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Abstract

Background: The stress fibers are prominent organization of actin filaments that perform important functions in
cellular processes such as migration, polarization, and traction force generation, and whose collective organization
reflects the physiological and mechanical activities of the cells. Easily visualized by fluorescence microscopy, the
stress fibers are widely used as qualitative descriptors of cell phenotypes. However, due to the complexity of the
stress fibers and the presence of other actin-containing cellular features, images of stress fibers are relatively
challenging to quantitatively analyze using previously developed approaches, requiring significant user intervention.
This poses a challenge for the automation of their detection, segmentation, and quantitative analysis.

Result: Here we describe an open-source software package, SFEX (Stress Fiber Extractor), which is geared for
efficient enhancement, segmentation, and analysis of actin stress fibers in adherent tissue culture cells. Our method
made use of a carefully chosen image filtering technique to enhance filamentous structures, effectively facilitating
the detection and segmentation of stress fibers by binary thresholding. We subdivided the skeletons of stress fiber
traces into piecewise-linear fragments, and used a set of geometric criteria to reconstruct the stress fiber networks
by pairing appropriate fiber fragments. Our strategy enables the trajectory of a majority of stress fibers within the
cells to be comprehensively extracted. We also present a method for quantifying the dimensions of the stress
fibers using an image gradient-based approach. We determine the optimal parameter space using sensitivity
analysis, and demonstrate the utility of our approach by analyzing actin stress fibers in cells cultured on
various micropattern substrates.

Conclusion: We present an open-source graphically-interfaced computational tool for the extraction and
quantification of stress fibers in adherent cells with minimal user input. This facilitates the automated
extraction of actin stress fibers from fluorescence images. We highlight their potential uses by analyzing
images of cells with shapes constrained by fibronectin micropatterns. The method we reported here could
serve as the first step in the detection and characterization of the spatial properties of actin stress fibers to
enable further detailed morphological analysis.
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Background

The stress fibers are prominent assemblies of filamentous
actin (F-actin) commonly observed in adherent tissue
culture cells. Often considered to be the parallels of the
contractile sarcomeric units of muscles [1], each stress
fiber arises from higher-order organization of >10-30 F-
actin filaments, numerous actin cross-linking proteins,
and non-muscle myosin II molecular motors [1-8]. The
stress fibers generate substantial mechanical forces that
power cellular contraction against the extracellular matrix
[9-12]. Meanwhile, the formation, stability, dynamics, and
morphology of the stress fibers are highly regulated by
mechanical and biochemical cues [13-22]. For instance,
upregulation of contractility, actin polymerization, and
matrix adhesion promote the formation and thickening of
stress fibers, whereas cell relaxation, the inhibition of
contractility, and actin cytoskeletal disruption lead to their
disassembly and disintegration [15, 17, 18, 20].

A typical adherent cell contains an ensemble of stress
fibers that span between adhesion sites or interconnect
with one another across the cells, forming an integrated
contractility apparatus that plays central roles in morpho-
dynamic programmes such as migration, adhesion, and
polarization [21, 23-26]. Stress fiber organization there-
fore underpins important cellular behaviors involved in
both normal and pathological processes including devel-
opmental morphogenesis and cancer metastasis [27-30].
Since the stress fibers can be readily visualized both in
living or fixed cells, by fluorescence microscopy using F-
actin targeting fluorophores [31-33], the architecture of
the stress fiber network has long been recognized as a key
phenotypic reporter of cellular physiology [34]. Neverthe-
less, although such images may encode valuable informa-
tion on cellular signaling and mechanobiological states, in
many studies the analysis of the stress fiber network archi-
tecture were often restricted to qualitative descriptions, in
significant part due to the limited availability of appropri-
ate methods for quantitative extraction and analysis of
salient features of the stress fiber networks.

