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Abstract

Background: Since many proteins become functional only after they interact with their partner proteins and form
protein complexes, it is essential to identify the sets of proteins that form complexes. Therefore, several computational
methods have been proposed to predict complexes from the topology and structure of experimental protein-protein
interaction (PPI) network. These methods work well to predict complexes involving at least three proteins, but
generally fail at identifying complexes involving only two different proteins, called heterodimeric complexes or
heterodimers. There is however an urgent need for efficient methods to predict heterodimers, since the majority of
known protein complexes are precisely heterodimers.
Results: In this paper, we use three promising kernel functions, Min kernel and two pairwise kernels, which are Metric
Learning Pairwise Kernel (MLPK) and Tensor Product Pairwise Kernel (TPPK). We also consider the normalization forms
of Min kernel. Then, we combine Min kernel or its normalization form and one of the pairwise kernels by plugging. We
applied kernels based on PPI, domain, phylogenetic profile, and subcellular localization properties to predicting
heterodimers. Then, we evaluate our method by employing C-Support Vector Classification (C-SVC), carrying out
10-fold cross-validation, and calculating the average F-measures. The results suggest that the combination of
normalized-Min-kernel and MLPK leads to the best F-measure and improved the performance of our previous work,
which had been the best existing method so far.
Conclusions: We propose new methods to predict heterodimers, using a machine learning-based approach. We
train a support vector machine (SVM) to discriminate interacting vs non-interacting protein pairs, based on
informations extracted from PPI, domain, phylogenetic profiles and subcellular localization. We evaluate in detail new
kernel functions to encode these data, and report prediction performance that outperforms the state-of-the-art.
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Background
Many proteins carry out their biological functions by
interacting with other proteins to form multiprotein
structures, called protein complexes [1], which are crucial
for a broad range of the biological process. For example,
the ribosome is an assembly of protein and RNA subunits
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responsible for protein translation. Therefore, under-
standing protein functions, as well as biological processes,
requires identification of sets of proteins that form com-
plexes. A significant fraction of known protein complexes
are heterodimeric protein complexes (heterodimers), that
is, formed by the assembly of two different proteins. For
example, the two most important protein complex cata-
logs CYC2008 [2] and MIPS [3] include respectively 172
(42%) and 64 (29%) heterodimers. Hence, it is necessary
to develop accurate methods for predicting heterodimers.
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Here CYC2008 is a comprehensive catalog of 408 man-
ually curated yeast protein complexes reliably supported
by small-scale experiments, and MIPS provides detailed
information involving classification schemes for analy-
sis of protein sequences, RNA genes, and other genetic
elements [4–6].

Several high-throughput methods have supplied us with
large datasets of protein-protein interactions (PPIs) [7, 8],
such as tandem affinity purification (TAP) and yeast two-
hybrid (Y2H) [9]. To predict protein complexes, many
researchers have proposed to study the structure of the
resulting PPI network [10–15], which is an undirected
graph with proteins represented as vertices and interac-
tions between them represented as edges. For example,
methods such as Markov Cluster (MCL) [16], Molecu-
lar Complex Detection (MCODE) [17], Clustering-based
on Maximal Cliques (CMC) [18], Protein Complex Pre-
diction (PCP) [19], and CFinder [20] are mainly based on
the topological structures of PPI networks. Other meth-
ods such as Restricted Neighborhood Search Clustering
(RNSC) [21] and Feng et al. [22] exploit biological infor-
mation such as microarray data and gene ontology (GO)
to strengthen the reliability of interactions so as to rebuild
a more reliable PPI network and to predict complexes
through a subgraph detection method from such PPI
network. Some supervised approaches such as Bayesian
classifier [23] also have been proposed. These methods,
however, focus mainly on detecting densely connected
subgraphs in PPI networks and are therefore not adapted
to the identification of heterodimers. Indeed, for a com-
plex involving only two proteins, the structure of the PPI
network restricted to the involved two proteins is reduced
to the presence or absence of an edge between them,
and the prediction boils down to experimentally mea-
sured interaction. The methods above are not satisfactory
because (i) high-throughput experimental measures are
known to have high rates of false positives and false
negatives, and (ii) two interacting proteins do not neces-
sarily form a heterodimer, as they may instead be involved
in a larger complex. As a result, it is difficult to pre-
dict heterodimers accurately with these methods, which
have been evaluated for their ability to predict protein
complexes consisting of at least three proteins.

