
SOFTWARE Open Access

FluoRender: joint freehand segmentation
and visualization for many-channel
fluorescence data analysis
Yong Wan1* , Hideo Otsuna2, Holly A. Holman3, Brig Bagley1, Masayoshi Ito4, A. Kelsey Lewis5, Mary Colasanto6,
Gabrielle Kardon6, Kei Ito4 and Charles Hansen1

Abstract

Background: Image segmentation and registration techniques have enabled biologists to place large amounts of
volume data from fluorescence microscopy, morphed three-dimensionally, onto a common spatial frame. Existing
tools built on volume visualization pipelines for single channel or red-green-blue (RGB) channels have become
inadequate for the new challenges of fluorescence microscopy. For a three-dimensional atlas of the insect nervous
system, hundreds of volume channels are rendered simultaneously, whereas fluorescence intensity values from
each channel need to be preserved for versatile adjustment and analysis. Although several existing tools have
incorporated support of multichannel data using various strategies, the lack of a flexible design has made true
many-channel visualization and analysis unavailable. The most common practice for many-channel volume data
presentation is still converting and rendering pseudosurfaces, which are inaccurate for both qualitative and
quantitative evaluations.

Results: Here, we present an alternative design strategy that accommodates the visualization and analysis of about
100 volume channels, each of which can be interactively adjusted, selected, and segmented using freehand tools.
Our multichannel visualization includes a multilevel streaming pipeline plus a triple-buffer compositing technique.
Our method also preserves original fluorescence intensity values on graphics hardware, a crucial feature that allows
graphics-processing-unit (GPU)-based processing for interactive data analysis, such as freehand segmentation. We
have implemented the design strategies as a thorough restructuring of our original tool, FluoRender.

Conclusion: The redesign of FluoRender not only maintains the existing multichannel capabilities for a greatly
extended number of volume channels, but also enables new analysis functions for many-channel data from
emerging biomedical-imaging techniques.

Keywords: Multichannel, Volume data, Visualization, Freehand segmentation, Analysis, GPUs, FluoRender

Background
Recent research on the insect nervous system has devel-
oped data processing techniques for image registration
and segmentation, which enable us to place large amounts
of volume data, morphed three-dimensionally, onto a
common spatial frame, called a template, for visual exam-
ination and computational analysis [1, 2]. In such applica-
tions, several tens of independent three-dimensional (3D)

structures need to be visualized and analyzed simultan-
eously in an anatomical atlas. To preserve the fine de-
tails of the nervous system, structures represented by
volume data with varying intensity values are preferred
to polygon-based geometry data. The geometry data,
also called pseudosurfaces, can be easily rendered, com-
bined, and manipulated with decent computer hard-
ware. However, details of the original data are either
compromised or replaced with spurious geometries. It
is difficult for a pseudosurface to represent the intensity
variations embedded within the original grayscale vol-
umes. Choosing a criterion for generating pseudosurfaces

* Correspondence: wanyong@cs.utah.edu
1Scientific Computing and Imaging Institute, University of Utah, Salt Lake
City, USA
Full list of author information is available at the end of the article

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Wan et al. BMC Bioinformatics (2017) 18:280
DOI 10.1186/s12859-017-1694-9

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-017-1694-9&domain=pdf
http://orcid.org/0000-0002-2519-0758
mailto:wanyong@cs.utah.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

from ill-defined structural boundaries can be challenging.
Figure 1 compares volume-rendered and pseudosurface
representations of one nerve extracted from a confocal
scan of an intact ear semicircular canal of an oyster toad-
fish (Opsanus tau). No matter how carefully we choose
the threshold values for pseudosurfacing, the fact that the
center of the nerve expresses less fluorescent reporter
protein is obscured. Atlases composed of such pseudosur-
faces can become unreliable and misleading, especially
when fine details need to be quantitatively analyzed and
compared.
To facilitate volume-based atlas building and neural

structure analysis, we have developed a paintbrush tool
in FluoRender [3], a freehand tool that allows users to
paint directly on visualization results using a mouse or
digital stylus, with convenient viewing directions for the
best display of a structure [4]. The strokes painted two-
dimensionally are used to select and segment grayscale
values in 3D. The tool has been used in biological re-
search since its introduction [5–8]. It solved the issues
of pseudosurfacing by adopting a workflow based entirely
on channels, sometimes also called layers, which include
spectrally distinct channels, subvolumes derived from
segmentation, or coregistered data sets from different
scans. The capability to intuitively select, extract, label,
and measure multiple biological structures from 3D vi-
sualizations is also instrumental to higher-level analysis
workflows. For example, colocalization analysis and
morphological comparison of several neural structures
benefit from isolating these structures and cleaning up
background signals; tracking 3D movements of cells
often requires focusing on one or several subsets for

detailed studies or troubleshooting issues from auto-
matic algorithms.
Our tool generates new volume channels from selected

and extracted structures. The freehand segmentation can
be performed on a sequence of coregistered scans or on a
single scan that contains overlapping structures because
of limited Z-slice resolution. Therefore, the introduction
of freehand segmentation tools requires simultaneous
support of an increasing number of volume channels
from interactive data analysis workflows, which can be
challenging for both rendering and data processing.
Unfortunately, current bioimaging software tools are ill
equipped to interactively visualize or analyze a large
number of volume channels. Although there have been
techniques and tools that support large-scale data of
high spatial resolutions [9–11], most of them have fallen
short when the number of channels increases. Researchers
often overlook multichannel as one important source of
big data. In the past, a 3D scan was comprised of a single
grayscale channel, because research on volume data hand-
ling originated from X-ray computed tomography (CT)
[12], which generated only one channel. To date, 3D
imaging tools that can directly handle more than three
channels are scarce. The commonly used ImageJ [13] and
Fiji [14] can store multiple channels with the “hyperstack”
feature, but cannot visualize them three-dimensionally.
The Visualization Toolkit (VTK) [15] does not provide a
module for more-than-RGB channel visualization. Thus, it
becomes difficult for the software tools dependent on
VTK (OsiriX [16], 3D Slicer [17], Icy [18], and BioIma-
geXD [19]) to fully support multichannel data from
fluorescence microscopy. There are tools for visualizing

Fig. 1 Comparison between volume-rendered and pseudosurface representations. We use FluoRender to select and extract one nerve from a
confocal scan of an intact ear semicircular canal of an oyster toadfish (Opsanus tau). a Volume rendering of the original confocal scan. Scale bar
represents 20 μm. b One nerve is selected and highlighted using FluoRender’s brush tool. c The selected nerve is segmented. d The selected nerve is
converted to a pseudosurface representation, using the marching cubes algorithm with a threshold at 0% grayscale. e A pseudosurface representation
with a threshold at 10% grayscale. f A pseudosurface representation with a threshold at 20% grayscale. g A pseudosurface representation with a
threshold at 30% grayscale. The result shows that conversion of volume data to pseudosurfaces is not suitable for visualizing intensity variations, which
are essential for fluorescence microscopy. The parameter settings for pseudosurface conversion may greatly influence the results. Subsequent analysis
and comparison based on pseudosurfaces may generate misleading results

