wε

(

‖x − x0n‖2�n
)

�ρ,cnu[ x]

and the expressions of its partial derivatives are given
in (17).
The result of the multi-ellipse optimization problem

(18) is a set of ellipses {�n}1≤n≤N which fits the objects
located in the regions of interest {�ρ,cnu}1≤n≤N . Further-
more, given the major axes of these ellipses and the TMA
core radius rcore, we discard the tiny, giant and flattened
ellipses and we keep those which are most similar to the
expected tissue cores. The center of the selected ellipse
allows us to determine the position of the recognized
TMA core. This reference position will be used to deter-
mine the array coordinates of the corresponding tissue
core. In the following, we denote X0 = {x0,n}n∈{1,...,N} as
the set of centers of the N reliable and selected ellipses.

Estimation of array coordinate and TMA core positions
An ideal TMA is the one which has tissue cores per-
fectly aligned in both horizontal and vertical directions
and equally spaced according to a regular square grid. The
array coordinate p = (k, l) ∈ Z

2 of a core can be sim-
ply obtained by drawing two orthogonal lines crossed at
the considered core position. However, due to the defor-
mation of the design TMA grid, the lines passing through
tissue cores and their nearest neighbors may be slightly
inclined with respect to the horizontal or vertical axes.
Moreover, the direction of these lines may have a large
spectrum of variations which makes more challenging the
tracking of tissue cores over a given direction. To deal with
this deformation, existing TMA de-arraying methods use
usually distance-and-angle-based criteria for the purpose
of defining the neighborhood of TMA cores. Although
this approach estimates robustly the average core-to-core
distance and the two principal directions of the deformed
core grid, it may fail for some well-detected cores whose
the position is strongly distorted with respect to their
neighbors. In order to avoid this failure, we introduce
an algorithm for estimating iteratively the deformation of
the TMA grid in a way that the grid which is warped
by the estimated deformation at an iteration gets closer
to the observed TMA grid. To this end, we assume that
the deformation of the TMA grid can be decomposed by
linear and non-linear parts. Under this assumption, we
estimate the linear part of the deformation by defining an
oblique grid (affine warping) which is derived from the
detected core positions as the initialization of the warped
grid (see Fig. 9). The latter is used to find nearby cores
that will be taken into account to compute an estimator of
the grid deformation by using the thin-plate interpolation
[25] if we do an analogy with material deformation.

Fig. 9 Affine approximation of the grid deformation. The distorted
grid � which one only observes partially the set of point X0 ⊂ �

(shown in blue crosses) is approximated by the oblique (regular) grid
�0 (black circled dots). The latter is characterized by the average
distance d̄ between its points, two principal directions which are
presented by two vectors (e1 , e2) (red arrows), and the global
translation t̂ (green arrow) of the grid with respect to the origin (0, 0)
(gray square dot)

Estimation of the linear deformation
Our goal is to approximate the distorted TMA grid �

(which is observed partially with the set of point X0) by
an oblique grid �0 which minimizes the distance between
them in the way that the deformation of the grid is approx-
imated by a 2D affine transform. For this purpose, we con-
sider the set C0 of core pairs whose each pair (x0,n, x0,n′)
is formed by an element of X0 and one of its four nearest
neighbors with respect to the Euclidean distance

C0 = {

(x0,n, x0,n′) ∈ X0 × X0, x0,n′ ∈ N (x0,n)
}

,

where N (x0,n) denotes the 4-neighborhood of x0,n. To
estimate the average core-to-core distance d̄cc , we com-
pute the trimmed mean (denoted TM) of the length of the
segment defined by the pair (x0,n, x0,n′) of C0 by discarding
the most extreme values (typically 30%):

d̄ = TM30%
{‖x0,n − x0,n′ ‖2

}

(x0,n,x0,n′ )∈C0 . (20)

Let ang(x0,n, x0,n′) be the angle between the line pass-
ing through (x0,n, x0,n′) and the horizontal axis such
that − 0.25π ≤ ang(x0,n, x0,n′) ≤ 0.75π . By analogy, we
define the two principal angles of the deformed TMA grid
as follows:

ᾱ = TM30%
{

ang(x0,n, x0,n′) ≤ π

4

}

,

β̄ = TM30%
{

ang(x0,n, x0,n′) ≥ π

4

}

.
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Finally, we denote t̂ as the global translation of the dis-
torted TMA grid with respect to the origin that minimizes
the distance between the setX0 and the linearly-estimated
grid �0

t̂ = argmin
t

N
∑

n=1
min
p∈Z2

‖t + F(p) − x0,n‖22 (21)

whereF maps each array coordinates p ∈ Z
2 to a position

of �0 corrected by t̂ and

F(p) = d̄
[

cos ᾱ cos β̄

sin ᾱ sin β̄

]

