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Abstract

Background: Cluster analysis is the most common unsupervised method for finding hidden groups in data.
Clustering presents two main challenges: (1) finding the optimal number of clusters, and (2) removing “outliers”
among the objects being clustered. Few clustering algorithms currently deal directly with the outlier problem.
Furthermore, existing methods for identifying the number of clusters still have some drawbacks. Thus, there is a need
for a better algorithm to tackle both challenges.

Results: We present a new approach, implemented in an R package called Thresher, to cluster objects in general
datasets. Thresher combines ideas from principal component analysis, outlier filtering, and von Mises-Fisher mixture
models in order to select the optimal number of clusters. We performed a large Monte Carlo simulation study to
compare Thresher with other methods for detecting outliers and determining the number of clusters. We found that
Thresher had good sensitivity and specificity for detecting and removing outliers. We also found that Thresher is the
best method for estimating the optimal number of clusters when the number of objects being clustered is smaller
than the number of variables used for clustering. Finally, we applied Thresher and eleven other methods to 25 sets of
breast cancer data downloaded from the Gene Expression Omnibus; only Thresher consistently estimated the
number of clusters to lie in the range of 4–7 that is consistent with the literature.

Conclusions: Thresher is effective at automatically detecting and removing outliers. By thus cleaning the data, it
produces better estimates of the optimal number of clusters when there are more variables than objects. When we
applied Thresher to a variety of breast cancer datasets, it produced estimates that were both self-consistent and
consistent with the literature. We expect Thresher to be useful for studying a wide variety of biological datasets.

Keywords: Clustering, Number of clusters, von Mises-Fisher mixture model, NbClust, SCOD, Gap statistics,
Silhouette width

Background
Cluster analysis is the most common unsupervised learn-
ing method; it is used to find hidden patterns or groups in
unlabeled data. Clustering presents two main challenges.
First, one must find the optimal number of clusters. For
example, in partitioning algorithms such as K-means or
Partitioning AroundMedoids (PAM), the number of clus-
ters must be prespecified before applying the algorithm
[1–3]. This number depends on existing knowledge of
the data and on domain knowledge about what a good
and appropriate clustering looks like. The mixture-model

*Correspondence: coombes.3@osu.edu
1Department of Biomedical Informatics, The Ohio State University, 250 Lincoln
Tower, 1800 Cannon Drive, 43210 Columbus, OH, USA
Full list of author information is available at the end of the article

based clustering of genes or samples in bioinformatics
data sets implemented in EMMIX-GENE also requires
prescpecifying the number of groups [4]. Other imple-
mentations of mixture models, such as the mclust pack-
age in R [5], determine the number of clusters by using the
Bayesian Information Criterion to select the best among
a set of differently parameterized models. Second, the
existence of “outliers” among the objects to cluster can
obscure the true structure. At present, very few clustering
algorithms deal directly with the outlier problem. Most
of these algorithms require users to prespecify both the
number k of clusters and the number � (or fraction α)
of data points that should be detected as outliers and
removed. Examples of such algorithms include trimmed
K-means [6], TCLUST [7], the “spurious-outliers model”
[8], and k-means [9]. FLO, a refinement of k-means based
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on Lagrangian relaxation, can discover k from the data but
still requires the user to specify � [10]. The only existing
method we know about that can discover both the num-
ber of clusters and the number of outliers from the data is
Simultaneous Clustering and Outlier Detection (SCOD)
[11]. There is a need for more and better algorithms that
can tackle these two challenges in partitioning the objects.
Three popular methods to identify the correct number

of clusters are (1) the elbow method, (2) the mean silhou-
ette width [12], and (3) the gap statistic [13]. The elbow
method varies the number k of clusters and computes the
total within-cluster sum of squares (SS-within) for each k.
One plots SS-within versus k and selects the location of an
elbow or bend to determine the number of clusters. This
method is both graphical and subjective; one disadvantage
is that it relies solely on a global clustering characteristic.
The silhouette method shows which objects lie well within
a cluster and which are merely somewhere in between
clusters. The mean silhouette width measures the overall
quality of clustering; it shares the same disadvantages as
the elbow method. The gap statistic compares the change
in within-cluster dispersion to that expected under an
appropriate null distribution. The optimal k should occur
where the gap—the amount by which the observed value
falls below the expected value—is largest. However, the
gap statistics may have many local maxima of similar size,
introducing potential ambiguities. Another drawback of
the gap statistic is that its performance is not as good at
identifying clusters when data are not well separated. In
addition to these methods, many other approaches have
been developed to estimate the number of clusters. A wide
variety of methods are reviewed by Charrad et al. (2014)
and included in an R package, NbClust [14]. However,
none of these methods can detect outliers.
For biological datasets containing both samples