Wan et al. BMC Bioinformatics (2017) 18:280 Page 2 of 15

multiple channels with only RGB channels, which are
commonly supported by graphics hardware. They use a
preprocessing approach to blend and map data chan-
nels into the RGB space and then render the derived
color channels [9, 20]. This approach is adopted for
various mainstream visualization and analysis tools for
biological research. For example, the commercial soft-
ware package, Amira [21], and the nonprofit tool,
Vaa3D [9, 22], both adopt a preprocessing routine to
first combine multiple grayscale volumes into one RGB
volume and then render the combined volume. An in-
convenience of combining channels during preprocessing
is that any adjustment to the visualization parameters of
one channel requires a recalculation of the entire blended
volume, making it difficult to tune the appearance of the
visualization interactively. Another commercial software
package, Imaris [23], mitigates this issue by postponing
the channel combination process until rendering. How-
ever, its implementation attaches channels at different
texture-mapping units (components within the graphics
hardware to address and filter images [24]) all at once,
thus limiting the total number of channels as a result of
the available texture units or graphics memory size.
The complexity of handling multiple texture units also
prevents volume-based interactive analysis on GPUs.
(Details are in the survey in the Additional file 1: Sup-
plementary methods and results.)
In the biomedical sciences, a versatile tool allowing

visualization-based analysis for many-channel data is cru-
cial for researchers to decipher fluorescence microscopy
scans, perform qualitative and quantitative data analysis,
and present outcomes. The challenges are twofold from a
software development perspective. 1) Volumes from a
many-channel data set need to be combined or intermixed
for viewing, but intensity values of each channel need to
be preserved for interactive adjustment, editing, and ana-
lysis. These requirements minimize the benefits of prepro-
cessing in Amira and Vaa3D as channel data processing
becomes dynamic and dependent on user inputs. 2) Free-
hand analysis tools, such as the paintbrush in FluoRender,
require real-time processing, which has been achieved by
using GPUs. However, hardware resources within a GPU
are limited, making it impractical to use many texture
units, as in Imaris. It is essential to rethink and redesign
the basic data model for handling channels for accurate,
efficient, and versatile visualization-analysis workflows.
Here, we present a thorough reconstruction of our ori-
ginal software tool, FluoRender [3], achieving a joint
freehand segmentation and visualization tool for many-
channel fluorescence data. Compared to the original tool,
which supported fewer than 10 channels, the upgrade sig-
nificantly extends the capacity for multichannel data and
addresses the two challenges in a many-channel setting.
The new FluoRender uses the latest graphics application

programming interfaces (APIs) to integrate intuitive ana-
lysis functions with interactive visualization for multichan-
nel data and ensures future extensions for sophisticated
visualization-based data analysis.

Implementation
As discussed in the Results, our design of FluoRender
enables a true multichannel pipeline to visualize, segment,
and analyze 3D data from fluorescence microscopy, sup-
porting far more than three RGB channels. To support
the extended multichannel capacity as well as maintain
the existing visualization features, such as channel inter-
mixing, our implementation is a reorganization of the ori-
ginal rendering and processing pipelines built on top of a
novel multilevel streaming method. For the sake of simpli-
city, the discussion is organized into thematic topics that
parallel those in the Results, so that readers may cross-
reference the related topics from both sections.

Multichannel streaming
A many-channel data set can be considered as extremely
high information density with a large number of intensity
values colocated at each voxel. The streaming method,
which processes only a portion at a time of a large data set
that cannot fit within the graphics memory or GPU pro-
cessing power, is adopted for interactive presentation.
However, unlike large data of high spatial resolutions,
when a many-channel data set is relatively small for each
channel, the multiresolution streaming method becomes
ineffective (e.g., Vaa3D [22]). For example, a 100-channel
data set requires downsampling each channel 100 times to
achieve an interactivity similar to that is achieved by ren-
dering just one channel. The downsampled results may
become too blurry to be useful for any analysis. Therefore,
for streaming many-channel data, we adopted a different
hierarchy with three levels of channels, bricks, and slices
(Fig. 2).
First, a many-channel data set is naturally divided into

channels. Depending on the data’s spatial resolution and
user settings, each channel is then subdivided into axis-
aligned subvolumes, called bricks. Finally, each brick is
decomposed into a series of planar sections, called slices.
The decomposition of a brick into slices is computed
interactively with the viewing angle, so that each slice is
always facing the observer to minimize slicing artifacts.
Channels, bricks, and slices define three hierarchically
processed levels of the streamed rendering. We allow
users to choose an interaction speed in terms of the mil-
liseconds allocated to render a frame. FluoRender then
calculates the amount of data that can be processed and
rendered within the time limit. For a many-channel data
set, such as the Drosophila brain atlas in the Results, up-
dates can be progressive. However, FluoRender allows
great flexibility for interactive adjustments. We designed

Wan et al. BMC Bioinformatics (2017) 18:280 Page 3 of 15

the system so that all computations are executed by par-
allel processing on GPUs. By using the modern OpenGL
visualization pipeline [24, 25], the system can benefit
from the latest technical advances of GPUs. Visualized
volume data can be translated and rotated in real time;
any change in a channel visualization setting is reflected
interactively.

Visualization of channel data
We use a slice-based renderer to visualize one channel
in a many-channel data set and allow its flexible adjust-
ments. Not only is a slice-based renderer more suitable
for our data streaming hierarchy, the finest level of
which consists of slices, but it also is more versatile than
another commonly used method: ray casting [26]. A ray
caster generates rays from the viewer and samples them
within the volume. The sample values are retrieved se-
quentially along each ray and integrated based on a
compositing equation. The final output is a 2D image
composed of integration results from the rays. Using
modern graphics hardware, the computation for each
ray can be carried out in parallel, allowing real-time
visualization. A slice-based renderer decomposes a volume
into a series of planar sections parallel to each other, se-
quentially renders each section, and then composites the
rendered results. Different from ray casting, slice-based
rendering of the sample points on each section can be car-
ried out in parallel. When the slicing angle is calculated in

real time to be perpendicular to the viewing direction, re-
sults from both methods are similar in terms of rendering
speed and quality. However, when handling more than
one volume channel, a ray caster needs to sample all chan-
nels before the ray integration can proceed in the sequen-
tial sampling process. Therefore, on graphics hardware,
ray casting requires all channels to be loaded and bound
to available texture units, which become its limitation. In
contrast, a slice-based renderer sequentially processes an
identical planar section for different channels, composites
the results, and then proceeds to the next section. It is
then possible to serialize the processing of multiple chan-
nels and remove the limitation on the total number of
channels. A second limiting factor for the ray caster is
sending the control information for all channels, such as
parameters for color mapping, opacity mapping, etc. A ray
caster not only requires all the available texture units, but
also that all the control information be sent and processed
at the same time. These requirements can severely limit
the number of adjustments one channel may have.
Otherwise, the rendering code becomes too complex to
manage all settings from all channels. The choice of the
slice-based rendering method in FluoRender allows an
abundance of settings for each channel.
We maintained the existing versatile visualization config-

urations of the original FluoRender system and extended
them for many-channel applications. In a many-channel
data set, independent channel adjustment and multiple

Fig. 2 Different channel-intermixing modes use two data streaming orders for multichannel data. a For the layered and composite-intermixing
modes, channels are streamed at the highest level. In this level, each channel is rendered and composited in sequence. Within the level of each
channel, bricks are rendered in sequence. Then, within each brick, slices are rendered in sequence. b For the depth channel-intermixing mode,
the streaming order is shifted, where bricks are at the highest level. Within each brick, slices are rendered in sequence. Then, within each slice,
channels are rendered in sequence. By shifting the order of data streaming and applying different compositing methods, a variety of rendering
effects become available

Wan et al. BMC Bioinformatics (2017) 18:280 Page 4 of 15

options can be applied to render each channel. For the
base rendering modes, FluoRender offers two major
rendering methods. The direct volume rendering (DVR)
method requires high computational loads but generates
realistic 3D images that reflect the physics of light trans-
mission and absorption [26, 27]. The second method,
maximum intensity projection (MIP), is much simpler.
This method takes the maximum value of the signal inten-
sities among the voxels that are along the light path
viewed by the observer [28]. In addition to the two base
modes, users have options to add color, a color map,
Gamma, contrast, depth effect, transparency, and shading
and shadows for each channel [29].