︸ ︷︷ ︸

Mᾱ,β̄

p . (22)

Note that Mᾱ,β̄ is a change-of-basis matrix of unit col-
umn vectors and d̄ is a scaling factor which transforms
array coordinates (elements of Z2) to real spatial positions
(in � ⊂ R

2). The resulting oblique grid is parametrized
with four parameters {d̄, ᾱ, β̄ , t̂} and represents the affine
part of the grid deformation. We thus arrive at the affine
mapping function: A(p) = t̂ + F(p) ∈ �0. The oblique
grid �0 will serve as initialization to estimate of the non-
linear deformation of the grid. Figure 9 illustrates an
example showing the oblique grid obtained from a given
set of points as well as its estimated parameters.

Thin-plate-based estimation of the deformation
Let �	 be the ideal design TMA grid with (0, 0) as origin
and d the ideal distance between two neighboring cores
along the horizontal and vertical axes. The mapping is
then defined as:

y	
p = dp ∈ �	,∀p ∈ Z

2.

The deformation D maps each point y	
p ∈ �	 onto

a point yp = D(y	
p) in the distorted grid �. In order

to estimate the deformation D at all points of the grid
�	, we aim at approximating this set from the observed
set X0 = {x0,n} by using the thin-plate splines as an
interpolant. Indeed, given a set of points D−1X0 =
{

D−1 (x0,n
)}

n∈{1,...,N}, the coefficients of the interpolat-
ing thin-plate splines are the minimizers of a quadratic
function which is the first approximation of the bending
energy of the mapping from D−1X0 to the set of tar-
get points X0 (see [25]). Nevertheless, unlike the usual
framework [25], the correspondence between the two sets
of points is not established, that is D−1X0 is unknown.
Instead of investigating a matching method to deter-
mine D−1X0, we propose to build a sequence of grids
{�(m)}m≥0 which evolves iteratively to fitX0. We initialize
this sequence with the oblique grid �(0) = �0 previ-
ously computed. The linear approximation ofD is then as

follows:

yp(0) = D(0)(y	
p) (23)

= t̂ + d̄
d

[

cos ᾱ cos β̄

sin ᾱ sin β̄

]

p.

At iterationm, a core position x0,n ∈ X0 is associated to
a position y	

p if the former is located within a radius δ from
yp(m) = D(m)(y	

p). Pairs of associated positions establish
therefore the correspondence between the ideal grid �	

and the set of observed point X0. We also note that all the
positions of �	 do not have a corresponding position in
X0 as shown in Fig. 10 mainly because the cardinality of
these sets are not the same. Let P(m) be the set of pairs of
associated positions:

P(m) =
{(

x0,n, y	
p

)

, ‖D(m)(y	
p) − x0,n‖2 ≤ δ

}

. (24)

Assume that N (m) is the number of elements of P(m).
The objective is to estimate the deformation D(m) from
the set of N (m) associated pairs (x0,n, y	

p). According to
[25], we define the Gram’s matrix

{

K(m)

n,n′
}

1≤n,n′≤N (m)
as

follows:

K(m)

n,n′ = ∥
∥x0,n − x0,n′

∥
∥2
2 log

∥
∥x0,n − x0,n′

∥
∥2
2 , (25)

and the additional matrices as:

Y(m) =
[ 1 1 . . . 1
yp1 yp2 . . . ypN(m)

]

, (26)

L(m) =
⎡

⎢
⎣

K(m) Y(m)

Y(m)� 0

⎤

⎥
⎦ , (27)

X(m) = [

x0,1 x0,2 . . . x0,N (m) 0 0 0
]

, (28)

W(m) =
((

L(m)
)−1 (

X(m)
)�)�

, (29)

andW(m) =
(

w(m)
1 ,w(m)

2 , . . . ,w(m)

N (m)

)�
. By using the entries

of the matrix W(m), the estimators of the deformation D
and of the grid � at the next iterationm + 1 are therefore
defined as:

yp(m+1) = w
(m)

N(m)+1
+
[

w
(m)

N(m)+2
w

(m)

N(m)+3

]

y	
p (30)

+
N (m)
∑

n=1
w(m)
n

(

‖x0,n − y	
p‖22 log ‖x0,n − y	

p‖22
)

.