Another class of methods focuses specifically on the
prediction of heterodimers, using either random walks
on PPI networks, such as the Repeated Random Walks
(RRW) method [24] and the Node-Weighted Expansion
(NWE) method [25], or a naive Bayes classifier as pro-
posed by Maruyama [26], with features combining PPI
data, GO annotations, and gene expression data. The
later method has been shown to have better performance
in F-measure for prediction of heterodimers than other
existing prediction methods, including MCL, MCODE,
RRW, and NWE.

To improve the prediction accuracy for heterodimers,
Ruan et al. [27] proposed a supervised method with
several features based on PPI weights. The weights are
obtained from dataset WI-PHI (a Weighted yeast Inter-
active enriched for direct PHysical Interactions), which
includes 49607 interacting protein pairs except self inter-
actions and the weights of interactions between protein
pairs. The main idea behind the design of feature space
mappings is that the neighboring weights of a heterodimer
tend to be smaller than the weight inside of the het-
erodimer. In addition to features based on weights, they
proposed feature space mappings based on the number
of protein domains because domains are considered to be
functional and structural units in proteins. Furthermore,
they designed a Domain Composition kernel based on the
idea that two proteins having the same composition of
domains as a known heterodimer are likely to form a het-
erodimer. The method showed considerable promise for
heterodimer detection (F-measure=63.1%), significantly
outperforming previous works.

Yong et al. [28] proposed a two-stage approach and test
their approach on the prediction of yeast and human small
complexes (consisting two or three distinct proteins).
They carried out comparison with some popular com-
plex prediction methods. Besides, they generated a larger
number of novel predictions. However, on prediction of
yeast heterodimers, they did not provide the measure per-
formances of precision and recall. Therefore, we have no
idea whether or not they achieve better performance than
Ruan et al. [27] based on their results.

Note that Yugandhar et al. [29] applied a machine
learning approach to classify protein-protein complexes
based on their binding affinities. Their method reaches
76.1% accuracy to distinguish heterodimers into high and
low affinity groups. However, they classify known het-
erodimers into different groups, but do not predict het-
erodimers from given protein pairs, hence their purpose
is different from ours.

In this paper, our goal is to further improve the pre-
diction accuracy for heterodimers. We investigate com-
bination kernels to encode the domain composition of
proteins involved in a complex since the one used in Ruan
et al. [27] was very crude. More precisely, they define the
similarity of domain composition in protein pairs very
strictly, only considering two protein pairs with exactly
the same compositions as an effective feature in the kernel
function. We find that there is space to improve pre-
diction from this point by replacing “exactly the same”
with “similar”. For that purpose we propose to replace
the Dirac kernel (which is 1 if and only if two proteins
have exactly the same domain composition, 0 otherwise)
by the so-called Min kernel, which counts the number
of shared domains between two proteins. Furthermore,
since our problem is formally to classify pairs of proteins
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as interacting or not, we exploit the notion of pairwise
kernels to extend kernels between individual proteins to
kernels between pairs of proteins, investigating in particu-
lar the metric learning pairwise kernel (MLPK) and tensor
product pairwise kernel (TPPK), as explained in [30] and
in the “Methods” section.

Besides, we consider that various sources of information
may contribute to an accurate predictor. The combination
of various sources can be divided into three situations:
(1)various types of features with a single kernel; (2)one
type of features with multiple kernels; (3)various types
of features with multiple kernels. We test all the three
situations and show only significant results in our compu-
tational experiments. On various types of features, besides
the protein-protein interaction (PPI) and domain prop-
erties, we also try to use phylogenetic profile property.
The reason is that two proteins that are both present or
absent in the same genome are likely to have related func-
tions. Moreover, protein subcellular localization property
is considered as well. As proteins must be localized at their
appropriate subcellular compartment to perform their
function, proteins in the same location may have similar
functions. On multiple kernels, we employ Min kernel and
its two normalization forms, MinMax kernel and Scaled
Min kernel, as well as two pairwise kernels, MLPK and
TPPK.