(or patients) and features (usually genes or proteins),
either the samples or the features may be the objects of
interest to be clustered. Sometimes, both samples and
features are clustered and displayed along with a heatmap
[15]. Outliers are interpreted differently depending on
what we are clustering. We view outliers among the genes
or proteins as “noise” that makes no useful contribution
to understanding the biological processes active in the
data set. Outliers among patient samples may represent
either low quality samples or “contaminated” samples,
such as samples of solid tumor that are intermixed with
large quantities of normal stroma. However, they may also
represent rare subtypes that are present in the current
data set at such low numbers that they cannot be reliably
identified as a separate group.
To avoid confusion, in the rest of this paper, we will

refer to the things to be clustered as objects and to the
things used to cluster them as variables. Many algorithms
have been developed in the context of clustering large

number of objects using relatively few variables. However,
there are two other important scenarios: (1) clustering
patients using the expression of many genes in a typical
microarray dataset, or (2) clustering a few genes or pro-
teins, say from a single pathway, using their expression
values for many patients. The performance of cluster-
ing methods that estimate the optimal number of clus-
ters hasn’t yet been assessed extensively for these two
scenarios.
In this paper, we propose a novel approach, called

Thresher, that combines principal components analysis
(PCA), outlier filtering, and a von Mises-Fisher mixture
model. Thresher views “separating the wheat from the
chaff”, where “wheat” are the good objects and “chaff”
are the outliers, as essential to perform better clustering.
PCA is used both for dimension reduction (which should
be particularly valuable in biological applications where
there are more variables than objects to cluster) and to
detect outliers; a key innovation of Thresher is the idea of
identifying outliers based on the strength of their contri-
bution to PCA. In our approach, objects are first mapped
to loading vectors in PC space; those that survive out-
lier removal are further mapped to a unit hypersphere
for clustering using the mixture model. This step is also
motivated by modern biological applications where cor-
relation is viewed as the primary measure of similarity;
we hypothesize that correlated objects should point in the
same direction in PC space.
This article is organized as follows. Different methods

to compute the number of clusters are briefly reviewed
in “Methods”. In “Simulations” we perform Monte Carlo
simulations to compare the performance of the Thresher
algorithm to existing methods. In “Breast cancer sub-
types” we apply Thresher to a wide variety of breast can-
cer data sets in order to estimate the number of subtypes.
Finally, we conclude the paper and make several remarks
in “Discussion and conclusion”. Two simple examples to
illustrate the implementation and usage of the Thresher
package are provided in Additional file 1.

Methods
All simulations and computations were performed using
version 3.4.0 of the R statistical software environment [16]
with version 0.11.0 of the Thresher package, which we
have developed, and version 3.0 of the NbClust package.
In this section, we briefly review and describe the meth-

ods that are used to estimate the number of clusters for
the objects contained in a generic dataset.

Indices of clustering validity in the NbClust package
As described in “Background”, Rousseeuw (1987) devel-
oped the mean silhouette method, and Tibshirani,
Walther, and Hastie (2001) proposed the gap statistic
to compute the optimal number of clusters [12, 13].



Wang et al. BMC Bioinformatics  (2018) 19:9 Page 3 of 15

Prior to those developments, Milligan and Cooper (1985)
used Monte Carlo simulations to evaluate thirty stop-
ping rules to determine the number of clusters [17].
Thirteen of these stopping rules are implemented in
either the Statistical Analysis System (SAS) cluster func-
tion or in R packages: cclust (Dimitriadou, 2014) and
clusterSim (Walesiak and Dudek, 2014) [18, 19]. Fur-
thermore, various methods based on relative criteria,
which consists in the evaluation of a clustering structure
by comparing it with other clustering schemes, have been
proposed by Dunn (1974), Lebart, Morineau, and Piron
(2000), Halkidi, Vazirgiannis, and Batistakis (2000), and
Halkidi and Vazirgiannis (2001) [20–23].
Charrad and colleagues reviewed a wide variety of

indices of cluster validity, including the ones mentioned
above [14]. They developed an R package, NbClust, that
aimed to gather all indices previously available in SAS or R
packages together in a single package. They also included
indices that were not implemented anywhere else in order
to provide a more complete list. At present, the NbClust
package includes 30 indices. More details on the defini-
tion and interpretation of the 30 indices can be found at
Charrad et al. (2014) [14].

Thresher
Here we describe the Thresher method, which consists
of three main steps: principal component analysis with
determination of the number of principal components
(PCs), outlier filtering, and the von-Mises Fisher mixture
model for computing the number of clusters.