Stress fibers typically are observed as networks of
numerous elongated filaments. The recognition of fila-
mentous image features has been extensively explored in
fields such as geospatial informatics, neurosciences and
astrophysics [35—37]. However, due to large variations in
imaging methods, feature complexity, image resolution,
and noise level, methods developed for a given type of
curvilinear structures may not be directly applicable to
others. For stress fibers, several approaches have previously
been developed for their characterization [12, 38—44]. For
example, order parameters analysis has been used to
describe the aggregate image texture and orientation,
without explicit treatment of each discrete stress fibers
[38], thus avoiding the challenging task of detecting
and segmenting individual filaments. Alternatively, a
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simulation-based approach can be used to study the stress
fiber networks based on Finite Element analysis of idealized
cellular architectures [12, 40—45]. Likewise, stress fiber net-
works can be treated as a micrograph-based linear super-
position of filaments such that relevant coefficients can be
solved by linear optimization [40]. However, major limita-
tions of these approaches are their inability to extract em-
pirical characteristics such as the dimension, density, and
interactions between filaments, which are of key biologically
relevance in the study of actin cytoskeletal organization.

We note that an approach that enables the extraction
of individual stress fibers is potentially highly beneficial,
particularly as this would permit direct correlation be-
tween experiments and theoretical models, a key step
towards quantitative and predictive understanding of the
underlying mechanisms [40]. However, existing methods
for discrete filaments extraction have been parametrized
for sparsely distributed filaments in cell periphery, cytoskel-
eton networks polymerized in vitro, or super-resolution
microscopy images where improved resolution permits
visual distinction of filaments [46—55]. To our knowledge, a
computational method for the identification and complete
extraction of the stress fibers in fluorescence micrographs
of cells has not been available.

While the stress fibers are often the most prominent F-
actin-containing cellular features, a number of technical
factors pose significant challenges for their automated
extraction. These include the complex organization of the
filaments, such as filament intersection and convergence,
and the presence of numerous F-actin-containing struc-
tures which may appear as bright puncta or as indistinct
background intensity which reduces the local contrast of
the stress fibers (Fig. 1b, ¢, Additional file 1: Figure S1). In
this study we present a computational strategy to address
these challenges, implemented as a package called SFEX
(Stress Fibers Extractor) (see Additional files 2 and 3). In
brief, this involves two major steps, linear structure
enhancement and stress fiber reconstruction (Fig. la). In
the first, neighborhood-based enhancement methods, line
filter transform (LFT) and orientation filter transform
(OFT) [56], were applied to the raw fluorescence image to
selectively enhance the contrast of linear objects against
different shape profiles, allowing detection and segmenta-
tion by binary thresholding. Subsequently, minimal linear
filament fragments which represent the centerlines of
detected stress fibers were generated from the skeleton-
ized binary images. These were then recombined to
reconstruct the traces of individual stress fibers. Carried
out iteratively, this process permits extraction of the
majority of stress fibers in cells, thus allowing the
spatial attributes of both individual fibers and their col-
lective architecture to be determined. Altogether, SFEX
enables the automated extraction of the fiber networks
from fluorescence micrographs, and thus may facilitate
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Fig. 1 TIRFM images of F-actin and the analysis pipeline for stress fiber extraction a Analysis pipeline for image enhancement and segmentation
of stress fibers. b TIRFM images of U20S cells plated on Y- (1), crossbow- (2) and disc-shaped (3) micropatterns (red boxes) with red, green and
blue arrows indicating regions of stress fiber branching. Scale bar, 5 um. ¢ Enlarged images of regions highlighted by red, green and blue arrows
in (1) and (2) of (B). Scale bar, 2 um

large-scale quantitative analysis of actin stress fiber pro-
files for dissecting molecular mechanisms or in high-
throughput screening applications.