This iterative scheme will be stopped at the iteration
m∗ = m if there are no change between �(m) and �(m+1).
At convergence, the row and column coordinates of a
detected cores of position x0,n ∈ X0 is simply given by:

p̂ = argmin
p∈Z2

∥
∥x0,n − D(m∗)(y	

p)
∥
∥2
2 . (31)
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Fig. 10 Correspondence between the ideal grid and the observed distorted grid. At iterationm, the estimated deformationD(m) maps each point
y	
p of the ideal square grid �	 (shown in square dots on the left) onto a point y(m)

p = D(m)
(

y(m)
p
)

in the warped grid �(m) (circled dots on the right)

which fits the observed set of points X0 (blue crosses). A position x0,n ∈ X0 is associated to a position y	
p if x0,n is located within a radius δ from y(m)

p
(blue dotted circles). Associated positions are marked in red

Moreover, since the grid �(m∗) is an estimator of the
deformed TMA grid�which is partially observed inX0, it
can be used as approximated positions to recognize tissue
cores which are missed during detection and segmenta-
tion processes. Indeed, to refine de-arraying result, we
perform anothermulti-ellipse optimization at the position
of remaining nodes of the grid �(m∗). If there are ellipses
that meet the size and the roundness criteria of standard
cores, we add them to the list of detected core position
and adjust the coefficients of the thin-plate splines accord-
ing to the new list. An example of TMA de-arraying is
depicted in Fig. 14 showing the gain of ourmethod in term
of tissue core detection.

Results and discussion
Description of data sets
To evaluate our de-arraying ATMAD approach, we
selected a number of DNAmicroarray and tissue microar-
ray images including those which are artificially simulated
and those which are acquired in both brightfield and fluo-
rescence modes. The selected images were collected from
various sources and can be classified into three data sets.
The first set is a collection of binary images gener-

ated by Dr Yinhai Wang in [22] as pseudo TMA slides.
This data set was artificially created by taking account of
different possible situations occurring during the TMA
manufacturing process, including rotations and stretches
of the design grid as well as irregularities in the size
and the shape of tissue cores. The average core radius
is approximately rcore = 15 pixels for all images. The
whole set of all these simulated images and ground
truths can be freely downloaded at https://get.google.
com/albumarchive/117531880452844036890.

The second data set is composed of color TMA
images from the AIDS and Cancer Specimen Resource
(ACSR) Digital Library of the University of California
San Francisco (http://acsr.ucsf.edu). This online library –
managed and visualized by Aperio’sWebScope software –
contains several hundreds of tissue specimens which are
mostly stained with H&E (Hematoxylin and Eosin) stain
and are imaged by brightfield microscopy technique. For
this experiment, we considered down-sampled version
(with the magnification between 0.4X and 0.6X) of the
original images hosted on ACSR’s server in order to
reduce the processing time. The considered resolutions
correspond to images of approximately 1000 × 1000 pix-
els, on which the TMA cores have radius of only a few
dozen pixels but it is sufficient for our approach to localize
them.
The third set for the evaluation includes fluores-

cence high-dynamic-range (HDR) images showing DNA
microarray and tissue microarray slides. Provided by
the courtesy of Innopsys company, these HDR images
which were saved in 16-bit-TIFF format were acquired
using a scanner called InnoScan 1100AL (see https://
www.innopsys.com/en/lifesciences-products/microarrays/
innoscan/innoscan-1100-al for more details). The lat-
ter which is equipped with three excitation lasers (488
nm, 532 nm and 625 nm compatible with cyanine dyes
such as Cy2, Cy3 and Cy5 respectively). It can perform
simultaneously the acquisition on each excitation channel
and provides up to three color fluorescence images.
The maximal scan area supported by the mentioned
device is 22 × 74 mm2 corresponding to the size of
typical microscopy slides used in most biological lab-
oratories nowadays. For the same reason with ACSR’s

https://get.google.com/albumarchive/117531880452844036890
https://get.google.com/albumarchive/117531880452844036890
http://acsr.ucsf.edu
https://www.innopsys.com/en/lifesciences-products/microarrays/innoscan/innoscan-1100-al
https://www.innopsys.com/en/lifesciences-products/microarrays/innoscan/innoscan-1100-al
https://www.innopsys.com/en/lifesciences-products/microarrays/innoscan/innoscan-1100-al
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images, we selected typical images acquired by this
Innopsys’s scanner with spatial resolutions varying in
a range from 10 to 40 μm per pixel in this experiment
instead of using those with higher resolution (up to
0.5 μm per pixel or a 20X magnification equivalently).
Indeed, considering such images of low resolution and
small size as input data not only enables efficient and
low-memory-requirement processing but also requires
very short scanning time – less than just five minutes
with a resolution of 10 μm per pixel when compared with
typically several hours of acquisition at sub-micrometer
resolutions.
Regarding the complexity of the data sets, it contains

difficult cases such as irregular and non-rounded shapes,
fragmented cores as well as low contrasts between image

background and foreground. Sophisticated array design
with incomplete (missing cores) rows and columns is also
present in the image set for the purpose of testing the
robustness of our de-arraying approach (see Figs. 11, 12,
13 and 14).