1. Number of Principal Components.When
clustering a small number of objects with a large
number of variables, dimension reduction techniques
like PCA are useful. PCA retains much of the internal
structure of the data, including outliers and grouping
of objects, in a way that “best” preserves the variation
present in the data. Data reduction is achieved by
selecting the optimal number of PCs to separate
signal from noise. After standardizing the data, we
compute the optimal number D of significant PCs
using an automated adaptation of a graphical
Bayesian model first described by Auer and Gervini
[24]. In order to apply their model, one must decide,
while looking at the graph of a step function, what
constitutes a significantly large step length. We have
tested multiple criteria to solve this problem. Based
on a set of simulations [25], the best criteria for
separating the steps into “short” and “long” subsets
are:

(a) Twice Mean. Use twice the mean of the set of
step lengths as a cutoff to separate the long
and short steps.

(b) Change Point (CPT). Use the cpt.mean
function from the changepoint R package
to detect the first change point in the
sequence of sorted step lengths.

We have automated this process in an R package,
PCDimension [25].

2. Outlier detection. Our method to detect outliers
relies on the PCA computed in the previous step. A
key point is that the principal component dimension
D is the same for a matrix and its transpose; what
changes is whether we view the objects to be
clustered in terms of their projected scores or in
terms of the weight they contribute to the
components. Our innovation is to do the latter. In
this way, each object yields a D-dimensional “loading”
vector. The length of this vector summarizes its
overall contributions to any structure present in the
data. We use the lengths to separate the objects into
“good” (part of the signals that we want to detect)
and “bad” (the outliers that we are trying to remove).
Based on simulation results that will be described in
“Simulations” section, the default criterion to identify
an object as an outlier is that the length is less
than 0.3.

3. Optimal number of clusters. After removing
outliers, we use the Auer-Gervini model to
recalculate the number D0 of PCs for the remaining
good objects, which are viewed as vectors in
D0-dimensional PC space. We hypothesize that the
loading vectors associated to objects that should be
grouped together will point in (roughly) the same
direction. So, we use the directions of the loading
vectors to map the objects onto a unit hypersphere.
Next, in order to cluster points on the hypersphere,
we use mixtures of von Mises-Fisher distributions
[26]. To fit this mixture model, we use the
implementation in version 0.1-2 of the movMF
package [27]. Finally, to select the optimal
number of groups, we compute the Bayesian
Information Criterion (BIC) for each N in the range
N = D0, D0 + 1, . . . , 2D0 + 1; the best number
corresponds to the minimum BIC. The intuition
driving the restriction on the range is that we must
have at least one cluster of points on the
hypersphere for each PC dimension. However,
weight vectors that point in opposite directions (like
strongly positively and negatively correlated genes)
should be regarded as separate clusters,
approximately doubling the potential number of
clusters. The extra +1 for the number of clusters was
introduced to conveniently handle the special case
when D0 = 0 and there is only one cluster of objects.
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Results
Simulations
By following Monte Carlo protocols, we want to explore
how well the cutoff separates signal from noise in
the outlier detection step. We also study the accuracy
and robustness of the different algorithms described in
“Methods” section on estimating the number of clusters.

Selecting a cutoff via simulation
In order to find a default cutoff to separate signal from
noise, we simulated five different kinds of datasets. The
simulated datasets can have either one or two true under-
lying signals (or clusters), and each signal can either be
all positively correlated or can include roughly half pos-
itive and half negative correlation. We use the following
algorithm:

1. Select a number of variables for each dataset from a
normal distribution with mean 300 and standard
deviation 60.

2. Select an even number of objects between 10 and 20.
3. Split the set of objects roughly in half to represent

two groups.
4. Independently, split the objects in half to allow for

positive and negative correlation.
5. Randomly choose a correlation coefficient from a

normal distribution with mean 0.5 and standard
deviation 0.1.

6. For each of the five kinds of correlation structures,
simulate a dataset using the selected parameters.

7. Add two noise objects (from standard normal
distributions) to each data set to represent outliers.

We repeated this procedure 500 times, producing a total
of 2500 simulated datasets. For each simulated dataset,
each object is mapped to a loading vector in PC space; let
� be its length. To separate “good” signals from “bad”, we
computed the true positive and false positive rates on the
ROC curve corresponding to � (Table 1). The results in
this table suggest that a cutoff anywhere between 0.30 and
0.35 is reasonable, yielding a false negative rate of about
5 in 1000 and a false positive rate about 4 in 1000. We
propose using the smallest of these values, 0.30, as our
default cutoff, since this will eventually retain asmany true
positives as possible.