Methods

Cell Culture and specimen preparation

Human Osteosarcoma Cells (U20S) were obtained from
the American Type Culture Collection (ATCC, Manassus,
VA) and cultured in McCoy’s 5A media (Gibco) supple-
mented with 10% heat-inactivated fetal bovine serum
(Gibco), 1X glutaMAX (Gibco) and 1% penicillin/stre-
ptomycin (Gibco) and were maintained in the incubator at
37 °C with 5% CO,. Cells were seeded on a Starter’s
CYTOOchip™ in a 35 mm dish at the density of 75,000
cells/ml, and allowed to adhere for 20 mins before incuba-
tion. After 30 mins of incubation, unattached cells were
removed by triple rinsing with DPBS (Dulbecco’s Phosphate
Buffered Saline). The attached cells were allowed to spread
for 3 hours in cell culture media before fixation. Cells were
fixed with 4% Paraformaldehyde (Electron Microscopy
Science) in PBS (Phosphate Buffered Saline), permeabilized

with 0.2% Triton X-100 (Sigma) and stained with Alexa
Flour 568 Phalloidin (Life Technologies) overnight. The
samples were then mounted on a glass slide with PBS as
imaging buffer and sealed by vaseline-lanolin-paraffin mix-
ture [57] for TIRF imaging.

Total Internal Reflection Fluorescence Microscopy (TIRFM)
imaging

The specimens were imaged by Nikon Eclipse Ti-E inverted
microscope with motorized total internal reflection fluores-
cence (TIRF) illuminator. The microscope is equipped with a
sCMOS camera (Orca Flash 4.0, Hamamatsu) and a 405/
488/561/647 TIRF Laser Dichroic filter (Chroma Technolo-
gies). Single cells were acquired under TIRF mode with a 60X
oil-immersion objective (NA 149 Apo TIRF). Fluorophores
were excited at 30% intensity of a 60 mW 561 nm laser.

Image enhancement by line and orientation filter transform
For LFT, at each (x, y) pixel we defined a neighborhood
of radius » within which linear features are to be
assessed (Fig. 2b). A line segment of length 2r centered
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Fig. 2 Anisotropic image enhancement. a, ¢ Images of U20S cell plated on crossbow-shaped micropattern before (A) and after (C) image enhancement
by LFT and OFT (B). Blue box: a region containing two parallel filaments of low contrast with background. Purple box: an area containing a cluster-like noise
and a filamentous structure. b An illustrative enhancement filter with a total length of 2r and a stepwise rotation angle of 0. Scale bar, 5 um. d, e Enlarged
images of blue and purple boxes in (A) and (B) respectively. Scale bar, T um. f Normalized intensity profiles of the green-cropped regions (D, E, left) the blue
square boxes from (A) and (B). g Normalized intensity profiles of the red-cropped regions (D, E, right) in the purple square boxes from (A) and (B).

distance (pixel)

at each pixel is rotated stepwise with an angle 6 be-
tween -90° and 90° (Fig. 2b). The direction along
which the accumulated image intensity is the largest
is designated the preferred orientation, 0,,,,. As de-
fined by Eq. 1 and 2, this process is repeated for all
pixels to generate two image maps: the intensity map
(Lintensity)» Where each entry is the mean pixel value
along the preferential direction of that pixel, and the
orientation map (L, iensasion), Which contains the pre-
ferred direction at each pixel.

max _zg<z Z:}rl (% + tcosO, y + tsinf)
2r+1

Lintensity (xa J/) =
(1)

max_zcg<z Z:;rl (% + tcos, y + tsinf)
2r+1

Lorientatian (x7 y) =arg

(2)

The LFT step above serves to enhance linear fea-
tures using only the image intensity information.
However, in addition to the intensity, linear structures
can also be recognized by considering the preferred

directions of both the base pixel and its neighbors.
To incorporate this information, for each pixel we
performed a second filter transform, OFT, to explore
whether the neighboring pixels along 0,,,, have simi-
lar preferential directions. As calculated by Eqgs. 3-8,
these criteria thus assigned the probability score for a
pixel being on a filamentous structure.