Experimental results and algorithm evaluation
For the first and second data sets which contain images
with dark spots and bright background, we firts per-
formed a color inversion before further processing. The
de-arraying procedure was directly applied on binary and
grayscale images. Multi-channel color images as in the
case of ACSR’s data require a conversion to grayscale such
as a simple average over all channels which we used in
these experiments.

a

c

g

e

b

d

h

f

Fig. 11 Example of de-arraying on simulated images. From left to right : TMAs with the grid deformation varying from low to high. From top to
bottom : original images, de-arraying result by the proposed method with segmentation module deactivated/activated, ground truth given by Dr
Jinhai Wang. The obtained de-arraying results are presented in array form with recognized spot positions marked by green boxes
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a b

c d
Fig. 12 Example of de-arraying on brightfield TMA image. a Original image : H&E stained TMA on ACSR’s database with ID 550-T0011-01. bManual
annotation used for comparison with de-arraying results. c-d De-arraying results obtained with the deactivation/activation of the segmentation
module. These results and the manual annotation are represented in array format with recognized cores marked by green boxes

In order to evaluate the performance of our ATMAD
algorithm, we analyzed the obtained results by consid-
ering two criteria: (i) the rate of samples which are suc-
cessfully localized and (ii) the rate of samples whose
array coordinates are correctly estimated. To that end,
the de-arraying ATMAD outcome was compared with
the ground-truth provided by the simulated dataset or
by manual annotation of real-world TMA images. The

comparative similarity between the de-arraying results
and ground-truths (simulation, annotation) is quantita-
tively measured by these six following metrics:

• Accuracy: A = TP+TN
TP+TN+ FP+ FN

,

• Precision: P = TP
TP+ FP

,

a b c
Fig. 13 Example of de-arraying on a fluorescence DNA microarray image with the deactivation of both the segmentation and of the non-linear
estimation for the TMA grid deformation. a Contrast-enhanced original image. b De-arraying result of the proposed method presented in array
format. cManual annotations in array format. For comparison purpose, recognized DNA spots are marked by green boxes
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a b c

d e

f g
Fig. 14 Example of de-arraying on a fluorescence TMA image with the activation of both the segmentation and of the non-linear estimation for the
TMA grid deformation. a Contrast-enhanced original image. b Detection map (accurate detection is marked in white, wrong detection is marked in
red). c Segmentation of TMA cores (recognized cores are colored by blue ellipses). d Estimated TMA grid (potential core position is marked by a red
cross). e Recognized TMA cores (cores which are additionally recognized are colored by orange ellipses). f Final de-arraying result in array format
(recognized core position is marked by green box). gManual annotations for comparison

• Recall (sensitivity): R = TP
TP+ FN

,

• F-score: F = 2
PR
P+R

,

• G-score: G = √
PR,

• Jaccard coefficient: JSC = TP
TP+ FP+ FN

.

“True Positive” (TP) denotes the number of true tis-
sue samples (cores) which are correctly localized, or those
whose array coordinates are correctly estimated. “False
Negative” (FN) denotes the number of true cores which
are not successfully localized (due to non detection or
failed segmentation), or those whose array coordinates are

not estimated. “False Positive” (FP) denotes the number of
cores which are wrongly localized (due to false detection),
or those whose array coordinates are wrongly estimated.
“True Negative” (TN) denotes the number of “empty” spot
positions (no core is placed) where no core is wrongly
localized.
To better appreciate the impact of the components (or

modules) of our de-arraying approach, the performance
was evaluated under four different setting options (see
also Table 1):

Option #1: deactivation of ellipse-based segmenta-
tion and non-linear registration modules,
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Table 1 Workflow options corresponding to the selection
(activation/deactivation) of ellipse-based segmentation and
non-linear registration modules

Ellipse-based Non-linear
segmentation registration

Option #1 – –

Option #2 � –

Option #3 – �
Option #4 � �

Option #2: activation of ellipse-based segmentation
module and deactivation of non-linear
registration module,

Option #3: deactivation of ellipse-based segmenta-
tion module and activation of on-linear
registration module,

Option #4: activation of ellipse-based segmentation
and non-linear registratione modules.

When the ellipse-based segmentation module is deac-
tivated, the spot localization is performed only with the
wavelet-based detection method. Consequently, the pro-
cess of removal of unreliable detected cores based on
the size and the shape criteria is then disable, and the
refinement of de-arraying result using estimated posi-
tions of the deformed TMA grid can not be performed.
Meanwhile, the deactivation of the non-linear registration
module implies that the grid deformation is assumed to
be approximated by an affine (linear) transform. It could
result in a non-coincidence between core positions and
estimated positions of the deformed grid formost of cores.
A distance-based matching is thus necessary to establish
the correspondence of each core position and its array
coordinates. To allow a step-by-step evaluation of the
performance, besides the final de-arraying result, inter-
mediary results of the de-arraying procedure were also
carefully analyzed.
For a comparative evaluation, we also provide de-