Channel intermixing
FluoRender handles the visualization of each channel
independently, allowing a mixture of different volume
rendering modes and settings in a single visualization.
The updated FluoRender inherited the three channel-
intermixing modes from the original system [3]. The
depth mode intermixes channels with respect to their
perceived depth along the viewing direction; the compos-
ite mode accumulates the intensity values of individually
rendered channels; and the layered mode superimposes
individually rendered channels on top of one another.
One challenge for the new system is to faithfully support

these channel-intermixing modes in the many-channel
setting. It is crucial to have the correct streaming order
for the desired channel-intermixing results. We designed
two streaming orders by shifting the hierarchical levels in
which channels, bricks, and slices are processed. In the
layered and composite channel-intermixing modes,
channels are processed at the highest level, bricks at
the second, and then slices (Fig. 2a). In the depth
channel-intermixing mode, bricks are processed at the
highest level, slices at the second, and then channels
(Fig. 2b). For a long processing sequence, the entire
streaming process is allocated into several render loops
(green stripes in Fig. 2), each consuming a predefined
amount of time (alarm clocks in Fig. 2) and processing

only a portion of the entire sequence. To prevent the
system from becoming unresponsive, the visualization
result is updated between two render loops (black tri-
angles in Fig. 2). Users are also allowed to interrupt the
process at certain points of the sequence (white trian-
gles in Fig. 2) for good interactivity. Memory size, brick
size, and system response time are adjusted for different
hardware configurations in system settings.
The second challenge is to support a variety of compos-

iting operations (red squares in Fig. 2), as each channel
can be configured differently according to its render set-
tings. Table 1 summarizes all compositing methods in
FluoRender. To avoid the interference of different com-
positing methods from different hierarchical levels within
the streaming process, a triple-buffer rendering scheme is
adopted. Figure 3 illustrates an example of using three
buffers (channel, output, and intermediate) in the stream-
ing process to generate the correct result of two channels
intermixed with the composite channel-intermixing mode.
In this example, the tri-buffer rendering is necessary
because rendering one channel uses the front-to-back
compositing whereas the composite mode uses the
addition compositing (Table 1). As the buffers use com-
pletely different compositing equations, partial results
cannot be intermixed correctly when fewer than three
buffers are used in the streaming process. An intermediate
buffer is employed to temporarily store the rendering re-
sults from completed channels, each of which uses the
same compositing. The rendering and compositing of the
partial result from an ongoing channel is effectively iso-
lated from the compositing between channels. Therefore,
FluoRender is able to support versatile visualization con-
figurations for multiple channels.

Floating-point rendering
A danger of intermixing intensity values from many chan-
nels is signal clipping of the accumulated result, where the
intensity of colocalized structures exceeds the limit that
can be reproduced by display hardware, causing loss of de-
tails. To address this problem, we use 32-bit floating-point

Table 1 Compositing methods in FluoRender

Type Equationa Description Use

Front-to-back Cout ¼ 1� αdestð Þ∙Csource þ Cdest Blends semitransparent layers from front to back.
Also used for ray casting

Direct volume rendering (DVR) for
one channel

Back-to-front Cout ¼ αsource ∙Csource þ 1� αsourceð Þ∙Cdest Blends semitransparent layers from back to front Layered channel- intermixing mode

Addition Cout ¼ Csource þ Cdest Sums input and existing intensity values Composite channel- intermixing mode;
compositing operations between slices
in depth mode;
visualization of selected structures

Maximum
intensity

Cout ¼ MAX Csource; ; Cdestð Þ Finds the maximum intensity value from the input
and existing values

MIP rendering for one channel

Multiplication Cout ¼ Csource ∙Cdest Multiplies the intensity value of the input by the
existing value. Also called modulation

Shading and shadow effects

aIn the equations, Cout , Csource , and Cdest denote the output, input, and existing color values, respectively; α is the opacity value

Wan et al. BMC Bioinformatics (2017) 18:280 Page 5 of 15

numbers [24, 30] for the composite buffer through the
rendering process, which preserves the high-intensity de-
tails without clipping. Using 32-bit floating-point numbers
also takes advantage of recent display devices featuring
10-bit intensity resolution (30-bit for RGB) [31, 32].
FluoRender is able to directly utilize the higher color/
intensity resolving power of the latest display systems
for biological research and applications.
Floating-point calculation generates image data that

often contain pixels whose intensity is above the clipping
threshold of the display device. Such an image is called a
high dynamic range image (HDRI) [33]. Instead of clip-
ping the values at the threshold, a tone-mapping curve
can be applied to normalize the full range of output

intensity into that supported by the display device, so
that fine details of the high-intensity regions are recov-
ered. For an easy control of the complex tone-mapping
process, we designed three adjustable parameters: Lu-
minance scales overall intensity uniformly; Gamma
changes contrast by adjusting mid-tone levels; and
equalization suppresses high- intensity values and en-
hances low ones, thus equalizing the brightness [29].

Freehand segmentation
Fluorescence microscopy data tend to contain signals of
multiple cells and structures. Specific subparts need to
be extracted, or segmented, for selective visualization
and quantitative analysis. However, the data discrepancy

Fig. 3 The triple-buffer rendering scheme ensures that different compositing operations are free from interference. In this example, two channels
are rendered using DVR, and then intermixed in the composite mode. The panels are the steps for processing the channels. a Channel 1 (red) finishes
rendering to the channel buffer. Its result is copied to the output buffer. b The channel buffer is cleared; the content of the output buffer is copied to
the intermediate buffer. c A portion of the bricks of Channel 2 (blue) is rendered; the output buffer is cleared. d The results in the channel and
intermediate buffers are composited together to the output buffer, which is then shown to users. Render loop 1 finishes. e Rendering of Channel 2
continues and finishes. The output buffer is cleared. f The results in the channel and intermediate buffers are composited together to the output buffer.
This process is repeated when more than two channels are present

Wan et al. BMC Bioinformatics (2017) 18:280 Page 6 of 15

between the visualization (pseudosurfaces or blended
channels) and original grayscale channels has made
channel segmentation nonintuitive in other tools, and
analysis based on pseudosurfaces or blended channels
inaccurate. In our multichannel design of FluoRender,
data to be visualized and analyzed are essentially the
same, enabling seamless operations with GPUs for both
rendering and general computing [34]. Many of FluoR-
ender’s analysis functions depend on this unique feature
to directly select subvolumes of grayscale values using a
brush tool. A subvolume for a focused study of isolated
biological structures is also called a region of interest
(ROI). Traditional ROI selection methods, such as 3D
clipping planes, generate straight and arbitrary bound-
aries, which are not ideal for precise analysis. For ex-
ample, a statistical analysis can be biased by a careless
selection of an ROI, including excessive background
signals. For intuitive selection of an ROI that is pertin-
ent only to the biological structures under study, or an
SOI (structure of interest), a 3D mask based on signal
intensity and distribution can be generated by freehand
selection.
FluoRender provides three brush types for mask gener-

ation: initial selection, erasing, and fine-tuning of exist-
ing selections. All brush operations handle 3D volume
data with two familiar segmentation processes in 2D
tools: threshold-based seeding and diffusion. To select a
structure in 3D, a user first paints with one of the
brushes (Fig. 4a). Then, we use a projection lookup to
determine whether a 3D sample point falls in the
intended selection region. A 3D sample point in a vol-
ume data set is projected onto a 2D image space in the
visualization process. This projection is performed by a
matrix multiplication:

p0 ¼ Mprj⋅p ð1Þ

In Equation 1, p′ is the projected point on a 2D image
plane, Mprj is the projection matrix, and p is the data
point in 3D. The image plane is eventually mapped to
the viewing region on a computer display and visualized.
When a user paints with the selection brush in FluoRen-
der, the brush strokes are registered in the 2D image
space. Theoretically, we could retrieve the brush-stroke-
covered region in 3D by applying the inverse projection
matrix M�1

prj . However, the inverse projection is not used,

as one point in 2D is associated with an infinite number
of points in 3D. In our implementation, we use Equation
1 and uniquely project every voxel of the volume data of
a channel to the 2D image space. Then, we check if the
projected points fall inside the brush strokes (Fig. 4b). A
brush stroke defines two regions in the 2D image space,
one for seeds and another for diffusion. Potential seeds
as well as the final selection can then be determined.
Since the projection is computed independently for each
voxel, the computation can be parallelized on GPUs to
achieve real-time speed [4].
To easily select and isolate the visualized structures,

occlusion between structures in 3D needs to be consid-
ered for the brush operations. We use backward ray
casting to determine whether a seed point is occluded
from the viewer. We calculate a ray emanating from the
seed point and traveling back to the viewer (Fig. 4d).
Then, we sample along the ray, accumulate intensity
values, and check if the accumulated intensity is suffi-
ciently high to occlude the signals behind. The seed is
validated when no intensity accumulation is detected, or
excluded otherwise [35]. We perform backward ray