Then, we employ C-Support Vector Classification
(C-SVC), carry out ten-fold cross-validation and calculate
the average precision, recall, and F-measures. The compu-
tational experiments show that using Min kernel improves
the prediction performance, and the combinations of mul-
tiple kernels outperform single Min kernel, therefore is
superior to [27] and other existing methods. However,
combinations of new types of features that we presented
do not contribute to accuracy improvement. Thus, situa-
tion (2) is more appropriate to our problem, though we do
not eliminate the effectiveness of situation (3) by adding
other useful types of features.

The rest of paper is organized as follows: “Methods”
section introduces our methods including details of kernel
combination and other types of features. “Results” section
presents performance evaluation and comparison with
other methods, as well as discussion on the results.
“Discussion” section concludes the paper.

Methods
We formulate the problem of heterodimer prediction as
a supervised binary classification problem. Given a set of
pairs of proteins that known to form heterodimers (posi-
tive examples), and pairs of proteins that do not form het-
erodimers (negative examples) as training data, we learn a
function f (x) to predict if a pair x of proteins in the test set
can form a heterodimer (f (x) ≥ 0) or not (f (x) < 0). The
definition of positive examples and negative examples are

the same as [27]. To learn the function f (x) from a training
set (x1, y1), . . . , (xn, yn), where each xi ∈ R

p is a vector of
descriptors for a pair of proteins and yi ∈ {−1, 1} indicates
whether the pair can form a complex or not, we employ
a C-support vector classification (C-SVC) classifier, with
balanced loss penalty to compensate for the fact that the
numbers of positive examples and negative examples are
very unbalanced.

Various properties and multiple kernels
We explain multiple kernels involving properties of PPI,
domain, phylogenetic profile, and subcellular localization
in this section.

PPI and domain properties
For the PPI and domain properties, we follow the work in
[27], feature space mapping ψ for a pair of proteins Pi, Pj
is defined as

ψ(Pi, Pj) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

wij
max

{
max{k|(i,k)∈E,k �=j} wik , max{k|(j,k)∈E,k �=i} wjk

}

min
{

min{k|(i,k)∈E,k �=j} wik , min{k|(j,k)∈E,k �=i} wjk
}

max{k|(i,k)∈E,(j,k)∈E} min{wik , wjk}
max{k1,k2|(i,k1)∈E,k1 �=j,(j,k2)∈E,k2 �=i}

∣∣∣ wik1 − wjk2

∣∣∣
max{#domains ofPi, #domains of Pj}
min{#domains ofPi, #domains of Pj}

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(1)

where wij denotes the weight of the interaction between Pi
and Pj. These are novel features proposed by Ruan et al.,
and the detailed descriptions of each feature can be found
in [27].

There is another method involving domain property
proposed in [27], called Domain Composition kernel.
Here we briefly review it, since our approach is mainly on
improving this part.

Suppose that there are several domains Dj in proteins.
We define a feature space mapping φdom for protein Pi so
that the j-th element of φdom(Pi) is the number of domains
of Dj in P. For example, in Fig. 1, the left side is a pro-
tein Pi with domains D1, D1, D3, D4 and the right side is
the corresponding feature space mapping φdom(Pi) with
values (2, 0, 1, 1, 0, · · · ) representing 2 D1s, 0 D2, 1 D3, 1
D4, 0 D5, and so on, included in protein Pi. The dimen-
sion of φdom(Pi) is the total number of distinct domains
contained in the whole proteins.

The formulation of Domain Composition kernel KC for
two pairs of proteins, (P1, P2) and (P3, P4), is defined as

KC((P1, P2), (P3, P4)) = max{δ(φdom(P1) = φdom(P3))

δ(φdom(P2) = φdom(P4)),
δ(φdom(P1) = φdom(P4))

δ(φdom(P2) = φdom(P3))},
(2)
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Fig. 1 Illustration for φdom(Pi). Left: a protein Pi includes domains D1,
D1, D3 and D4. Right: the corresponding feature space mapping φdom
for protein Pi

where δ(S) = 1 if S holds, otherwise 0. It should be noted
that the Domain Composition kernel is actually defined
for pairs of two or more proteins.

In this study, we focus on replacing Domain Compo-
sition kernel with more promising combination kernels.
Before presenting combination kernels, we first continu-
ously introduce other properties.

Phylogenetic profile property
The phylogenetic profile of a protein is a vector that
describes the presence or absence of homologs in organ-
isms. It has been studied that proteins having similar
profiles strongly tend to be functionally linked [31], and
it is well known that proteins with similar functions
are likely to form a complex. Therefore, we consider
that phylogenetic profiles may be helpful for determining
heterodimers.