arraying results on simulated images (which are gen-
erated using the deformation model described in [22])
obtained with the Wang’s method [22] – the state-of-the-
art method for TMA brightfield image de-arraying – and
compare these results to those obtained with the proposed
ATMAD method. Unfortunately, it was not possible to
apply the method [22] on real-world images since the
software and code are not available. In Table 2, the average
performance obtained on each dataset as well as on each
example is shown in Figs. 11, 12, 13 and 14. We notice
that, except the precision and recall scores which are not
in agreement in certain cases, the Accuracy, F-score, G-
score and Jaccard metrics yield consistent results about
the effectiveness of the de-arraying method. Accordingly,
we will focus on the F-score metric in the next sections for

the sake of simplicity. The results with all the metrics are
reported in Table 2.

Simulated images
We evaluated our ATMAD method applied to the Wang’s
dataset and we compared the results with those obtained
with the method described in [22].
An example of de-arraying result with different levels of

deformation is illustrated in Fig. 11. The top row shows
the original images. The two middle rows show the de-
arraying outcomes obtained with deactivation and acti-
vation of the segmentation respectively (the non-linear
estimation for the deformation is activated in both cases).
These two cases correspond to the Option #3 and #4
respectively, as reported in Table 2. The recognized spot
positions are marked by green boxes and correctly aligned
in a array to facilitate localization and identification. The
bottom row of Fig. 11 shows the ground-truth provided by
the authors of the dataset.
As expected, in the case of simulated images when the

background is constant, our method provided a perfect
F-score = 1 (corresponding to an accuracy of 100%) in
average with the Option #3 even if the localization of
spots is only performed with the wavelet-based detection
method. On the second row of Fig. 11 showing the de-
arraying results obtained on two typical examples with the
deactivation of the ellipse-based segmentation method,
we notice that all the spots are successfully recognized and
the array coordinates are correctly estimated. The results
are similar to those obtained with theWang’s method [22]
(for more details, see Table 2). Meanwhile, the de-arraying
results obtained with the Option #4 achieved a slightly
lower F-score F = 0.98 (corresponding to an accuracy
of 95%) in average. This score is a direct consequence
of the fact that all existing spots were not recognized by
the spot localizer due to segmentation failure or elimi-
nation. As depicted in Fig. 11e and f, the too small, too
large and too elongated spots are not taken into account
in the final de-arraying results. This behavior is confirmed
by a lower Recall value which measures the sensitivity of
the method (R = 0.95 in average compared to the per-
fect score R = 1 obtained with Option #3). Although,
despite a smaller number of correct spot positions, the
estimation of the array coordinate yielded exact results
for successfully recognized spots (Precision value P = 1
in average) comparing with the ground-truth. In terms
of deformation estimation, the estimated potential spot
positions provided by the de-arraying with two setting
options are almost identical. It thus allows us to local-
ize spots which were not recognized and demonstrates
the robustness of our method for estimating the grid
deformation.
Regarding the two remaining options (not illustrated

in Fig. 11), when both the segmentation and non-linear
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Table 2 Performance of the proposed de-arrayingmethod on three datasets under four setting options: (1) both the segmentation and
the non-linear estimation (for the deformation) modules are deactivated, (2) the segmentation is activated but the non-linear estimation
is deactivated, (3) the segmentation is deactivated and the non-linear estimation is activated, and (4) both of them are activated

Localization Estimation of array coordinates

A(a) P(b) R(c) F(d) G(e) JSC(f) A(a) P(b) R(c) F(d) G(e) JSC(f)

SIMULATED IMAGES

Average on 31 images

Wang et al. [22] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ATMAD Opt. #1 1 1 1 1 1 1 0.93 1 0.93 0.96 0.96 0.93