Simulated data types
Datasets are simulated from a variety of correlation struc-
tures. To explore the effects of different combinations of
factors, including outliers, signed or unsigned signals, and
uncorrelated variation, we use the 16 correlation matri-
ces displayed in Fig. 1. For each correlation structure, we
take the corresponding covariance matrix to be � = σ 2 ∗
corr(X) where σ 2 = 1. For all 16 covariance matrices, we

Table 1 True positive and false positive rates for � between 0.20
and 0.60

Delta False positive rate True positive rate

0.20 0.0300 0.9954664

0.25 0.0108 0.9954143

0.26 0.0082 0.9953882

0.27 0.0074 0.9953882

0.28 0.0068 0.9953882

0.29 0.0056 0.9953882

0.30 0.0042 0.9953882

0.31 0.0040 0.9953622

0.32 0.0038 0.9953622

0.33 0.0038 0.9953361

0.34 0.0038 0.9953361

0.35 0.0038 0.9952840

0.40 0.0036 0.9949453

0.45 0.0036 0.9939812

0.50 0.0036 0.9904898

0.55 0.0036 0.9819698

0.60 0.0036 0.9554455

use the same marginal distribution–multivariate normal
distribution. That is, we first randomly generate a mean
vector μ, then sample the objects from multivariate nor-
mal distributed MVN(μ,�). The grouping of the objects
is included in the correlation structures and those objects
in different blocks are separated under Pearson distance,
not necessarily under the traditional Euclidean distance.
Matrix 1 contains only noise variables; it is a purely uncor-
related structure. Matrices 2 and 3 represent correlation
structures with various homogeneous cross-correlation
strengths (unsigned signals) 0.3 and 0.8. Matrices 4–10
are correlation matrices where between-group (0.3, 0.1,
or 0) and within-group (0.8, or 0.3) correlations of vari-
ables are fixed. More details about them can be found in
[28, 29]. Matrices 11–16 are correlation structures where
negative cross-correlations (−0.8 or −0.3, signed signals)
are considered within groups, and mixture of signed and
unsigned signals are also included.
The number of objects for each simulated dataset is set

to either 24 or 96. The range of 24 to 96 is chosen to rep-
resent small to moderately sized data sets. Similarly, we
consider either 96 or 24 variables. A dataset with 24 vari-
ables is viewed as a small dataset; one with 96 variables,
as moderate. The true number of groups (or clusters) is
shown in parentheses in the plots in Fig. 1. By varying
the number of objects and the number of clusters, we can
investigate the effects of the number of “good” objects and
the number of objects per group.
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Fig. 1 The 16 correlation matrices considered in the simulation studies. Values of correlations are provided by the colorbar. Numbers in parentheses
correspond to the known numbers of clusters

Empirical results and comparisons on outlier detection
The Thresher method is designed to separate “good”
objects from “bad” ones; that is, it should be able to dis-
tinguish between true signal and (uncorrelated) noise in
a generic dataset. To investigate its performance at iden-
tifying noise, we simulated 1000 sample datasets for each

of the correlation structures 7–10 from Fig. 1. We use the
definitions of sensitivity, specificity, false discovery rate
(FDR) and the area under the curve (AUC) of the receiver
operating characteristic (ROC) as described in Hastie
et al. (2009) [30] and Lalkhen and McCluskey (2008)
[31]. In particular, sensitivity is the fraction of truly “bad”
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objects that are called bad, and specificity is the fraction of
truly “good” objects that are called good. We summarize
the results for datasets 7–10 in Table 2.
Table 2 suggests that Thresher does a good job of iden-

tifying noise when there are 96 variables and 24 objects,
while it performs moderately well when the datasets have
24 variables and 96 objects. The specificity statistics indi-
cate that Thresher is able to select the true “good” objects,
especially when the number of actual “good” objects is
small. Furthermore, from the FDR values, we see that
almost all the “noise” objects chosen by Thresher are
truly “noise” in correlation structures 9 and 10, which
contain a relatively large proportion of “noise” objects.
For datasets 7 and 8 with a smaller fraction of “noise”
objects, some “good” objects are incorrectly identified as
“noise”. Their percentage is not negligible, especially when
the datasets contain few variables and many objects. The
AUC statistics for correlation matrices 9 and 10 are higher
than those for correlation matrices 7 and 8, regardless
of the relative numbers of variables and objects. That is,
Thresher has higher accuracy for identifying both “good”
and “bad” objects when there is a larger fraction of “bad”
objects and a smaller number of clusters in the dataset.
Finally, for any given correlation pattern, Thresher per-
forms slightly better in datasets with more variables than
objects, and slightly worse in datasets with fewer variables
than objects.
Zemene et al. showed that their SCOD algorithm was