Fig. 4 Freehand segmentation. (a) The user uses the mouse to paint on a visualization result to select structures. (b) Voxels are projected. The
blue voxel is not selected because its projection is outside the painted region. (c) OpenCL kernels are used to estimate a threshold value. (c1) We
generate a histogram for voxels within the shaded region. (c2) The histogram from the shaded region. (c3) We calculate a threshold value from
the histogram. Low-intensity signals are usually noise and are excluded from the selection. (c4) Voxels with intensities higher than the threshold
value are selected. (d) We cast rays backward to the viewer. The red one is rejected because its ray is obstructed by the green object. (e) We calculate a
morphological diffusion to select surrounding structures of the green object based on connectivity

Wan et al. BMC Bioinformatics (2017) 18:280 Page 7 of 15

casting only on potential seed points in parallel, which
has a negligible performance impact, as the seed region
is usually much smaller than the diffusion region.
Validated seeds are grown to a selection mask by itera-

tively evaluating their morphological diffusion (Fig. 4e).
We designed the morphological diffusion by replacing
the gradient terms in an anisotropic heat equation with
morphological dilations. An anisotropic heat equation is
defined as:

∂u x; tð Þ
∂t

¼ ∇⋅ g x; tð Þ∇u x; tð Þð Þ ð2Þ

In Equation 2, u x; tð Þ is the data field being diffused
and g x; tð Þ is the function to stop diffusion, which is cal-
culated from the boundary information of underlying
structures. Heat diffusion usually reaches an equilibrium
state (solenoidal field) when divergence of the gradient
field becomes zero. When we introduce the morpho-
logical terms to replace a standard gradient, the equilib-
rium state should be a zero-gradient field. Since energy
is no longer conserved and divergence-free, the non-
zero-gradient field cannot reach an equilibrium state.
Therefore, the standard anisotropic heat equation is re-
written as:

∂u x; tð Þ
∂t

¼ g x; tð Þ ∇u x; tð Þj j ð3Þ

Then, we use morphological dilation δ x; tð Þ to evaluate
the gradient:

∂u x; tð Þ
∂t

¼ g x; tð Þ δ x; tð Þ−u x; tð Þð Þ ð4Þ

Morphological dilation is defined as:

δ xð Þ ¼ MAX u xþ bð Þjb∈Bð Þ ð5Þ
In Equation 5, B is a predefined neighborhood of any

point x in the field u xð Þ. Finally, we discretize Equation
4 to solve over time steps:

uiþ1 xð Þ ¼ ui xð Þ þ g xð Þ δi xð Þ−ui xð Þð Þ
¼ g xð Þδi xð Þ þ 1−g xð Þð Þui xð Þ ð6Þ

The reason to use morphological dilation instead of
the standard gradient discretization methods is that
Equation 6 can be evaluated very efficiently on GPU.
Additional file 1: Supplementary Result 2 compares the
execution speeds of several common image- processing
filters on the GPU and central processing unit (CPU). In
our test, the morphological dilation filter not only con-
sumes less time than most other filters but also achieves
the highest speed-up. More importantly, it requires fewer
iterations than a standard anisotropic diffusion, as it
causes the energy of the field to increase monotonically.

Therefore, real-time performance is achieved for freehand
selection in FluoRender.

OpenGL-OpenCL interoperation
Data are immediately shared on the graphics hardware
for visualization (using OpenGL) and analysis (using
OpenCL) [24, 25]. For low-contrast and noisy data, accur-
ate structure-based selection can be generated by incorp-
orating OpenCL computing kernels into the OpenGL
visualization pipeline. For example, a thresholding value
for the mask generation process can be manually selected
by the user, or automatically computed by refining an
existing user selection. The automatic estimation of a
proper thresholding value is a typical statistical analysis
based on intensity frequency, or histogram [36]. As illus-
trated in Fig. 4c, when automatic thresholding is enabled
and a user performs the paintbrush operation, both the
original data and the user-selected 3D mask are processed
with an OpenCL kernel to generate a histogram of the ori-
ginal data within the mask (Fig. 4c1-c2). Since these data
are shared on the graphics hardware, the OpenCL kernel
can leverage parallel computing threads to examine the
intensity values of multiple voxels and generate the histo-
gram in real time. The histogram is stored on the graphics
hardware as well. A second OpenCL kernel starts process-
ing the histogram once it is generated. We employ the
commonly used histogram segmentation method to detect
peaks and valleys. We fit the histogram to a standard
distribution and choose the thresholding value at the 2
σ (σ as the variance) intensity toward the lower end
(Fig. 4c3-c4). To an end user, these calculations are
transparently executed at real-time speed. A refined 3D
mask is generated based on the threshold from the
OpenCL kernels. Other analysis functions as well as
image processing filters use the same procedure for
GPU-based computing.

Results
In our redesign of FluoRender, each channel is handled
as an independent yet interoperable entity and uses
streaming to lift the restrictions on the number of chan-
nels that can be visualized simultaneously. This unique
ideology translates to three distinctive features. 1) The
ideology allows an extended number of volume channels
to be directly visualized in 3D. 2) It visualizes volume
data based on the original intensity values of each chan-
nel, without the pseudosurface extraction that often
yields a misleading appearance of a structure, and it sup-
ports a variety of visualization configurations. 3) Data
for visualization and analysis are readily shared on
GPUs, ensuring that segmentation and analysis of multi-
channel data are based on the original intensity values of
each channel.

Wan et al. BMC Bioinformatics (2017) 18:280 Page 8 of 15

Multichannel streaming
FluoRender easily allows simultaneous visualization of as
many as 96 independent channels (Additional file 2:
Video 1), which in previous versions had required con-
version to RGB channels or pseudosurfaces. Otherwise,
interactive visualization would not have been available.
This unique multichannel and real-time rendering cap-
ability has successfully assisted detailed visual examin-
ation and comparison of a variety of 3D datasets in
various biological studies [5–8, 37], featuring from 4–96
channels. The resulting fully volume-rendered images
contain richer details and provide more accurate represen-
tations of biological structures than previous visualization
methods [2, 38–40], which employed surfaces or lines for
representing 3D structures.

Visualization of channel data
For a data set containing from a few to over a hundred
channels, each channel can be individually adjusted with a
series of settings. For example, Fig. 5a visualizes the distri-
bution of the glial fibrillary acidic protein (GFAP) in the

developing zebrafish eye with MIP. The flexible assignment
of all possible combinations of RGB values permits a ren-
dering of the volume with any desired color, a very import-
ant feature when visualizing images that consist of more
than three channels (Fig. 5b). Further, assigning a color
map enables accurate reading of intensity values (Fig. 5c).
A MIP-based rendering tends to obscure 3D structural

information. The DVR method, on the other hand, gen-
erates images that reflect the 3D relationship of the
structures much more faithfully (Fig. 5d). The Gamma
setting controls the brightness of the mid-tones so that
structures with intermediate signal intensity can be visu-
alized at a suitable brightness without clipping the bright
or dark regions (Fig. 5e). The depth attenuation setting
darkens signals farther from the viewing point, providing
information about the distance from the observer
(Fig. 5f). The addition of shading and shadows further
improves the appearance of a channel by providing
texture according to the morphology (Fig. 5g). The
transparency control provides a solid or translucent
representation of the object (Fig. 5h).