To represent the subset of organisms that contain a
homolog, we constructed a phylogenetic profile for each
protein. This profile is a vector with m entries, where
m corresponds to the number of genomes (2, 717 in the
present article). We indicate the presence of a homolog to
a given protein in the j-th genome with an entry of unity
at the j-th element. If no homolog is found, the element is
zero.

We compute phylogenetic profiles for the 5, 497 pro-
teins encoded by the genome from KEGG OC [32], a novel
database of ortholog clusters. Each protein sequence (Pi)
is encoded by 2, 717 genomes, which consist of eukary-
otes, bacteria and archaea. Proteins coded by the j-th
genome are defined as including a homolog of a protein Pi
if they align to the protein Pi with a score that is deemed
statistically significant.

In Fig. 2, the left side are several genomes with their
proteins and the right side are phylogenetic profiles for
all proteins. We define a feature space mapping φphylo for
protein Pi so that the j-th element of φphylo(Pi) describes

whether or not the j-th genome contains Pi. For example,
in the genomes, P1 exists in EC and BS but not in SC, so
for the phylogenetic profile of protein P1, elements of EC
and BS are 1, and SC is 0.

Subcellular localization property
Determining the subcellular localization of a protein is a
key step toward understanding the cellular function of a
protein, since proteins of the same subcellular localization
tend to have similar function. We obtain the subcellular
localization information for each protein from UniPro-
tKB, such as cell membrane, cytoplasm, nucleus, and so
on. Similar with phylogenetic profile property, we con-
struct a feature space mapping φlocal(Pi) containing sub-
cellular localization information for each protein Pi. The
size of feature space is the sum of unique localizations for
all proteins in our experiments, with elements 1 and 0,
each represents whether or not the corresponding protein
exists in the location (shown as Fig. 3).

Multiple kernels
In this section, we start to describe Min kernel with its
normalization forms and two pairwise kernels.

Min kernel [33] counts the number of common ele-
ments in two feature vectors, which is a simple way to
calculate the similarity of two binary vectors. Different
from Domain Composition kernel, which outputs 1 or 0
representing exactly the same or not two protein pairs
are, Min kernel counts the number of common domains
in two proteins. With combining pairwise kernel pre-
sented below, combined-Min kernel shows the similarity
of domain composition between protein pairs. Note that
Min kernel has been shown to be useful for detection and
recognition in [34, 35]. For feature vectors x, y, the Min
kernel KMin is defined by

KMin(x, y) =
n∑

i=1
min{xi, yi}, (3)

where xi denotes i-th element of vector x, n denotes the
number of elements of x, and xi, yi ≥ 0 for all i.

When we present a kernel, its normalization form is
usually used in kernel functions to improve prediction
accuracy. Therefore, normalized versions are also pro-
posed. Scale-normalization is a very common normalized
version. For some kernel K, a scale-normalized kernel is
defined as

Knorm(x, y) = K(x, y)√
K(x, x)K(y, y)

. (4)

Tanimoto kernel has been shown to have good perfor-
mance on pairwise problems in the previous study [36],
and it has a simple expression when applying to the Min
kernel, which is called MinMax kernel. As a result, Min-
Max kernel is regarded as another normalization form of
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Fig. 2 Illustration for φphylo(Pi). Left: Genomes with their proteins. For example, EC contains P1, P2, P3 and P4, SC contains P2, P3 and P4, BS contains
P1 and P5. Right: Phylogenetic profile φphylo(Pi) for each protein Pi

Min kernel. It computes the ratio of the intersection to the
union of two feature mappings. For feature vectors x, y,
MinMax kernel KMinMax is defined as

KMinMax(x, y) = KMin(x, y)∑n
i=1 max{xi, yi} , (5)

where KMin is Min kernel.
Next, we briefly review two pairwise kernels, the Met-

ric Learning Pairwise Kernel (MLPK) [30] and Tensor
Product Pairwise Kernel (TPPK) [37].