more effective at detecting outliers than unified k-means
on both real and synthetic datasets [11]. Here, we com-
pare SCOD to Thresher on the synthetic datasets of
“Simulated data types” section. The SCOD results are dis-
played in Table 3. By comparing Tables 2 and 3, we see that
the sensitivity of Thresher is always substantially larger
than that of SCOD. In other words, Thresher performs
better at identifying noise than SCOD regardless of the
correlation structure or the relative number of variables
and objects. From the FDR values, we can tell that the pro-
portion of true “noise” objects among those called “noise”
by Thresher is higher than that from SCOD in datasets
9–10. The performance of both methods is less satisfac-
tory for datasets 7–8 with a smaller fraction of “noise”
objects. Finally, the AUC statistics from the SCOD algo-
rithm are close to 0.5 for each correlation matrix, which

suggests that Thresher produces more precise results for
identifying both “good” and “bad” objects regardless of the
correlation structures.

Number of clusters: comparing Thresher to existingmethods
For each of the 16 correlation structures, we simulate
1000 sample datasets. Then we estimate the numbers
of clusters using SCOD and all methods described in
“Methods” section. For each index in the NbClust
package, for two variants of Thresher, and for SCOD,
we collect the estimated number of clusters for each
sample dataset. We compute the average of the abso-
lute differences between the estimated and true num-
bers of clusters over all 1000 simulated datasets. The
results are presented in Figs. 2 and 3 and in Tables 4
and 5. For each method, we also compute the overall
averages of the absolute differences (over all 16 corre-
lation matrices) and report them in the last rows of
these tables.
In Fig. 2 (and Table 4), we consider the scenario when

the datasets contain 96 variables and 24 objects. We dis-
play the results for both Thresher variants and for the
10 best-performing indices in NbClust. In Fig. 3 (and
Table 5), there are 24 variables and 96 objects for all the
datasets. The results in the tables can help determine
how well each method performs among all correlation
structures and whether the proposed Thresher method is
better than the indices in NbClust package on comput-
ing the number of clusters. The closer to zero the value
in the tables is, the better the method will be for the
corresponding correlation structure.
From Fig. 2 and Table 4, we see that Thresher, using

either the CPT or the TwiceMean criterion, performs
much better than the best 10 indices in the NbClust
package across the correlation structures. It produces the
most accurate estimates on average over the 16 possible
correlation structures. In each row of the table, the small-
est value, corresponding to the best method, is marked
in bold. For 8 of the 16 correlation structures, one of the
Thresher variants has the best performance. For correla-
tion structures 7, 8, 11 and 12, either the TraceW index
or the Cubic Clustering Criterion (CCC) index performs
best. Even though the Trcovw index is not the best per-
former for any of the individual correlation structures, it

Table 2 Summary statistics for detecting good and bad objects in datasets 7-10 from Thresher

Scenarios and datasets 96 variables, 24 objects 24 variables, 96 objects

Dataset 7 Dataset 8 Dataset 9 Dataset 10 Dataset 7 Dataset 8 Dataset 9 Dataset 10

Sensitivity 0.990 0.985 0.988 0.958 0.822 0.816 0.836 0.809

Specificity 0.606 0.552 1 0.999 0.688 0.655 1 0.917

FDR 0.427 0.458 0 0.001 0.399 0.426 0 0.047

AUC 0.798 0.768 0.994 0.978 0.755 0.735 0.918 0.863
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Table 3 Summary statistics for detecting good and bad objects in datasets 7-10 from SCOD algorithm

Scenarios and datasets 96 variables, 24 objects 24 variables, 96 objects

Dataset 7 Dataset 8 Dataset 9 Dataset 10 Dataset 7 Dataset 8 Dataset 9 Dataset 10

Sensitivity 0.337 0.344 0.327 0.328 0.225 0.228 0.223 0.217

Specificity 0.670 0.661 0.674 0.658 0.780 0.774 0.780 0.786

FDR 0.660 0.663 0.333 0.342 0.661 0.666 0.333 0.338

AUC 0.504 0.502 0.501 0.493 0.502 0.501 0.502 0.501

produces the most accurate overall results among all 30
indices in the NbClust package.
Figure 3 and Table 5 suggest that Thresher, with either

the CPT or TwiceMean criterion, performs slightly worse
than the best 5 indices—Tracew, McClain, Ratkowsky,
Trcovw and Scott—in the package NbClust, when aver-
aged over all correlation structures with 24 variables and
96 objects. The Tracew index produces the best result
on average; the overall performance of the McClain and
Ratkowsky indices is similar to that of the Tracew index.
As before, the smallest value corresponding to the best
method in each row of the table is marked in bold. As we
can see, either the Tracew or the McClain index performs
the best for the correlation structures 1, 7, 8, 11 and 12. For

datasets with correlation structures 4, 6 and 13–16, the
Sindex index yields the most accurate estimates. However,
for correlation structures 2, 3 and 5, one of the Thresher
variants performs best. Even though Thresher performs
slightly worse than the five best indices, it still outper-
forms the majority of the 30 indices in the NbClust
package.
Moreover, the number of clusters computed by