r .
O(x’y) = thfr [Lun'entatiun (x + £ oS Upay, y +1t Sln“max)a vamx]

(3)

Where
[(p,6), Ve |=p c08(2(0-ar)) (4)
P = Lintensiry (%, ) (5)
60 = Lovientation (%, ) (6)
Ve = COS®pay X + SINApay ¥ (7)
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Reconstruction of the stress fiber traces

The significantly increased contrast (Fig. 2f, g) due
to LFT and OFT facilitates the use of a segmentation
threshold to extract the stress fiber networks. We
used Otsu’s method [58] to determine the initial
threshold level. Subsequently the binarized image
was skeletonized to determine the centerlines of the
filaments. However, we noted that a typical stress
fiber is rarely an isolated linear structure, but instead
is usually associated with numerous small fibrils
branching off to the sides (Fig. 1b, ¢, red, green and
blue arrows). This characteristic gives rise to highly
branched skeletons, especially in the arc regions,
which impedes simple identification of the center-
lines of actin bundles.
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To facilitate the tracing of the appropriate stress
fiber centerlines, we partitioned the skeleton into
separate unbranched linear segments by removing
the junction regions whose local 8-connected neigh-
borhood contains more than three filament pixels.
This results in a pool of piecewise-linear ‘filament
fragments’. Subsequently, we applied a series of geo-
metric constraints to group together the fragments
that best capture the stress fibers traces in the ori-
ginal image. We then calculated the propagation dir-
ection for each terminus of the fragments, defined as
the orientation pointing from the center of mass of
the fragment to the tip itself (Fig. 3a). Next, a fan-
shaped sector region is generated, anchored at each
tip (Fig. 3b). A local search is then performed within
each search fan to locate potential tips for fragment
connection. Finally, the reconstruction of each stress
fiber is carried out by combining every pair of tips, i
and j, that satisfies three geometric constraints: (1)
similarity, (2) proximity, (3) continuity, as defined by
Egs. 9, 10, 11 (Fig. 3c—e).

C

similarity

/'

continuity

/

Fig. 3 Parameters for fragment termini search and pairing. a Definition of the terminus propagation direction: the direction (orange arrow) from
the local center of mass (green dot) to the terminus (red dot). b Definition of the search sector (blue contour): area swept by the search angle
around the propagation direction. ¢ Similarity criterion defines the maximum angle difference between the propagation direction (orange arrow)
of the based terminus (red dot) and the reverse direction (purple arrow) of the endpoint (green dot) under investigation. d Proximity criterion
defines the maximum distance (blue two-head arrow) between every two endpoints (red and green dots). e Continuity criterion defines the
maximum angle difference between the propagation direction (orange arrow) of the based terminus (red dot) and the vector (blue arrow)
pointing from the red dot to the green dot. f Inner filament criterion for the case where multiple eligible fragments are found. The connection
between the red and green termini is to be rejected in preference of the inner filament fragment
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Similarity : D<¢i, ¢j)s¢m (9)

Proximity : ||d;;||<dmax (10)

Continuity : ¢;=¢; < ¥, (11)

with the definition of variables listed in Table 1.

However, in many occasions, one or more bridging
fragments that themselves satisfying these three criteria
can be found in the search fan (Fig. 3f). To address this,
the fourth criterion is applied to check for the existence
of such inner fragments and whether they are eligible to
bridge the two fragments being investigated, defined as
follows (variables definition in Table 1):

D(¢y: ¢5)< b (12)
D= <V max (13)
(). )= b (14)
G b <V ma (15)

For each iteration, it is possible that multiple frag-
ment termini may satisfy the aforementioned four con-
ditions with respect to the base terminus. To select the
optimal partner terminus for combination, we therefore
introduced a scoring system to compute the priority of
all termini based on how they satisfy the similarity and
continuity criteria as shown in Eq. 16 (variables defin-
ition in Table 1).