Opt. #2 0.95 1 0.95 0.98 0.98 0.95 0.85 1 0.84 0.91 0.91 0.84

Opt. #3 1 1 1 1 1 1 1 1 1 1 1 1

Opt. #4 0.95 1 0.95 0.98 0.98 0.95 0.95 1 0.95 0.98 0.98 0.95

Fig. 11a

ATMAD Opt. #1 1 1 1 1 1 1 1 1 1 1 1 1

Opt. #2 0.97 1 0.96 0.98 0.98 0.96 0.97 1 0.96 0.98 0.98 0.96

Opt. #3 1 1 1 1 1 1 1 1 1 1 1 1

Opt. #4 0.97 1 0.96 0.98 0.98 0.96 0.97 1 0.96 0.98 0.98 0.96

Fig. 11b

ATMAD Opt. #1 1 1 1 1 1 1 0.93 1 0.92 0.96 0.96 0.92

Opt. #2 0.93 1 0.92 0.96 0.96 0.92 0.90 1 0.89 0.94 0.95 0.89

Opt. #3 1 1 1 1 1 1 1 1 1 1 1 1

Opt. #4 0.93 1 0.92 0.96 0.96 0.92 0.93 1 0.92 0.96 0.96 0.92

BRIGHTFIELD IMAGES

Average on 8 images

ATMAD Opt. #1 0.94 1 0.93 0.96 0.96 0.93 0.91 1 0.88 0.94 0.94 0.88

Opt. #2 0.87 1 0.83 0.91 0.91 0.83 0.84 1 0.79 0.88 0.89 0.79

Opt. #3 0.94 1 0.93 0.96 0.96 0.93 0.94 1 0.93 0.96 0.96 0.93

Opt. #4 0.87 1 0.83 0.91 0.91 0.83 0.93 1 0.91 0.95 0.95 0.91

Fig. 12

ATMAD Opt. #1 0.96 1 0.94 0.97 0.97 0.94 0.91 1 0.89 0.94 0.94 0.89

Opt. #2 0.87 1 0.83 0.91 0.91 0.83 0.84 1 0.80 0.89 0.89 0.80

Opt. #3 0.96 1 0.94 0.97 0.97 0.94 0.96 1 0.94 0.97 0.97 0.94

Opt. #4 0.87 1 0.83 0.91 0.91 0.83 0.93 1 0.91 0.95 0.95 0.91

FLUORESCENCE IMAGES

Average on 8 DNAmicroarray images

ATMAD Opt. #1 1 1 1 1 1 1 1 1 1 1 1 1

Opt. #2 1 1 1 1 1 1 1 1 1 1 1 1

Opt. #3 1 1 1 1 1 1 1 1 1 1 1 1

Opt. #4 1 1 1 1 1 1 1 1 1 1 1 1

Fig. 13

ATMAD Opt. #1 1 1 1 1 1 1 1 1 1 1 1 1

Opt. #2 1 1 1 1 1 1 1 1 1 1 1 1

Opt. #3 1 1 1 1 1 1 1 1 1 1 1 1

Opt. #4 1 1 1 1 1 1 1 1 1 1 1 1
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Table 2 Performance of the proposed de-arraying method on three datasets under four setting options: (1) both the segmentation
and the non-linear estimation (for the deformation) modules are deactivated, (2) the segmentation is activated but the non-linear
estimation is deactivated, (3) the segmentation is deactivated and the non-linear estimation is activated, and (4) both of them are
activated (Continued)

Localization Estimation of array coordinates

A(a) P(b) R(c) F(d) G(e) JSC(f) A(a) P(b) R(c) F(d) G(e) JSC(f)

Average on 4 TMA images

ATMAD Opt. #1 0.79 0.77 1 0.87 0.88 0.77 0.92 0.98 0.93 0.95 0.95 0.91

Opt. #2 0.91 0.99 0.90 0.94 0.95 0.89 0.73 1 0.69 0.82 0.83 0.69

Opt. #3 0.79 0.77 1 0.87 0.88 0.77 - - - - - -

Opt. #4 0.91 0.99 0.90 0.94 0.95 0.89 0.92 0.98 0.93 0.96 0.96 0.91

Fig. 14

ATMAD Opt. #1 0.88 0.86 1 0.93 0.93 0.86 0.94 1 0.94 0.97 0.97 0.94

Opt. #2 0.86 1 0.84 0.91 0.92 0.84 0.80 1 0.77 0.87 0.88 0.77

Opt. #3 0.88 0.86 1 0.93 0.93 0.86 0.97 1 0.97 0.98 0.98 0.97

Opt. #4 0.86 1 0.84 0.91 0.92 0.84 1 1 1 1 1 1

All considered performance scores range from 0 (worst) to 1 (best) and measure the similarity between the de-arraying results and their corresponding ground-truth or
manual annotation. Notations: (a) accuracy (A), (b) precision (P), (c) recall (R), (d) F-score (F), (e) G-score (G) and (f) Jaccard coefficient (JSC)

estimation modules are deactivated (Option #1), ATMAD
produced surprisingly very satisfying de-arraying results
with a F-score = 0.96 in average on this set of simulated
images (see Table 2). This score which is slightly lower
than those obtained with Option #4 is due to the mono-
tone and non-oscillating nature of the deformation model
used to generate the test images, as described in [22] and
illustrated in Fig. 11a and b. Meanwhile, the combination
of the segmentation activated and the non-linear esti-
mation deactivated (Option #2) yielded strongly inferior
results. The F-score in average is barely 0.91 (correspond-
ing to an accuracy level of 84%). It is mainly due to lower
rate of correctly localized spots, implying inaccurate linear
estimation for the deformation.
Moreover, we point out that when there is no false

positive (i.e. FP = 0 implies P = 1), the Jaccard similar-
ity coefficient (JSC) coincides with the Recall (R) value.
This explains why we have obtained the same values for
these two performance measures on this set of simu-
lated images. We also observe similar behaviors in some
cases on brightfield and fluorescence images when the
method tends to eliminate all false detections during the
localization step.