Thresher and SCOD for each scenario and dataset are pro-
vided and compared in Tables 4 and 5. From Table 4, one
can see that Thresher gives us much more accurate esti-
mates than SCOD does on average over all 16 correlation
structures with 24 objects and 96 variables. More specifi-
cally, Thresher performs better than SCOD for all possible

Fig. 2 Values of the absolute difference between the estimated values and the known number of clusters across the correlation matrices for 96
variables and 24 objects
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Fig. 3 Values of the absolute difference between the estimated values and the known number of clusters across the correlation matrices for 24
variables and 96 objects

datasets except those with correlation structures 1, 9 and
10. For datasets with 96 objects and 24 variables as showed
in Table 5, Thresher is slightly worse than SCOD in esti-
mating the number of clusters when averaging over all
16 correlation structures. However, Thresher yields more
precise estimates than SCOD does for all datasets except
those with correlation structures 1, 4, 6–10, 15 and 16.

Running time
In addition to the comparisons of outlier detection and
determination of number of clusters, we computed the
average running time of the methods including the
NbClust indices with top performance over all correla-
tion matrices per data set (Table 6). All timings were
carried out on a computer with an Intel® Xeon® CPU E5-
2603 v2 @ 1.80 GHz processor running Windows® 7.1.
The table suggests that the computation time increases
as the number of objects increases for Thresher, SCOD,
and NbClust indices McClain, Ptbiserial, Tau, and Silhou-
ette. From the table, we can see that SCOD uses the least
time in computing the number of clusters when there are
24 objects and 96 variables in the dataset. For datasets
with 96 objects and 24 variables, NbClust indices Trcovw,

Tracew, CCC and Scott spend the least time. Thresher
takes more time than most of the other algorithms tested,
which is likely due to fitting multiple mixture models to
select the optimal number of clusters.

Breast cancer subtypes
One of the earliest and most significant accomplishments
when applying clustering methods to transcriptomics
datasets was the effort, led by Chuck Perou, to under-
stand the biological subtypes of breast cancer. In a series
of papers, his lab used the notion of an “intrinsic gene
set” to uncover at least four to six subtypes [32–35]. We
decided to test whether Thresher or some other method
can most reliably and reproducibly find these subtypes in
multiple breast cancer datasets. All datasets were down-
loaded from the Gene Expression Omnibus (GEO; http://
www.ncbi.nlm.nih.gov/geo/). We searched for datasets
that contained the keyword phrases “breast cancer” and
“subtypes”, that were classified as “expression profiling by
array” on humans, and that contained between 50 and
300 samples. We then manually removed a dataset if the
study was focused on specific subtypes of breast cancer,
as this would not represent a typical distribution of the

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
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Table 6 Average running time of the methods (Thresher, SCOD and the indices in NbClust with top performance) across correlation
matrices (unit: seconds)

Rules NbClust

trcovw tracew ratkowsky mcclain ptbiserial tau sdindex kl

96 var., 24 obj. 0.09 0.09 0.116 0.029 0.029 0.077 0.291 0.275

24 var., 96 obj. 0.025 0.025 0.055 0.039 0.165 1.780 0.113 0.109

Rules NbClust Thresher SCOD

ccc hartigan scott silhouette CPT TwiceMean SCOD

96 var., 24 obj. 0.088 0.169 0.092 0.027 0.25 0.271 0.009

24 var., 96 obj. 0.025 0.075 0.025 0.071 0.419 0.530 0.057

full cohort of breast cancer samples. After this step, we
were left with 25 datasets. The primary microarray data
are available in GEO under the following accession num-
bers: GSE1992, GSE2607, GSE2741, GSE3143, GSE4611,
GSE10810, GSE10885, GSE12622, GSE19177, GSE19783,
GSE20711, GSE21921, GSE22093, GSE29431, GSE37145,
GSE39004, GSE40115, GSE43358, GSE45255, GSE45827,
GSE46184, GSE50939, GSE53031, GSE56493, GSE60785.
To select the genes that best characterize the tumor sub-