Table 1 Definition of geometric constraints parameters
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(16)

The termini pair with the lowest score are then
assigned to the same stress fibers, while the unpaired
fragment termini are designated as the termini of stress
fibers. The process is iterated for all fragments and,
when completed, yields the most probable centerline
trace of each stress fiber within the networks. Using a
desktop workstation, the entire calculation for a typical
image (512 x 512 pixels or 55 x 55 um) was completed in
less than two minutes. Subsequently, the centerline trace
for each stress fiber can be used for further analysis of
the stress fibers in lieu of the entire image, thereby help-
ing to reduce the data set dimension. For example, the
orientation of the stress fibers can be calculated using
the local information centered around each pixel along
the centerline.

Generation of synthetic images and quantification of
extraction accuracy

To systematically evaluate the capability of our method in
extracting stress fiber filaments, sensitivity analyses were
performed to benchmark the dependence of our method
on the values of key parameters and the magnitude of
background noise. As shown in Fig. 4a, we generated syn-
thetic images using simple geometric patterns of curves

Equation Symbol Definition

9 o Propagation direction of fragment i.

9 ol Propagation direction of fragment ji.

9 D The function that calculates the orientation difference between ¢; and the reverse direction of ¢;.
9 Grmax The maximum allowable difference between ¢; and the reverse direction of ¢;.

10 di The magnitude of the distance vector between i and j.

10 Amax The maximum allowable gap length.

11 oy The direction of the distance vector pointing from i to j.

11 WUmax The maximum allowed direction mismatch between the fragment i and distance vector.
12 @ The propagation direction of the tip of bridging fragment m close to fragment i.

13 Oim The distance vector between fragment i and the its closest tip of fragment m.

14 % The propagation direction of the tip of bridging fragment m close to fragment j.

15 (pfm The distance vector between fragment j and the its closest tip of fragment m.

16 G Eligibility cost for connecting the base terminus and its ith partner tips.

16 Cangle_weight Weight for similarity criterion.

16 Coap_weight Weight for continuity criterion.

16 A6; Difference for similarity.

16 ABgapi Difference for continuity.
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Fig. 4 Assessment of filament reconstruction accuracy. a Synthetic ground truth image containing both curved and straight lines, mimicking
stereotypical stress fiber arrangement. b Synthetic image with PSNR of 20 dB. ¢ 9 Detected filaments shown in different colors from (B). d-i) Maps
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and straight lines as the ground-truth, approximating the
two types of stress fibers shapes commonly observed in
cells. The ground truth skeletons were convoluted with a
Gaussian filter with a width comparable to the resolving
power of our TIRF microscope (0 =72 nm, image pixel
size 108 nm), and corrupted by Gaussian noise added
at varying Peak Signal-to-Noise Ratio (PSNR) (Fig. 4b,
Additional file 4: Figure S2). To quantify the perform-
ance of our method in detecting individual fibers
(Fig. 4c), we determined the false positives and false
negatives ratios, defined as 1-(M/D) and 1-(M/G), re-
spectively, where D is the number of computer-
identified filaments, G is the number of ground truth
filaments and M denotes the number of matches be-
tween D and G [59].

Automated determination of stress fiber widths

The widths of the stress fibers are known to be strongly
correlated with both cell contractility or activities of
actin regulatory pathways [1, 23, 60-62], and thus can
serve as a useful read-out of cell mechanical properties.
Although this can be calculated interactively from line
profile of stress fibers, due to the large numbers of stress
fibers per cells, we sought to automate this process. For

each thick stress fiber trace (Additional file 5: Figure
S3A, synthetic image example shown), we first calcu-
lated the Euclidean distance map (Figure S3D, synthetic
image example shown). Since each stress fiber can be
considered as an open curve, each distance level gener-
ated by connecting pixels with the same distance value
appears as a closed loop enveloping the stress fiber.
Based on the original fluorescence micrographs, we then
calculated the mean of the gradients along each distance
level. The mean gradients as a function of the distances
from the stress fibers were then obtained, and the dis-
tance level with the highest mean image gradient is iden-
tified, with the average width of the stress fiber defined
as twice this value (Additional file 5: Figure S3G-J).