Fig. 5 Versatile render modes are available for each volume channel in a multichannel data set. a Visualization of a segmented zebrafish eye in
MIP mode. Scale bar represents 50 μm. b The color of the same volume data is changed to yellow. c A color map is applied to the data, enabling
accurate reading of the intensity values. d The same volume data set is visualized in the DVR mode, revealing its actual structure. e Gamma is adjusted
to reveal areas with relatively low-intensity signals, indicated by arrows. f Depth attenuation is adjusted. The areas indicated by arrows are darkened as
they are farther back from the viewing point. g Shading and shadows are added to enhance textural details. h Transparency is increased. The arrow
points to an area showing the structures behind the eye ball, which is not seen in g. i One channel of the neuronal fibers in the zebrafish embryo is
visualized in the DVR mode. The scale bar represents 100 μm. j Another channel of the neuronal nuclei is visualized in the MIP mode. k MIP and DVR
modes are intermixed to enhance depth perception. l Three channels of muscles (red), neuronal fibers (green), and nuclei (blue) are intermixed

Wan et al. BMC Bioinformatics (2017) 18:280 Page 9 of 15

Channel intermixing
To reduce data occlusion in a many-channel data set,
the FluoRender visualization pipeline is equipped with a
series of modes for intermixing 3D data, which are not
available in other tools. For example, the cytoplasmic
signal of neurons is best visualized with a translucent
DVR rendering for the spatial relationship of the overlap-
ping neuronal fibers (Fig. 5i), whereas the neuronal nuclei
are best represented with MIP to detect their presence in-
side large tissues (Fig. 5j). In addition, more than one ren-
dering method can be combined to visualize the data of a
single channel (Fig. 5k). Images of a single channel visual-
ized with such combined rendering modes can be further
mixed with those of other channels to present features in
an informative way (Fig. 5l, Additional file 3: Video 2).
A choice of channel intermixing modes as well as their

combinations using groups allows easy adjustments for
emphasizing different structures. For example, Fig. 6a
shows a 3D visualization of the developing hind limb of
a mouse embryo, in which muscles, tendons, nerves,
and bones are visualized in separate channels. In this
visualization mode, the occlusion of biological structures
among different channels is visually correct: dense vol-
ume visualized in one channel occludes not only the
background structures of the same channel, but also
those visualized in other channels. Although the depth
mode provides the visually correct spatial relationship,

complex structures in deep regions tend to be occluded
by superficial ones, especially when the number of chan-
nels increases. It becomes difficult to understand the full
structure visualized in a specific channel. The composite
mode addresses this problem by accumulating instead of
occluding the signals of individually rendered channels
(Fig. 6b). The intensity values of all channels can be recog-
nized at colocalized sites; deep objects visualized in one
channel can be seen through structures of other channels
in front. The accumulation of multiple channels affects
the appearance of the colors, making it sometimes difficult
to trace the structure visualized in a specific channel. In
biological visualization, it is a common practice that infor-
mation in one or two channels is prioritized over the
others, which represent “background” labeling just for
showing the overall morphology of a sample. Rendered
images of the background channels should not obstruct
those of higher importance. The layered mode is designed
to satisfy such needs by superimposing individually ren-
dered channels on top of one another (Fig. 6c). Using this
mode, channels of higher importance (the nerves) are vi-
sualized in the foreground for close inspection, whereas
other channels are used as a reference in the background.
However, several channels are equally important. A

combination of different channel-intermixing modes is
needed. In Fig. 6d, the channels representing nerves and
muscles are grouped with the depth mode and placed

Fig. 6 Channel-intermixing modes facilitate the study of the complex anatomy. The confocal microscopy scan of a hind limb of an embryonic
mouse contains three channels of muscles (red), tendons (green), and nerves (blue). The bones (gray) were extracted from the empty space of the
scan. a The channels of the scan are intermixed with the depth mode. The fibular and tibial nerves are occluded by a series of muscles and
tendons (indicated by the arrows). The scale bar represents 200 μm. b In the composite mode, we observe the underlying nerves. However, the
spatial relationship between some muscles and nerves is still unclear. For example, it is difficult to tell if the deep fibular nerves innervate the
extensor digitorum brevis muscles. c The layered mode visualizes the nerves, muscles, tendons, and bones from top to bottom. The structures of
the nerves are most obvious. d The layered mode groups the muscles and nerves, which are above the tendons. The group of muscles and nerves is
rendered with the depth mode. We observe that a lateral branch of the superficial fibular nerves innervates between the peroneal muscles following
the muscle fiber directions; the deep fibular nerve innervates the extensor digitorum brevis muscles at an angle to the muscle fiber directions. e Our
knowledge obtained from a combination of different channel-intermixing modes is illustrated in a cartoon, clearly showing the anatomy

Wan et al. BMC Bioinformatics (2017) 18:280 Page 10 of 15

with the layered mode so that they appear in front of the
other two channels (tendons and bones), which are also
grouped with the depth mode. The complex spatial rela-
tionships between nerves and muscles are visualized be-
cause they are not obscured by the signals of tendons
and bones. Different channel-intermixing modes can be
interactively switched for a better understanding of the
spatial relationship of different anatomical features
(Fig. 6e, Additional file 4: Video 3).

Floating-point rendering
Figure 7 demonstrates the advantage of FluoRender’s
HDRI feature. Figure 7a shows the visualization of al-
most all neural projections in the brain of an adult fruit
fly Drosophila. Each channel, in a different color, shows
an individual clonal unit – a lineage-defined group of
projections of the neurons deriving from each neural
stem cell [1, 5]. Those data are then integrated into a
single multichannel view. The channels are grouped in a
hierarchical manner to enable selective visualization
(Additional file 2: Video 1). The depth-mode rendering
shown here faithfully represents the spatial relationship
of all clonal units (Fig. 7a). However, neurons in deep
brain regions are obscured by those in the foreground.
Fig. 7b and d show selective clonal units that arborize in
specific brain regions. The composite mode is employed
here so that overlapping signals can be visualized with-
out occlusion. However, even though only a handful of
channels (seven and five, respectively) are visualized in
these images, extensive overlap of the visualized chan-
nels results in the accumulation of very high-intensity
values in many areas, causing signal clipping and detail

loss. Such detail can be preserved when we apply the
interactive tone mapping (Fig. 7c and e, Additional
file 5: Video 4).

Freehand segmentation
A selected structure can be extracted from the original
channel to become a new channel. A multichannel data
set of individually extracted structures can be visualized
and analyzed using FluoRender. This method was used
to generate the Drosophila brain atlas in Fig. 7, where
each channel was extracted from an individual scan.
Additionally, the method was used for making an atlas
of the embryonic mouse limbs to study normal anatomy
as well as identify congenital abnormalities. The original
3D volume data of a mouse forelimb (Fig. 8a) consisted
of three channels for muscles (red), tendons (green), and
nerves (blue). From these data, individual muscles, ten-
dons, and nerves were segmented into 91 channels to
visualize with different colors and transparency values
and to remove irrelevant structures for the final image
(Fig. 8b-g).

OpenGL-OpenCL interoperation
Once an SOI is segmented, a variety of quantitative ana-
lysis can be performed. Built-in analysis functions include
connected component analysis, size analysis, intensity
analysis, etc. Intuitive measurement tools for position,
length, angle, size, etc. can be directly applied to vol-
ume channels, where anchor points are placed three-di-
mensionally based on intensity values. OpenCL kernels
are seamlessly integrated with OpenGL rendering proce-
dures to perform these analysis tasks. Sharing data

Fig. 7 Tone-mapping adjustment and versatile render modes facilitate multichannel intermixing. a Visualization of all 96 identified clonal units of
the Drosophila brain, anterior view. The scale bar represents 50 μm. b Rendering of seven clonal units of the superior medial protocerebrum (SMP) in
the composite mode. Without the tone-mapping adjustment, the details of high-intensity values are lost. The scale bar represents 50 μm. c The same
clonal units in b rendered with the tone-mapping adjustment. Arborization patterns of different channels are observed. d Close view of five clonal units
of ventrolateral protocerebrum (VLP), without the tone-mapping adjustment. The entire region of overlapped arborization patterns is clipped to a white
color. The scale bar represents 50 μm. e The same clonal units in d rendered with the tone-mapping adjustment

Wan et al. BMC Bioinformatics (2017) 18:280 Page 11 of 15

between OpenGL for visualization and OpenCL for com-
puting further enables real-time processing and analysis.
For example, about an order of magnitude of speed-up
(performance increase measured by decrease of comput-
ing time [41]) can be achieved for common image pro-
cessing filters [36] (Additional file 1: Supplementary
Result 2 and Additional file 6: Video 5), which makes
interactive data processing much more efficient, giving
users the opportunity to achieve the most informative data

extraction within the same period of analysis work. Fig-
ure 9 demonstrates the analysis of selected nerves in an
intact ear semicircular canal of an oyster toadfish
(Opsanus tau) (also Additional file 7: Video 6).