Vert et al. [30] presents that MLPK kernel is a kernel
for pairs and can be easily used to solve supervised clas-
sification problems. For heterodimer prediction problem,
it infers pairwise relationships from hetero-protein pairs
by defining a kernel between pairs of proteins from a
kernel between individual proteins. MLPK kernel KMLPK
between pairs (x1, x2) and (x3, x4) is defined as

KMLPK ((x1, x2), (x3, x4)) = (K(x1, x3) − K(x1, x4)

− K(x2, x3) + K(x2, x4))
2,

(6)

The rationale behind MLPK is that the comparison
between a pair (x1, x2) and another pair (x3, x4) is done
through comparing the feature space of pair K(x1, x3) +
K(x2, x4) and that of pair K(x1, x4) + K(x2, x3). In other
words, MLPK compares pairs through the differences
between their elements in the feature space.

Different from MLPK, TPPK kernel compares pairs by
comparing x1 with x3 and x2 with x4 on one hand, and
comparing x1 with x4 and x2 with x3 on the other. Both
comparisons are obtained by a tensorization of the ini-
tial feature space. Therefore, this pairwise kernel is called
the tensor product pairwise kernel. The equation of TPPK
kernel is defined as

KTPPK ((x1, x2), (x3, x4)) = K(x1, x3)K(x2, x4)

+ K(x1, x4)K(x2, x3),
(7)

Kernel combinations
So far, we have mentioned three kernels between pro-
teins: Min kernel, and two normalized versions, MinMax
kernel and scaled kernel (called Normalized kernel in the
results), as well as two pairwise kernels between protein

Fig. 3 Illustration for φlocal(Pi). Left: Proteins contained in each subcellular localization. For example, in cell membrane, there are proteins P2, P3 and
P4 inside; in cytoplasm ,there are P2, P3, P4 and P5; in nucleus, there are P1, P2 and P5 contained. Right: A feature space mapping φlocal(Pi) of
localization information for each protein Pi
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pairs, MLPK kernel and TPPK kernel. We therefore con-
sider all possible combinations (3 × 2 = 6) of these
kernels.

For two protein pairs (P1, P2) and (P3, P4), we have the
following combinations.

KM((P1, P2), (P3, P4)) = (K(φ(P1), φ(P3)) − K(φ(P1), φ(P4))

− K(φ(P2), φ(P3))+K(φ(P2), φ(P4)))
2,

(8)

KT ((P1, P2), (P3, P4)) = K(φ(P1), φ(P3))K(φ(P2), φ(P4))

+ K(φ(P2), φ(P3))K(φ(P1), φ(P4)),
(9)

where K(φ(Pi), φ(Pj)) denotes Min kernel or one of its
normalized versions in the two equations. That is to say,
we plug Min kernel and its normalized versions into
Eqs. (8) and (9), respectively. Note that φ(Pi) can be any
one of φdom(Pi), φphylo(Pi) and φlocal(Pi).

Then we combine the feature space mapping ψ (Eq. (1))
with the 6 combinations above, so we have

Kcomb((P1, P2), (P3, P4)) = 〈ψ(P1, P2), ψ(P3, P4)〉
+αK((P1, P2), (P3, P4)), (10)

where α is a constant, and K is either of the 6 com-
bination kernels. We call Kcomb using KMin “Min-MLPK
kernel”, using KMinMax “MinMax-MLPK kernel”, using
Knorm “Normalized Min-MLPK kernel”, respectively. Sim-
ilarly, when applying TPPK kernel, we just need to replace
“MLPK” with “TPPK” for their names.

The study [30] pointed out that combination of MLPK
and TPPK together by summation almost always leads
to the best results. Therefore, by summation with MLPK
(Eq. (8)) and TPPK equation (Eq. (9)), we have

Kcomb((P1, P2), (P3, P4)) = 〈ψ(P1, P2), ψ(P3, P4)〉
+αKM((P1, P2), (P3, P4))

+αKT ((P1, P2), (P3, P4)), (11)

We call Kcomb using KM and KT “MinMax-MLPK-TPPK
kernel”.