types, we rely on the intrinsic analysis performed by Sorlie
et al. (2003) and Hu et al. (2006) [33, 34]. They compared
“within class” to “across class” variation to identify genes
that show low variability within replicates, but high vari-
ability across different tumors. Using a 105-tumor training
set containing 26 replicate sample pairs, they derived an
initial breast tumor gene list (the Intrinsic/UNC (The
University of North Carolina at Chapel Hill) list) that con-
tained 1300 genes [34]. They tested this list as a predictor
of survival on tumors from three independent microarray
studies, and focused on a subset of genes. In this way, they
produced a new “intrinsic gene list” containing 306 genes
that they used to perform hierarchical clustering. This
new intrinsic gene list had an overlap of 108 genes with a
previous breast tumor gene set (the Intrinsic/Stanford list)
from Sorlie et al. (2003) [33]. They also showed that this
new intrinsic gene list reflects the “intrinsic” and stable
biological properties of breast tumors. It typically iden-
tifies distinct subtypes that have prognostic significance,
even though no knowledge of outcome was used to derive
this gene set [33, 34].
We used the new Intrinsic/UNC list to cluster samples

in each of the 25 breast cancer data sets from GEO. In
these datasets, the number of genes (variables) is always
greater than the number of samples (objects). For this
analysis, we used the 10 best indices from the NbClust
package (corresponding to Fig. 2). The performance of
these indices is compared to Thresher and SCOD for com-
puting the number of clusters in the GEO datasets. We
plot a histogram of the predicted cluster numbers across
the 25 datasets for each method in Fig. 4. The results
including the number of clusters and outliers for analyzing

the breast cancer data sets via Thresher are also provided
in Table 7.
Based on the literature [32, 34–40], we believe that a

reasonable and coherent estimate for the number of clus-
ters in a representative sample of breast tumors ranges
from 4 to 7. From the histograms in Fig. 4, one can
see that the indices in the NbClust package either
underestimate or overestimate the number of clusters
to some extent. SCOD is very conservative; it tends to
consistently underestimate the number of clusters. By
contrast, the Thresher method with criterion “Twice-
Mean” produces more robust, consistent, and accurate
estimates for the number of clusters in these datasets.
Thresher is the only method that produces estimates on
the number of clusters centered in the “consensus” range
from 4 to 7.

Discussion and conclusion
In this paper, in order to solve both of the main challenges
in clustering—selecting the optimal number of clusters
and removing outlier objects—we propose a novelmethod
called “Thresher”. For a generic dataset, Thresher can help
select and filter out noise, estimate the optimal number of
clusters for the remaining good objects, and finally per-
form grouping based on the von Mises-Fisher mixture
model.
Unlike most other clustering methods, Thresher can

reliably detect whether the objects of interest are “good” or
“bad” (outliers). The results of our computational exper-
iment (shown in Table 2) for datasets with correlation
structures 7–10 show that Thresher does an excellent
job at detecting outliers. In a head-to-head comparison
with SCOD, the only previously published algorithm that
can simultaneously determine the number of clusters and
the number of outliers, Thresher was consistently bet-
ter at outlier detection by every measure. (Compare the
Thresher results above to the SCOD results in Table 3.)
We started this project by hypothesizing that removing

outliers would improve the ability of Thresher to accu-
rately estimate the number of clusters. To test that ability,
we compared the performance of Thresher both to SCOD
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Fig. 4 Comparison of top NbClust indices with Thresher (TwiceMean) and SCOD on estimating the number of clusters from GEO breast cancer
datasets

and to all 30 indices implemented in the NbClust pack-
age. Toward this end, we simulated datasets of different
“shapes” (defined by the relative number of objects and
variables) and different correlation structures. Critically,
we found that changes in both the shape and the corre-
lation structure lead to large differences in performance.
Thresher is clearly best when there are more variables
than objects to cluster. Its performance is solid (in the
top six or seven of the 30+ algorithms tested) but not
exceptional when there are more objects than variables.

Historically, most clustering algorithms have been
developed and tested in the situation when there are more
objects than variables. Many of the classic examples to test
clustering algorithms simulate a large number of objects
in only two or three dimensions. By contrast, modern
applications of clustering in the “omics” settings common
to molecular biology work in a context with many more
variables than objects. In these kinds of settings, the “curse
of dimensionality” suggests that objects are likely to be so
scattered that everything looks like an outlier. Some of the
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Table 7 Summary of the data and analysis in clustering breast
cancer subtypes