Comparing FluoRender to similar tools
We surveyed the multichannel capabilities of the com-
monly used software packages in biomedical research,
detailed in the Additional file 1: Supplementary

Fig. 8 Making and visualizing a mouse forelimb atlas from confocal microscopy scans. a The original scan contains three channels of muscles
(red), tendons (green), and nerves (blue). The scale bar represents 500 μm. b Using brush-based SOI selection and extraction, we segment 21 muscles of
the paw. Each muscle is an independent channel with adjustable settings. c The 22 segmented muscles of the forearm. d The 22 segmented muscles
around the shoulder area. e The 5 segmented spinal nerves going down to the forelimb. f The 17 segmented tendons of the forearm muscles. g We
segment the anatomical structures of the forelimb into 91 channels. Each channel is assigned a color for visualization

Fig. 9 Analysis of six nerves from one channel of a confocal scan. The scan is an inner ear of the vestibular system (Opsanus tau). a Volume rendering of
the scan. The nerves are different in size, length, and intensity. The scale bar represents 20 μm. b We select and define six SOIs, each representing a
nerve. We also use a ruler tool to measure the length of each selection. The inset shows a list of the selected nerves, which are color-coded according to
their IDs (1–6). c The selected nerves are differentiated and compared by performing a series of analysis functions, including calculations of volumetric
size, length, and mean intensity. The results are shown in the charts. The intensity range of the scan is 0-4095 for a 12-bit microscopy file format

Wan et al. BMC Bioinformatics (2017) 18:280 Page 12 of 15

methods and results. Table 2 summarizes the key fea-
tures of FluoRender when comparing it to similar tools
in the survey. FluoRender is currently the only tool cap-
able of many-channel volume data processing and
visualization, using a workflow entirely based on volume
intensity values without pseudosurface conversion or
channel combination.

Discussion
In the biomedical sciences, many original findings are
the result of observations. Visualization-based analysis is
gaining popularity as data complexity increases. We have
redesigned the FluoRender tool to address a special de-
mand of interactively visualizing and processing complex
volume data sets consisting of many channels. Applica-
tions in biomedical research that benefit from our tool
include segmentation, comparison, analysis of many chan-
nels of volume data from mutant-control scans, and the
construction of anatomical atlases. The lack of proper
multichannel support in previous tools has forced re-
searchers to choose inaccurate data representations, such
as pseudosurfaces, which are inadequate for visualization
and analysis of grayscale values. Similar to the previous
pseudosurface-based representations, interactivity is cru-
cial for users to understand a complex data composition
with a large number of volume channels. To maintain the
interactivity of FluoRender and to visualize a greatly ex-
panded number of channels, we restructured its rendering
pipeline and designed multilevel data streaming as well as
triple-buffer compositing. We demonstrated that volume-
based atlases containing about 100 channels were inter-
actively visualized using personal desktop computers. Our
design supports more channels with the same flexibility.
The conjoining of accurate details and the capability of
interactive exploration would otherwise not have been
possible.
Furthermore, the significance of our methods, which

maintain each grayscale channel in a multichannel vol-
ume data set as an independent entity, is the flexibility

for GPU-based processing and analysis. Avoiding pseu-
dosurface or RGB conversion, our method loads original
grayscale values into graphics hardware for both render-
ing and computing at interactive speed. Therefore, we
are able to provide versatile visualization and analysis
features, most of which are unavailable elsewhere. Each
channel can have its own render modes and settings,
thus providing a wide range of choices for maximizing
the clarity of the visualized results. Channels can be
intermixed with different modes, so that features from
specific channels can be easily accentuated, instead of
being occluded. A 3D mask can be associated with one
channel, allowing SOI-based data processing and analysis,
including extraction, connected component analysis,
and statistical analysis. Additionally, we designed an in-
tuitive method to select SOIs by painting directly on
the visualization results, a familiar operation adopted by
popular 2D imaging packages such as Photoshop [42].
An arbitrary interaction speed can be set on any com-

puter system using the streaming method. However, the
amount of data that can be processed and rendered
within one streaming loop is limited by a system’s com-
putational capacity. Artifacts such as flickering can be
observed on computers not equipped with high-end
graphics cards. Preprocessing and building a pyramidal
data structure and selectively rendering lower levels of
detail based on interaction speed are common methods
for visualizing large data. Flickering can thus be replaced
with data blurring, which is visually less distractive. Our
current many-channel visualization pipeline has not sup-
ported the pyramidal data structure because of two con-
siderations. 1) The many-channel data sets we worked
with can contain several hundred channels, but each
channel is relatively small (up to 10003). Building a hier-
archy of such spatial resolutions can produce extremely
blurry visualization results. 2) More importantly, our
design needs to support interactive processing of a
many-channel data set, such as segmentation by paint-
ing. Unlike rendering data exclusively, the operations

Table 2 A comparison of multichannel processing and visualization features in popular tools

Amira Imaris Vaa3D Volocity FluoRender

Open Source (Free) No No Yes No Yes

Channel
Number (Tested)

RGBA 25 RGBA 16a 96b

Time to Load Datac 20 min 5 min (For 25 channels) 2 min (w/ Renaming)/10 min 1 min 1 min

Channel Adjustment Not interactive Interactive Not Interactive Not always interactive Interactive

Channel Intermixing Depth Depth Depth Depth Multiple

Floating-point/Tone Mapping No No No No Yes

Volume Selection/Extraction No No No No Yes
aVolocity may have corrupted rendering results depending on the number of channels
bThe test data set contains 96 channels. More can be supported by design
cTime for an experienced user when manual work is required. An ordinary hard drive disk was used (4 TB/7200 RPM). Imaris was not able to load more than 25
channels. Therefore, the loading time was measured for 25 channels

Wan et al. BMC Bioinformatics (2017) 18:280 Page 13 of 15

for interactive processing cannot be performed a priori.
A simple propagation of data processing results among
spatial hierarchical levels burdens the system, producing a
less interactive experience. Therefore, we maintained
interactivity and functionality for many-channel data, with
a sacrifice of quality on low-specification systems. Our im-
plementation also limits the data size of one channel,
which usually needs to fit in graphics memory. Neverthe-
less, in future work, we plan to explore postprocessing
methods for hierarchical data, so that data processing re-
sults can also be interactively propagated among spatial
hierarchical levels.

Conclusions
With a steady increase in computational power and the
memory capacity of consumer graphics hardware, it is
unlikely that the applications of many-channel volume
visualization and analysis will be limited to building and
analyzing anatomical atlases. Multispectral scans from
microspectroscopy contain more than just RGB channels
and naturally fit into our workflow; simulations of bio-
chemical reactions within living organisms generate
multivariable data, which can be visualized and analyzed
as multichannel; and research on multimodal imaging,
which seeks the advantages of different imaging tech-
niques for a data amalgamation, also requires a multi-
channel workflow. We have demonstrated that a truly
volume-based multichannel workflow enables the ver-
satility of adjusting, intermixing, measuring, and editing
data, all with intuitive operations suitable for general-
ized analysis. Our implementation, FluoRender, is dis-
tributed under an open-source license. Precompiled
executables are also available for both Windows and
Mac OS X at www.fluorender.org. The extended multi-
channel capacity of FluoRender also laid the ground-
work for future development. Specifically, we will enable
interactive multichannel comparison and organization for
visualizing and correcting structural discrepancies/
alignment errors in atlas data, multichannel colocaliza-
tion analysis, and control-mutant comparisons.