C-Support Vector Classification(C-SVC)
We use the C-Support Vector Classification (C-SVC)
[38, 39] formulation that infers a function f (x) = w�x
that best separates positive examples from negative ones
by solving the optimization problem:

minimize
1
2
‖w‖2 + C+ ∑

yi=+1
ξi + C− ∑

yi=−1
ξi

subject to yi
(

w�xi + b
)

≥ 1 − ξi, for all i

ξi ≥ 0, for all i

(12)

where C+ and C− are regularization parameters for pos-
itive and negative examples, respectively. Instead of rep-
resenting explicitly each pair of proteins by a vector of
descriptors x ∈ Rp, we will use positive definite kernels
K(x, x′) in which case the C-SVC classifier takes the form
f (x) = ∑n

i=1 αiK(xi, x) where the vector α ∈ Rn is the
solution of the dual problem:

minimize α�Kα − 2α�1
subject to 0 ≤ αi ≤ C+, if yi = 1

0 ≤ −αi ≤ C−, if yi = −1
(13)

where K is the n × n Gram matrix with entries
Kij = K(xi, xj) and 1 is the n-dimensional vector of
ones. For implementation of C-SVC, we used libsvm
(version 3.11) [40].

Results
Experiments
In order to compare our proposed method with the
method in [27], we used the same dataset WI-PHI. The
weights of interactions were calculated in the following
way. (1)Used the high-throughput yeast two-hybrid data
by Ito [8] and Uetz [7] as well as several databases such
as BioGRID [11], MINT [12] and BIND [13] to build the
literature-curated physical interaction (LCPH) dataset.
(2)Constructed a benchmark dataset to evaluate high-
throughput data. The interactions of the dataset were
obtained by two independent methods from LCPH-LS,
which was a low-throughput dataset in LCPH. (3)Calcu-
lated a log-likelihood score (LLS) to each dataset except
LCPH-LS. (4)Computed the weight of each interaction by
multiplying the socioaffinity (SA) indices [1] and the LLSs
from different datasets. Note that SA index is the log-odds
score of the number of times that we observed two pro-
teins interact to each other to the expected value in the
dataset.

Also, we prepared the same dataset from CYC2008 [2]
for training and testing as the previous study. CYC2008 is
a set of 408 manually curated yeast complexes. Compared
with MIPS catalogue, which consists 215 heteromeric
complexes, we believe that CYC2008 represents a more
complete and up-to-date description of the stable yeast
interactome, and should hence serve as an improved
gold standard for the prediction of complexes. CYC2008
catalogue can be downloaded at: http://wodaklab.org/
cyc2008/.

We defined a positive example as a pair of proteins
included in WI-PHI as well as a heterodimer included in
CYC2008. A negative example was defined as a pair of
proteins included in WI-PHI, which meanwhile should
not be any heterodimer but be a subset of some other
complexes in CYC2008. As a result, we had 152 positive
examples and 5345 negative examples.

http://wodaklab.org/cyc2008/
http://wodaklab.org/cyc2008/
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Performance measure
We chose the following three measures to evaluate our
performance. Precision describes the rate of correctly pre-
dicted positive examples to all positively predicted exam-
ples, and recall describes the rate of correctly predicted
positive examples to all positive examples. Both of them
indicate the effectiveness of the method from different
aspects. F-measure is defined as their harmonic mean,
which was used for evaluating the balance of precision and
recall since it is insufficient to evaluate by any single one
of them.

They are defined as

precision = TP
TP + FP

, (14)

recall = TP
TP + FN

, (15)

F-measure = 2 · precision × recall
precision + recall

, (16)

where TP, FP, and FN represent the numbers of correctly
predicted positive examples, incorrectly predicted posi-
tive examples, and incorrectly predicted negative exam-
ples, respectively.

Results
We present below a comparison of our proposed combi-
nation kernels and the best existing method [27], which is
titled as “Domain Composition kernel” in Figs. 4, 5 and 6.

Note that features shown in Eq. (1) were used both in this
study and [27].

In [27], they employed C-SVC with varying mixing
parameter α = 0.0, 0.1, 0.2, ..., 2.0. and regularization
parameters C− = 0.1, 0.2, · · · , 2.0, C+ = 3.0, 3.5, · · · , 6.0.
The best result was obtained for α = 0.5, C− = 1.0 and
C+ = 4.0. In their experiments, they found that the results
almost did not change while C− varied. Therefore, in this
study, we kept the value of C− as 1.0, and set other param-
eters around the best value: α = 0.0, 0.1, 0.2, ..., 1.0, and
C+ = 3.5, 4.0, 4.5. By performing 10-fold cross-validation
each time and taking the average of precision, recall, and
F-measure, we used the same experimental procedure to
compare the performance of Min kernel and its normal-
ization forms, as well as kernels combining MLPK, TPPK
and their summation MLPK + TPPK. The results are
shown in Figs. 4, 5 and 6.