Brightfield images
We have noticed that in the previous experiments with
simulated data, our wavelet-based detection algorithm
was able to localize all spots on images with constant
background. In the case of brightfield TMA images whose
background is not constant but generally homogeneous,
this approach might still be efficient for spot localization

since the situation is much more simpler than in fluores-
cence imaging. In this section, we focus on the evaluation
of ATMAD applied to the ACRS dataset with the Options
#3 and #4 (see Table 1) to assess the impact of the ellipse-
based segmentation algorithm. In Fig. 12, the de-arraying
result with these two setting options on a H&E stained
TMA image containing irregularities in the shape of tis-
sue cores is illustrated. The original input image shown
in Fig. 12a is the slide cut #9 of the TMA whose the
ID is 550-T0011-01 on ACSR’s database. The de-arraying
results obtained with the Option #3 and #4 are depicted
in Fig. 12c and d respectively. To evaluate the accuracy
of these results, we consider in Fig. 12b a reference de-
arraying obtained by manual annotation. The latter is
presented in the same format (i.e. an array representa-
tion) as those of the automated de-arraying outcomes to
facilitate comparison.
Comparing with an accuracy of 100% obtained on sim-

ulated data, localization only based the wavelet method
achieved in average approximately 94% of existing TMA
cores on ACSR’s data (corresponding to a F-score = 0.96
in average). Indeed, it failed generally to recognize cores
with inner hole or cores which are split into parts (see
Fig. 12c) since the shape of these cores implies that the
wavelet coefficients at their position are lower than the
detection threshold – resulting to non detection. Activat-
ing the segmentation module does not improve successful
recognition rate of the localization step due to the use of
detected core position for initializing the ellipse fitting.
In our interest, the main role of this module in the local-
ization step is to measure the size and the roundness of
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detected objects in order to eliminate false detection and
to provide reliable input for the estimation of the grid
deformation. For this reason, only about 87% of existing
cores were correctly recognized during the localization
step (corresponding to F-score = 0.91 in average) with the
combination of the detection and the segmentation mod-
ules due to the segmentation failure and the elimination
of outliers. In spite of the difference between the local-
ization results obtained with the deactivation/activation
of the segmentation module, the non-linear estimation of
the grid deformation using these results however yielded
similar de-arraying outcomes as illustrated in Fig. 12c
and d. The overall accuracy of the de-arraying proce-
dure with the activation of the ellipse-based segmentation
module is approximately 93% (corresponding to F-score=
0.95 in average) compared to 87% (corresponding to
F-score = 0.91 in average) if the module is activated
(see Table 2). Under the latter setting options, the final
recognition rate of tissue cores has increased by about
6% with respect to the rate obtained after the localiza-
tion step. This improvement is due to the segmentation
performed using the potential position which is provided
by the estimation of the grid deformation to recognize
missed cores during the first step of the de-arraying pro-
cedure (for example, some fragmented cores or cores
with inner hole were additionally recognized as shown in
Fig. 12d in comparison with Fig. 12c). This approach is
useful, not only for brightfield images, but also in the case
of fluorescence images, in which the contrast between
the background and the foreground is often significantly
weaker.
For the two remainder options (Options #1 and #2),

ATMADproduced slightly inferior scores when compared
to those obtained with the Options #3 and #4. It is due
to the imprecise estimation of tissue core positions com-
puted with affine registration of the grid. Quantitative
similar results were observed in the case of simulated
images as reported in Table 2.

Fluorescence images
In this section, we evaluated ATMAD on a more chal-
lenging image dataset which is acquired by fluorescence
scanners and characterized by high noise level and non-
homogeneous background. Unlike simulated and bright-
field images depicting tissues, fluorescence images pro-
vided by Innopsys company, are composed of both DNA
microarray and TMA images. Examples of DNA and
TMA image de-arraying are respectively shown in Figs. 13
and 14.
For the illustrated DNA microarray, we presented in

Fig. 11 only the original image, the final de-arraying result
and the corresponding manual annotations. Whereas,
intermediate results were additionally illustrated in Fig. 12
besides the original image as well as the final result and

the ground truth in the case of TMA image to allow
step-by-step evaluation.
As expected, the proposed ATMAD method achieved