Additional files

Additional file 1: The supplementary material includes supplementary
methods and supplementary results. (DOCX 29 kb)

Additional file 2: Video 1. Visualize the Clonal Units of the Drosophila
Brain. This video demonstrates visualizing 96 channels of the clonal units
in the Drosophila brain. All channels can be rendered simultaneously and
interactively in FluoRender. One can select a channel by directly clicking
in the render view. Then, the settings of the selected channel can be
adjusted. A selected channel can also be isolated in the visualization for a
focused study. High-resolution video: https://youtu.be/mng0sKqXF6I.
(MP4 20321 kb)

Additional file 3: Video 2. Study of the Zebrafish Visual System. This video
demonstrates using multiple channel render modes to visualize the zebrafish

visual system. High-resolution video: https://youtu.be/3q2KGNG5ZVA.
(MP4 13904 kb)

Additional file 4: Video 3. Study of the Mouse Limb Anatomy. This
video demonstrates visualizing an anatomical atlas of an embryonic mouse
hind limb. Different channel intermixing modes are used to reveal occluded
3D structures. High-resolution video: https://youtu.be/fF5fIVQzyvQ.
(MP4 19482 kb)

Additional file 5: Video 4. Study of the Clonal Units of the Drosophila
Brain. This video demonstrates using tone mapping to recover the
saturated signals when multiple channels are visualized together.
Colocalized structures and details can then be qualitatively studied.
High-resolution video: https://youtu.be/7G4i_lIyCvw. (MP4 12654 kb)

Additional file 6: Video 5. OpenCL Filters in FluoRender. This video
demonstrates using OpenCL for image processing. Commonly used 3D
filters can be programmed within FluoRender’s user interface similar to a
script language. The execution of these filters on GPU is generally several
times faster than their CPU implementations. High-resolution video:
https://youtu.be/okp_zijKu5U. (MP4 16516 kb)

Additional file 7: Video 6. Analysis Functions of FluoRender. This video
demonstrates the analysis functions in FluoRender. A paintbrush tool can
be used to select desired structures in 3D. The selections can have their
length and signal intensity measured. A comparison between volume-
based analysis and polygon models also demonstrates the accuracy and
reliability of the former method. High-resolution video: https://youtu.be/
CV3iCZMO8C4. (MP4 19560 kb)

Abbreviations
3D: three-dimensional; API: application programming interface; CPU: central
processing unit; CT: computed tomography; DVR: direct volume rendering;
GFAP: glial fibrillary acidic protein; GPU: graphics processing unit; HDRI: high
dynamic range image; MIP: maximum intensity projection; OpenCL: open
computing library; OpenGL: open graphics library; RGB: red-green-blue;
ROI: region of interest; SOI: structure of interest; VTK: Visualization Toolkit

Acknowledgements
We wish to thank Richard D. Rabbitt for preparing the sample of the oyster
toadfish inner ear, and feedback on FluoRender. We also wish to thank
Christine Pickett for proofreading the manuscript. The development of
FluoRender has always been supported by a worldwide user community,
whose feedback contributed to the refinement of many aspects of its features.

Funding
This work was funded by the R01-GM098151-01, NIH P41 GM103545-18, NSF
ACI-1339881, and NSF IIS-1162013.

Availability and requirements
Project name: FluoRender
Project home page: www.fluorender.org, source code: https://github.com/
SCIInstitute/fluorender
Archived version: 2.20
Operating systems: Microsoft Windows, Mac OS X
Programming language: C++, GLSL, OpenCL C
Other requirements: OpenGL 3.3+ and OpenCL 1.2 compatible hardware and
drivers
License: MIT
The clonal unit data used in this study are publicly available at the FLYBRAIN
Neuron Database (http://ndb.flybrain.org). Other data are available via email
request to the corresponding author and with the permission of the coauthors
who generated them.

Authors’ contributions
Y.W. designed and coded FluoRender and wrote the manuscript; H.O. conceived
the project, designed the user interface, and gave many suggestions on usability;
H.A.H. prepared, imaged, and analyzed the sample of the oyster toadfish inner
ear, gave feedback and suggestions on FluoRender functions, helped with the
demo videos, and revised the manuscript and Additional file 1: Supplementary
methods and results; B.B. was the software developer, in charge of user interface,
version management, and porting to OSX; M.I. prepared, imaged, and visualized
the Drosophila brain atlas; A.K.L. prepared and imaged the samples of the mouse

Wan et al. BMC Bioinformatics (2017) 18:280 Page 14 of 15

http://www.fluorender.org
dx.doi.org/10.1186/s12859-017-1694-9
dx.doi.org/10.1186/s12859-017-1694-9
http://www.fluorender.org
https://github.com/SCIInstitute/fluorender
https://github.com/SCIInstitute/fluorender
http://ndb.flybrain.org

limbs, and generated the mouse limb atlases; M.C. helped segment and identify
anatomical structures of the mouse limb scans; G.K. supervised the mouse limb
atlas project and revised the manuscript; K.I. supervised the Drosophila clonal
composition research and revised the manuscript; C.H. supervised the
FluoRender project, coordinated collaborations, and revised the manuscript.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
The experiments on mouse embryonic limbs were approved by the University
of Utah Institutional Animal Care and Use Committee (IACUC 16-06007).

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Scientific Computing and Imaging Institute, University of Utah, Salt Lake
City, USA. 2Janelia Farm Research Campus, Howard Hughes Medical Institute,
Ashburn, USA. 3Department of Bioengineering, University of Utah, Salt Lake
City, USA. 4Institute of Molecular and Cellular Biosciences, University of
Tokyo, Tokyo, Japan. 5Department of Biology, University of Florida,
Gainesville, USA. 6Department of Human Genetics, University of Utah, Salt
Lake City, USA.

Received: 29 November 2016 Accepted: 18 May 2017

References
1. Jefferis GS, Potter CJ, Chan AM, Marin EC, Rohlfing T, Maurer CR, et al.

Comprehensive maps of Drosophila higher olfactory centers: spatially
segregated fruit and pheromone representation. Cell. 2007;128:1187–203.

2. Peng H, Chung P, Long F, Qu L, Jenett A, Seeds AM, et al. BrainAligner: 3D
registration atlases of Drosophila brains. Nat Methods. 2011;8:493–8.

3. Wan Y, Otsuna H, Chien C, Hansen C. An interactive visualization tool for
multi-channel confocal microscopy data in neurobiology research. IEEE
Trans Vis Comput Graph. 2009;15:1489–96.

4. Wan Y, Otsuna H, Chien C, Hansen C. Interactive extraction of neural
structures with user-guided morphological diffusion. Proceedings of the
IEEE BioVis. IEEE;2012. p. 1-8.

5. Ito M, Masuda N, Shinomiya K, Endo K, Ito K. Systematic analysis of neural
projections reveals clonal composition of the Drosophila brain. Curr Biol.
2013;23:644–55.

6. Aso Y, Hattori D, Yu Y, Johnston RM, Iyer NA, Ngo T, et al. The neuronal
architecture of the mushroom body provides a logic for associative
learning. eLife. 2014;3, e04577.

7. Wolff T, Iyer NA, Rubin GM. Neuroarchitecture and neuroanatomy of the
Drosophila central complex: A GAL4-based dissection of protocerebral
bridge neurons and circuits. J Comp Neurol. 2015;523:997–1037.

8. Colasanto MP, Eyal S, Mohassel P, Bamshad M, Bonnemann CG, Zelzer E, et
al. Development of a subset of forelimb muscles and their attachment sites
requires the ulnar-mammary syndrome gene Tbx3. Dis Model Mech. 2016;9:
1257–69.

9. Peng H, Bria A, Zhou Z, Iannello G, Long F. Extensible visualization and
analysis for multidimensional images using Vaa3D. Nat Protoc. 2014;9:193–208.