Extracting information from secondary actin stress fiber
networks

The actin stress fibers exhibit significant variations in
their sizes and intensity. Thus, while the prominent
primary stress fibers can be easily detected, lower inten-
sity secondary fibers that often form complex networks
are more challenging to segment accurately (Fig. 5a-c).
Nevertheless, as these types of stress fibers can comprise
a significant portion of F-actin structures in cells, we
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Fig. 5 Stress fiber extraction and orientations. a Skeleton of stress fibers (red) overlaid on TRFM image of the protrusive region of U20S cell
plated on crossbow-shaped micropattern. b, ¢ Enlarged regions of green and blue boxes in (A). d Binary image of stress fiber network overlaid
with network skeleton (red). e Distribution of actin orientations. Colorbar, degree

also implemented a method to glean quantitative infor-
mation from such networks. Following the extraction of
the high-intensity stress fiber networks from the cell
images, Otsu thresholding is used to segment cell areas
devoid of thick stress fibers (Fig. 5a-c). The integrated
intensity of pixels within this region can then be calcu-
lated, for example, as a function of the distance from the
cell edge (Fig. 5d, black region). This provides a useful
metric for the density distribution of the actin networks
as a function of the cell morphology, particularly in
case of cells on micropattern, described further below,
where the cell edge can be used as a common spatial
frame of reference.

Statistical analysis and computation

The computational routines were programmed in MATLAB
(Release R2015a, Natick, MA). All computations were
performed on Windows 7 workstation (Intel(R) Xeon(R)
CPU E5-2640 v3 @ 2.60GHz; RAM 192GB; 64-bit OS).
Statistics and graphing were performed in MATLAB.

Results and Discussion

Fluorescence imaging and analysis of actin stress fibers
The spatial distribution of the actin stress fibers is closely
coupled to the morphology of the cells. However, with
conventional cell culture methods, cell shapes for a given
population become highly heterogeneous, complicating a
systematic study of the spatial organization of actin struc-
tures. One of the methods to regularize cell morphology is
the use of micropatterns to constrain cell adhesion to
within areas printed with extracellular matrix proteins
such as fibronectin (insets 1-3 in Fig. 1b), with the outly-
ing areas coated with non-adhesive materials [31, 63, 64].
As seen in Fig. 1b, human osteosarcoma (U20S) cells

cultured on such fibronectin-micropatterned cover
glasses (CYTOOChips, Cytoo Inc.) were highly re-
stricted to geometric forms such as Y-, crossbow-, and
disc-shaped patterns, exhibiting significant uniformity
across the population (Fig. 1b, Additional file 1: Figure
S1). Using Alexa Fluor 568 phalloidin to label F-actin,
diffraction-limited fluorescence images of stress fiber
organization can be obtained by total internal reflection
fluorescence microscopy (TIRFM) imaging.