100% accuracy (corresponding to the perfect F-score =
1) in average on DNA microarray images under all four
considered setting options (see Table 2 and Fig. 13). This
perfect score was obtained due to the regularity of the
size, the shape and the grid of spotted DNA samples which
facilitates the localization and the estimation of the array
coordinates of each spot.
It is however not possible to reach such performance

scores on TMA images in most cases because of the
deformation of TMA grid and the irregularities of TMA
cores. Indeed, when the segmentation module is deacti-
vated (Options #1 and #3), the localization of TMA cores
estimated with only the wavelet-based detection method,
often suffers from false positives because erroneous
detection of irrelevant objects on the background is not
eliminated.
False detection mostly occurs in images with complex

background such as those illustrated in Figs. 14a and b.
Note that in the case of fluorescence TMA images, the
number of false positives is significantly larger than in the
case of simulated and brightfield TMA images. On the
other hand, tanks to the adaptive threshold derived from
the wavelet transform, there is in general no false negative
(i.e. all existing tissue cores were detected). These results
demonstrate that the detection operation is not too sen-
sitive (perfect recall score R = 1 in average), but also it
is not precise enough (weak precision score P = 0.77 in
average) in fluorescence imaging. Consequently, it low-
ered the overall performance of TMA core localization.
In Table 2, the accuracy is only about 79% (correspond-
ing to a F-score = 0.87) in average. Note that the linear
transform estimation (Option #1) using the set of local-
izations with false positives, yielded satisfying de-arraying
results (with an accuracy of 91% or F-score = 0.94 in aver-
age), mainly because robust estimators are used for TMA
grid registration. Nevertheless, in some cases the non-
linear transform estimation (Option #3) was unable to
correctly handle erroneous inputs and to produce reliable
de-arraying results.
In order to reduce the number of false positives dur-

ing the localization step, we combined the wavelet-based
detection method with the ellipse-based segmentation
method. Despite low-light fluorescence imaging condi-
tions and low contrast in images, the multi-core ellipse-
based segmentation perfectly performed with a rate of
100% of successful segmentation over all detected posi-
tions. The segmentation procedure provided reliable fea-
tures of the object found at each detected position (see
Fig. 14c). By combining the detection and the segmenta-
tion modules, the localizer gave better results; in average,
the overall accuracy is about 91% (F-score = 0.94) to
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be compared to only 79% when the ellipse-based seg-
mentation module is not activated (see Table 2). Given
these precise localization results, the non-linear trans-
form estimation produced satisfactory outcomes; the row
and column coordinates of most existing TMA cores were
accurately computed (Fig. 14f). In average, the de-arraying
with activation of both the ellipse-based segmentation
and the non-linear transform estimationmodules (Option
#4) achieved a F-score = 0.96 (corresponding to an accu-
racy of 92%), which is sightly better than those obtained
with Option #1 (F-score = 0.95). We also notice a gain
of about 1% in terms of overall accuracy (0.01 in terms
of F-score performance) comparing to the localization
step. The improvement between the two steps of the de-
arraying procedure demonstrates the positive influence
of the ellipse-based segmentation module on the overall
performance of the proposed ATMADmethod.
To sum up, the proposed de-arraying method rarely

achieves perfect scores in the case of real (brightfield
and fluorescence) images (except those obtained on DNA
microarrays) in comparison to simulated images. This
weaker performance is often due to the insufficient num-
ber of localized cores obtained on images with complex
non-homogeneous background and/or highly irregular
shapes of tissue cores. Consequently, we get imperfect de-
arraying results which represent only array coordinates
of each core. In spite of these imperfections, we have
noticed that the spline approximation of the grid defor-
mation yields, in most cases, accurate core position. More
sophisticated segmentation algorithms can be used to fur-
ther localize cores which were not recognized, and thus
refine de-arraying results.
The majority of the time computing is spent on the

detection task to compute the wavelet transform. Over-
all, the computational cost is less than 5 s for de-arraying
a 1000 × 1000 image. The experiments were performed
on a Macbook Pro equipped with 2.7 Ghz Intel Core i7,
16 Gb of RAM and the Mac OS X v. 10.12.4 operat-
ing system. The algorithm was implemented in Matlab
and we exploited the intrinsic parallelism of the CPU by
performing many ellipse-based segmentation in parallel.

Conclusion
This paper introduced a fast and efficient algorithm
for de-arraying TMA by combining wavelet transform,
active contour and thin-plate interpolation. The proposed
ATMAD algorithm is adapted not only for brightfield
images but also for fluorescence images which are more
challenging in terms of tissue localization due to complex
backgrounds. This difficulty is carried out by a two-step
approach: a fast detection followed by a careful segmen-
tation to reduce the number of false alarms. The row and
column coordinates of each localized tissue core are next
computed by estimating the deformation of the design

grid. Using the estimation of the deformation, tissue cores
which are missed during localization can be later recog-
nized and it refine thus the de-arraying result.
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Additional file 1: Isotropic wavelet frame. Direct wavelet decomposition
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