Dataset Sample # Outlier # Outlier percentage Cluster #

GSE60785 55 10 18.18 2

GSE43358 57 5 8.77 3

GSE10810 58 0 0.00 6

GSE29431 66 2 3.03 9

GSE50939 71 1 1.41 2

GSE39004 72 9 12.50 4

GSE46184 74 8 10.81 4

GSE19177 75 2 2.67 4

GSE37145 76 0 0.00 7

GSE21921 85 3 3.53 6

GSE20711 90 18 20.00 7

GSE40115 92 1 1.09 5

GSE12622 103 0 0.00 7

GSE22093 103 3 2.91 5

GSE19783 115 1 0.87 8

GSE56493 120 6 5.00 6

GSE10885 125 4 3.20 7

GSE2607 126 3 2.38 7

GSE45255 139 10 7.19 8

GSE45827 155 9 5.81 6

GSE3143 158 6 3.80 7

GSE53031 167 10 5.99 6

GSE2741 169 7 4.14 6

GSE1992 170 8 4.71 8

GSE4611 218 23 10.55 9

key aspects of the Thresher method—the use of princi-
pal components for dimension reduction and the focus on
identifying true outliers—were motivated by our desire to
apply clustering in omics settings. Our findings show that
Thresher will work better than the existing algoirthms in
this context. They also suggest, however, that an opportu-
nity still exists to develop and optimize better clustering
algorithms for this challenging setting.
Correlation stuctures also have a significant impact on

the perfomance of clustering algorithms. When cluster-
ing a dataset with fewer objects than variables, Thresher
is either the best or second best method for correlation
structures 1–6, 9–10, 13–14, and 16. (SCOD, the other
method that detects and removes outliers, is best for
correlations 1, 9, and 10.) These correlation structures
are characterized by the presence of blocks of correlated
objects, or a relatively large proportion of outliers, or
more than one mixture of signed and unsigned signals.
The indices Tracew, Trcovw, Ratkowsky andMcClain pro-
duce better estimates for correlation structures 7–8 where

there is a relative small proportion of outliers. For corre-
lation structures 11–12 with only one mixture of signed
and unsigned signals, Tracew, Ratkowsky, McClain and
Thresher do well. Sdindex only gives us the best esti-
mates for the number of clusters in datasets of correlation
structure 15.
When there are more objects than variables, the Tracew

index in the NbClust package produces the best esti-
mates on average. Looking at the various correlation
structures, we find that Tracew, McClain, and Ratkowsky
perform well for correlation structures 1 and 7–12. In
other words, they produce highly accurate results in esti-
mating the number of clusters when the objects include
some outliers or there is exactly one strong cluster con-
taining amixture of signed and unsigned signals. Thresher
is the best for datasets of correlation structures 2, 3 and 5
whose objects have one big block or several uncorrelated
blocks of weak within-group correlation. SCOD again has
the best performance for correlation structures 9 and 10.
The indices Sdindex and Tau perform best for correlation
structures 4, 6 and 13–16 where there are several blocks of
objects with high within-group correlation or more than
one mixture of signed and unsigned signals.
The fact that correlation structures have a strong effect

on the performance of clustering algorithms presents a
challenge for users wanting to apply these algorithms.
When we sit down to cluster a dataset, we already know if
we have more objects or more variables, so we can choose
our methods accordingly. But we do not know the true
underlying correlation structure, and so we cannot use
that information to guide our choice of algorithm. In this
manuscript, we have dealt with that issue by computing
the average performance over a range of different correla-
tion structures. Based on those averages, we recommend
using Thresher as the method of choice for determining
the number of clusters whenever there are more variables
than objects. When there are more objects than variables,
Thresher still outperforms the majority of the 30 indices
in the NbClust package. In this case, we expect Thresher
to give reasonable answers, but with a reasonable chance
that it will be off by about one.
We also applied Thresher to 25 breast cancer datasets

downloaded from GEO in order to investigate the consis-
tency and robustness of the number of clusters defined
by the intrinsic gene list. To our knowledge, this is the
most comprehensive study of the breast cancer subtypes
defined by a single gene list across multiple data sets. The
consensus answer in the literature for the “optimal” num-
ber of breast tumor subtypes ranges from 4 to 7. When
applied to the GEO datasets, the best indices from the
NbClust package either underestimate or overestimate
the number of subtypes. Some of these methods always
err in the same direction; others switch between overes-
timating in some datasets to underestimating in others.
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And SCOD always underestimates the number of clus-
ters. Only the Thresher method produces estimates that
are centered in the expected range of values. This anal-
ysis suggests that Thresher performs much better than
the methods from NbClust when computing the opti-
mal number of groups in real data derived from gene
expression profiling experiments.

Additional files

Additional file 1: Using the Thresher Package. This file is porovided as a
PDF file illustrating the use of the Thresher package with soime simple
examples. (PDF 153 kb)

Additional file 2: R Code for Analyses. This is a zip file containing all of the
R code used to perform simulations and to analyze the breast cancer data.
(ZIP 407 kb)
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