10. Hadwiger H, Beyer J, Jeong W, Pfister H. Interactive volume exploration of
petascale microscopy data streams using a visualization-driven virtual
memory approach. IEEE Trans Vis Comput Graph. 2012;18:2285–94.

11. Bria A, Iannello G, Onofri L, Peng H. TeraFly: real-time three-dimensional
visualization and annotation of terabytes of multidimensional volumetric
images. Nat Methods. 2016;13:192–4.

12. Oldendorf WH. The quest for an image of brain: a brief historical and
technical review of brain imaging techniques. Neurology. 1978;28:517–33.

13. Collins TJ. ImageJ for microscopy. Biotechniques. 2007;43:25–30.
14. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al.

Fiji: an open-source platform for biological-image analysis. Nat Methods.
2012;9:676–82.

15. VTK - The Visualization Toolkit. Kitware, Inc. www.vtk.org (2016). Accessed 9
Nov 2016.

16. Rosset A, Spadola L, Ratib O. OsiriX: an open-source software for navigating
in multidimensional DICOM images. J Digit Imaging. 2004;17:205–16.

17. Fedorova A, Beichelb R, Kalpathy-Cramerc J, Finetd J, Fillion-Robind J, Pujola
S, et al. 3D Slicer as an image computing platform for the quantitative
imaging network. Magn Reson Imaging. 2012;30:1323–41.

18. Chaumont FD, Dallongeville S, Chenouard N, Hervé N, Pop S, Provoost T, et
al. Icy: an open bioimage informatics platform for extended reproducible
research. Nat Methods. 2012;9:690–6.

19. Kankaanpää P, Paavolainen L, Tiitta S, Karjalainen M, Päivärinne J, Nieminen J,
et al. BioImageXD: an open, general-purpose and high-throughput
image-processing platform. Nat Methods. 2012;9:683–9.

20. Eliceiri KW, Berthold MR, Goldberg IG, Ibáñez L, Manjunath BS, Martone ME,
et al. Biological imaging software tools. Nat Methods. 2012;9:697–710.

21. Amira 3D Software for Life Sciences | FEI. FEI Company. https://www.fei.
com/software/amira-3d-for-life-sciences (2016). Accessed 9 Nov 2016.

22. Peng H, Ruan Z, Long F, Simpson JH, Myers EW. V3D enables real-time 3D
visualization and quantitative analysis of large-scale biological image data
sets. Nat Biotechnol. 2010;28:348–53.

23. Imaris | 3D and 4D Real-Time Interactive Data Visualization | Bitplane.
Bitplane. www.bitplane.com/imaris/imaris (2016). Accessed 9 Nov 2016.

24. Segal M, Akeley K. The OpenGL Graphics System: A Specification. The
Khronos Group Inc. 2016. https://www.opengl.org/registry/doc/glspec45.
core.pdf. Accessed 18 Nov 2016.

25. Howes L. The OpenCL Specification. Khronos OpenCL Working Group. 2015.
https://www.khronos.org/registry/cl/specs/opencl-2.1.pdf. Accessed 18 Nov 2016.

26. Engel K, Hadwiger M, Kniss JM, Rezk-Salama C, Weiskopf D. Real-Time
Volume Graphics. Wellesly: 1st ed. A K Peters, Ltd.; 2006.

27. Levoy M. Display of surfaces from volume data. IEEE Comput Graph.
1988;8:29–37.

28. Wallis J, Miller T, Lerner C, Kleerup E. Three-dimensional display in nuclear
medicine. IEEE Trans Med Imag. 1989;8:297–303.

29. Wan Y, Otsuna H, Chien C, Hansen C. FluoRender: an application of 2D
image space methods for 3D and 4D confocal microscopy data visualization
in neurobiology research. Proceedings of the IEEE Pacific Visualization
Symposium. IEEE; 2012. p. 201-8.

30. IEEE Standard for Floating-Point Arithmetic. IEEE Computer Society. 2008.
http://ieeexplore.ieee.org/document/4610935/. Accessed 18 Nov 2016.

31. AMD's 10-bit Video Output Technology. AMD Inc. 2008. https://www.amd.
com/Documents/10-Bit.pdf. Accessed 17 Nov 2016.

32. 10 and 12-Bit Grayscale Technology. Nvidia Inc. 2013. http://www.nvidia.
com/content/quadro_fx_product_literature/TB-04631-001_v05.pdf. Accessed
17 Nov 2016.

33. Reinhard E, Heidrich W, Debevec P, Pattanaik S, Ward G, Myszkowski K. High
Dynamic Range Imaging - Acquisition, Display, and Image-Based Lighting.
2nd ed. Burlington: Morgan Kaufmann Publishers Inc.; 2010.

34. Owens JD, Luebke D, Govindaraju N, Harris M, Krüger J, Lefohn A, et al. A
survey of general-purpose computation on graphics hardware. Comput
Graph Forum. 2007;26:80–113.

35. Wan Y, Otsuna H, Kwan K, Hansen C. Real-time dense nucleus selection
from confocal data. Proceedings of Visual Computing for Biology and
Medicine. Eurographics; 2014. p. 59-68.

36. Gonzalez RC, Woods RE. Digital Image Processing. 3rd ed. Upper Saddle River:
Prentice Hall; 2007.

37. Pézier A, Jezzini SH, Marie B, Blagbum JM. Engrailed alters the specificity of
synaptic connections of Drosophila auditory neurons with the giant fiber. J
Neuosci. 2014;34:11691–704.

38. Cardona A, Saalfeld S, Arganda I, Pereanu W, Schindelin J, Hartenstein V.
Identifying neuronal lineages of Drosophila by sequence analysis of axon
tracts. J Neurosci. 2010;30:7538–53.

39. Chiang A, Lin C, Chuang C, Chang H, Hsieh C, Yeh C, et al. Three-dimensional
reconstruction of brain-wide wiring networks in Drosophila at single-cell
resolution. Curr Biol. 2011;21:1–11.

40. Ronneberger O, Liu K, Rath M, Rueß D, Mueller T, Skibbe H, et al. ViBE-Z: a
framework for 3D virtual colocalization analysis in zebrafish larval brains. Nat
Methods. 2012;9:735–42.

41. Hennessy JL, Patterson DA. Computer Architecture: A Quantitative
Approach. 5th ed. Waltham: Morgan Kaufmann Publishers Inc.; 2011.

42. Photoshop Inspiration, Photoshop Information | Photoshop.com. Adobe Inc.
www.photoshop.com/ (2016). Accessed 9 Nov 2016.

Wan et al. BMC Bioinformatics (2017) 18:280 Page 15 of 15

http://www.vtk.org
https://www.fei.com/software/amira-3d-for-life-sciences
https://www.fei.com/software/amira-3d-for-life-sciences
http://www.bitplane.com/imaris/imaris
https://www.opengl.org/registry/doc/glspec45.core.pdf
https://www.opengl.org/registry/doc/glspec45.core.pdf
https://www.khronos.org/registry/cl/specs/opencl-2.1.pdf
http://ieeexplore.ieee.org/document/4610935/
https://www.amd.com/Documents/10-Bit.pdf
https://www.amd.com/Documents/10-Bit.pdf
http://www.nvidia.com/content/quadro_fx_product_literature/TB-04631-001_v05.pdf
http://www.nvidia.com/content/quadro_fx_product_literature/TB-04631-001_v05.pdf
http://www.photoshop.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Implementation
	Multichannel streaming
	Visualization of channel data
	Channel intermixing
	Floating-point rendering
	Freehand segmentation
	OpenGL-OpenCL interoperation
	Results
	Multichannel streaming
	Visualization of channel data
	Channel intermixing
	Floating-point rendering
	Freehand segmentation
	OpenGL-OpenCL interoperation
	Comparing FluoRender to similar tools
	Discussion
	Conclusions
	Additional files
	Abbreviations
	Acknowledgements
	Funding
	Availability and requirements
	Authors’ contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	Publisher’s Note
	Author details
	References