When C+ = 4.5 and α = 0.3, Normalized Min-MLPK
kernel attains the best F-measure 0.686, compared with
0.631 in [27]. Figure 5 shows the results of each combina-
tion kernel on the average F-measures for the case when
C+ = 4.0 ,C− = 1.0 and α = 0.0, 0.1, 0.2, ..., 1.0. The best two
results 0.678 and 0.675 were obtained by the Normalized
Min-MLPK kernel when α = 0.4 and 0.3, respectively. The
third best result 0.673 was obtained by MinMax-MLPK
kernel when α = 0.4.

These three figures indicate that all the MLPK-
combined kernels outperform previously proposed
Domain Composition kernel for every value of α, as

Fig. 4 Performance on prediction for heterodimers when C+ = 3.5. Values in the figure are average F-measure for each combination kernel method
with α from 0 to 1.0 when C+ = 3.5 and C− = 1.0. The first four kernels are proposed methods and the last one is the existing best method



Ruan et al. BMC Bioinformatics 2018, 19(Suppl 1):39 Page 80 of 104

well as all min kernels and its normalization forms,
while TPPK-combined kernels are similar with Domain
Composition kernel, even a little lower at some points. It
demonstrates that converting to MLPK pairwise kernel
indeed leads to better prediction performance.

Discussion
The better performance of MLPK compared to TPPK
implies that protein pairs in the training set are similar to
other pairs, but not similar to each other. This observa-
tion is not surprising because the composition of domains
in given protein pairs and known heterodimers (protein
pairs) are expected similar, while they do not have to be
similar with each other. That is also the reason why Ruan
et al. proposed Domain Composition kernel in [27]. It also
confirms that the pairwise kernels deduced from the addi-
tion of the individual kernels performs better than the
addition of the pairwise kernels deduced from individual
kernels. Another interesting observation is that, although
Vert et al. [30] showed that the summation of MLPK and
TPPK almost always led to best results, regarding to our
problem, the combination of MLPK and TPPK almost has
performance between MLPK and TPPK.

We also show the results of subcellular localization
property and phylogenetic profile property in Figs. 7, 8, 9.
The results of localization keep the same and low as α

changes. So it suggests that, unfortunately, localization
property has no contribution to predicting heterodimers.
This is surprising at first since two proteins could form a

complex only if they are co-localized. However, the local-
ization data is somewhat not complete because not all of
yeast proteins are assigned localization, and many pro-
teins are assigned to multiple locations. As a result, the
information turns out to be not useful because only a small
part of protein pairs share exactly the same localization.

For phylogenetic profile property, it performs better
than [27] at many points when we applied MinMax-MLPK
kernel to it, while performing worse when applying Min-
MLPK kernel. In addition, we observed that Normalized
Min-MLPK kernel and MinMax-MLPK kernel had better
performances in most cases. The observation shows that
the normalization form has contribution to improving
prediction accuracy.

Table 1 shows the exact performance of each com-
bination kernel on their best average precision, recall,
and F-measure. Normalized Min-MLPK kernel had the
best performance on precision (increased from 61.8 to
71.7%) and MinMax kernel had the best performance
on recall (increased from 64.4 to 71.8%). Normalized
Min-MLPK kernel achieved the best performance on
F-measure (increased from 63.1 to 68.6%) and all the
proposed methods that exclude TPPK-combined kernels
outperform Domain Composition kernel. The last 5 rows
are the results of other existing state-of-the-art meth-
ods, which were all given the same dataset WI-PHI as
ours and executed with their default settings to predict
heterodimers, except the option of the minimum size of
predicted complexes, which was set to be two.