As seen in Fig. 1b-c and Additional file 1: Figure S1,
while the stress fibers are often the most prominent F-
actin containing features, fluorescence micrographs of
F-actin usually contain numerous other image features
that pose significant challenges for the automated ex-
traction of stress fibers. These include the complex
organization of the filaments, such as filament intersection
and convergence (Fig. 1b, ¢, Additional file 1: Figure S1),
numerous F-actin-containing cellular structures which
may appear as bright puncta (Fig. 1b, ¢, Additional file 1:
Figure S1), and nebulous background intensity which
reduces the local contrast of the stress fibers (Fig. 1b, c,
Additional file 1: Figure S1). Thus, while the qualitative
patterns of stress fiber organization can be readily recog-
nized by visual inspection, the automated extraction of the
fibers against feature clutters and high background noises
remains a difficult task. To address these, we made use of
anisotropic image enhancement methods to accentuate
the fibrous structure of interest. Anisotropic image en-
hancement has been widely used for recognizing cellular
structures such as cytoskeleton and membrane, with prior
knowledge about the shapes of interest [56, 65-67]. We
found that robust anisotropic enhancement can be
achieved using the LFT and OFT methods which are rela-
tively easier to implement compared to other approaches.
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LFT and OFT electively highlight all component pixels
along filamentous structures, while suppressing non-linear
features [56]. As shown in Fig. 2, LFT and OFT enhance
the relative contrast of filamentous features and also sup-
press the intensity of non-filamentous structures, there-
fore enabling the use of a simple binarization threshold to
extract features of interest. The binarized image of the
stress fiber networks is then skeletonized and regions of
filament junctions are removed to generate unbranched
linear fragments. Subsequently, the filaments are re-
constructed by using four geometric criteria for filament
fragments recombination, as illustrated in Fig. 3. These
computational steps, and subsequent quantitative analysis
of the networks, can be performed using the included soft-
ware package, SFEX (Stress Fibers Extractor), described in
the Supplementary Information.

Assessing the performance of stress fiber reconstruction
Since the architectures of stress fiber networks differ
drastically between different cells even under the same
condition, the optimal parameter set for fiber extraction
also varies from cell to cell. To aid users in estimating
the appropriate input parameter range, particularly
against image noise, we performed sensitivity analyses by
systematically varying a given pair of key parameters,
keeping the rest fixed, and used SFEX to extract the
stress fibers from synthetic images as shown in Fig. 4a—c.
The results of the analyses were then scored against the
ground-truth and the errors were visualized as the heat
maps shown in Fig. 4d—i.

We first evaluated how the neighborhood radius r of
the LFT/OFT enhancement together with the noise level
of the original images affected the accuracy of stress
fiber detection. As shown in Fig. 4d and g, both the
neighborhood radius r and image quality are strong de-
terminants of the tracing accuracy. The highest accuracy
(low false positives and false negatives ratio, blue regions
in Fig. 4d and g) was found to correspond to r=~1.2 pm,
which represents the optimal balance, as the large values
of r may introduce distortion to curved fibers and hence a
low tracing accuracy, while the smaller values of r may
not provide sufficient enhancement for the fibers relative
to noises. Also, these results suggest that our method ap-
pear to perform reliably for image quality exceeding
PSNR ~ 20, with rapid deterioration with the increase in
image noise (see Additional file 4: Figure S2 for examples
of noise levels).

We next explored how the search radius parameter for
the fragment reconstruction affected fiber reconstruction
accuracy. Surprisingly, we observed that beyond the
lower limit of search radius ~16 pixels which corre-
sponds to ~1.7 um, a relatively wide range of search ra-
dius can be used to obtain high reconstruction accuracy,
as seen in Fig. 4e and h. This permissiveness suggests
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that the detection accuracy is not significantly affected
as long as the search region encloses enough potential
fragment termini for recombination analysis. Also this
indicates that our algorithm for termini pairing is prob-
ably sufficiently robust that the optimal pairing can be
determined regardless of the size of the search fan. Like-
wise, the performance of our method is relatively resili-
ent with respect to the search fan angle beyond ~20
degree, as shown in Fig. 4f and i, suggesting that a rela-
tively large search sector should be used to avoid poten-
tial mismatch of termini pair. Similar to the case of the
OFT radius above, the accuracy degrades rapidly once
image quality is reduced below PSNR ~20. Here, the
filament extraction error likely originates from noise-
induced error in the filament propagation direction
(Fig. 3b). Interestingly, we note that a narrow region of
relatively good accuracy can be observed at ~ PSNR 12-
14. As can be seen from Additional file 4: Figure S2, the
images are significantly degraded by noise in that range,
such that the filaments are extracted in multiple small
segments. In this case, the bridging filament criterion
(Fig. 3f) would be invoked, which may help improve the
accuracy to a certain extent. However, as the zone where
this effect takes place is relatively narrow, it is advisable
to obtain image quality exceeding PSNR ~ 20 for accur-
ate analysis of the stress fibers.