Fig. 5 Performance on prediction for heterodimers when C+ = 4.0. Values in the figure are average F-measure for each combination kernel method
with α from 0 to 1.0 when C+ = 4.0 and C− = 1.0. The first four kernels are proposed methods and the last one is the existing best method
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Fig. 6 Performance on prediction for heterodimers when C+ = 4.5. Values in the figure are average F-measure for each combination kernel method
with α from 0 to 1.0 when C+ = 4.5 and C− = 1.0. The first four kernels are proposed methods and the last one is the existing best method

Conclusions
We applied multiple combination kernels based on var-
ious types of information, such as protein protein inter-
action, domain, subcellular localization, and phylogenetic
profile to predicting heterodimers. We combined Min

kernel (or its normalized forms) with the information
above and a pairwise kernel (MLPK or TPPK) by plug-
ging. To evaluate our proposed method, we performed
ten-fold cross-validation computational experiments for
the combination kernels. The results suggest that our

Fig. 7 Performance on prediction for heterodimers using phylogenetic and localization information when C+ = 3.5. Values in the figure are average
F-measure for each combination kernel method with α from 0 to 1.0 when C+ = 3.5 and C− = 1.0. The first one kernel is localization information
based Min-MLPK kernel and the left two are phylogenetic information based Min-MLPK kernel and MinMax-MLPK kernel, respectively
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Fig. 8 Performance on prediction for heterodimers using phylogenetic and localization information when C+ = 4.0. Values in the figure are average
F-measure for each combination kernel method with α from 0 to 1.0 when C+ = 4.0 and C− = 1.0. The first one kernel is localization information
based Min-MLPK kernel and the left two are phylogenetic information based Min-MLPK kernel and MinMax-MLPK kernel, respectively

Fig. 9 Performance on prediction for heterodimers using phylogenetic and localization information when C+ = 4.5. Values in the figure are average
F-measure for each combination kernel method with α from 0 to 1.0 when C+ = 4.5 and C− = 1.0. The first one kernel is localization information
based Min-MLPK kernel and the left two are phylogenetic information based Min-MLPK kernel and MinMax-MLPK kernel, respectively
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Table 1 Performance on the best average precision, recall, and
F-measure for each combination kernel and other methods

Method α C− C+/C− Precision Recall F-measure

Min kernel 0.7 1.0 3.5 0.658 0.671 0.664

MinMax kernel 0.7 1.0 3.5 0.618 0.718 0.664

Normalized Min
kernel

0.2 1.0 3.5 0.678 0.628 0.652

Min-MLPK kernel 0.4 1.0 3.5 0.664 0.664 0.664

MinMax-MLPK kernel 0.4 1.0 4.0 0.678 0.669 0.673

Normalized Min-MLPK
kernel

0.3 1.0 4.5 0.717 0.657 0.686

Min-TPPK kernel 0.8 1.0 3.5 0.539 0.713 0.614

MinMax-TPPK kernel 0.5 1.0 4.0 0.605 0.643 0.624

Normalized Min-TPPK
kernel

0.5 1.0 4.0 0.605 0.643 0.624

MinMax-MLPK-TPPK
kernel

0.2 1.0 4.5 0.632 0.691 0.660

loc-Min-MLPK kernel 0.0 1.0 3.5 0.667 0.506 0.527

phy-Min-MLPK kernel 0.8 1.0 3.5 0.612 0.521 0.547

phy-MinMax-MLPK
kernel

0.2 1.0 3.5 0.632 0.578 0.604

Domain Composition
kernel [27]

0.5 1.0 4.0 0.618 0.644 0.631

naive Bayes [26] - 0.24 0. 44 0.31

MCL [16] - 0.017 0. 023 0.020

MCODE [17] - 0 0 -

RRW [24] - 0.030 0.32 0.055

NWE [25] - 0.035 0.33 0.063

The table lists, for each kernel combination, the average precision, recall, and
F-measure are obtained in a 10-fold cross-validation experiment. The results by the
naive Bayes-based method [26], MCL [16], MCODE [17], RRW [24], and NWE [25] are
also shown, where the experiments for these methods were performed in [26]

proposed method improved the performance of our pre-
vious work, which had been the best existing method so
far. In particular, the Normalized Min-MLPK has the best
performance.

We indicated that for the problem of predicting
heterodimeric protein complexes, multiple combination
kernels have better performance than single kernel, and
proved that MLPK-combined kernels nearly always have
better prediction performance than TPPK-combined ker-
nels. In addition, our results suggest that the information
of PPI and domain is more meaningful and promising than
subcellular localization and phylogenetic profile on this
problem. Furthermore, we could give a conclusion that
the information of subcellular localization has nearly no
influence on prediction of heterodimers.

An interesting perspective for future research is to
design a new kernel based on the neighboring topological
structure and weight-labeled edge information, or extract
the useful sequence information of protein complexes by
deep learning to solve this problem.
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