We also performed sensitivity analysis for the stress
fiber width determination. For this, we used a ground
truth image consisting of a curved fiber (Additional
file 5: Figure S3A and Additional file 6: Figure S4A).
The synthetic images were corrupted by noise (Additional
file 6: Figure S4B-G) and the width of the filaments calcu-
lated using the distance map-based method described
above. As shown in Additional file 5: Figure S3B-C, E-F,
the width of the fiber obtained from the analysis appears
to capture well the width of the fiber across a wide range
of noise level, (Additional file 6: Figure S4H), suggesting
that our distance map gradient method is highly resistant
to image noise.

Quantitative analysis of geometrically confined cells

In recent years, image-based morphometric profiling of
cells has been an active area of investigation both in
basic cell biological studies and in theranostic develop-
ments [68, 69]. In particular, the invention of extracellular
matrix micropatterning technologies which standardize
cell shapes [31, 63, 64] has greatly facilitated image pro-
cessing and statistical analysis. Fluorescence micrographs
of numerous cells with similar geometrically well-defined
shapes can be rapidly acquired by automated microscopes,
and ensemble-averaged to yield maps of how specific
molecules are stereotypically organized [63, 70, 71]. How-
ever, the effect of shape confinement on actin stress fibers
organization has not been systematically investigated,
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despite their dramatic differences between cell shapes
(Fig. 6a-f, Additional file 1: Figure S1), in part due to
the difficulties of extracting stress fibers from the im-
ages. Thus in this study we used our method to explore
how the micropatterns may influence actin stress fibers
organization.

For this work, we made use of three different micropat-
terns which are designed to elicit different cell mor-
phological responses, but with comparable total cell areas:
Y-shaped, which promotes strong adhesion and prominent
stress fibers at cell edges spanning between each ver-
tex (Fig. 1b, left); disc-shaped, which keeps the cells
unpolarized, thus devoid of thick stress fibers (Fig. 1b,
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right), featuring instead circumferential network of
secondary stress fibers that connects with adhesion
sites near the cell boundary at semi-regular intervals;
and crossbow-shaped, which induces clear front-back
polarization, with prominent stress fibers connecting
the vertices, converging on the cell rear, and intricate
networks of secondary actin stress fibers in the frontal arc
(Fig. 1b, middle).

To overlay actin images of cells on a given micropattern,
we segmented the cells and determined the centers of
mass (COMs) of the cell region (Additional file 7: Figure
S5A-C), and then performed translation and rotation to
align their COMs (Additional file 7: Figure S5D-F). The
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ensemble image is then calculated from the mean of the
aligned images. As shown in Fig. 6a, b, d, e, we observed
that the prominent primary stress fibers appear to be
nearly uniform between different cells on similar patterns,
while the organization of secondary actin stress fibers,
especially toward the cell front in polarized cell, is much
more complicated. Thus, although micropatterns help
standardize the overall cell morphology, significant cell-
to-cell variation in discrete structures such as actin stress
fibers are still observed and thus spatial information on
stress fibers organization is significantly obscured by
simple ensemble-averaging analysis.

Architecture of actin stress fiber networks as a function of
cell shapes

Since the architecture of the stress fiber networks can be
analyzed on a cell-to-cell basis using SFEX, we next demon-
strated the utility of our approach in quantifying actin stress
fibers in cells on various micropatterns. We performed
stress fiber analysis on these cells and outlined below some
important metrics useful for differentiating between their
distinct actin stress fiber organization phenotypes.

Stress fiber networks, especially in protrusive regions,
play important roles in cell polarity and migration. The
mesh of secondary actin stress fibers forms ‘band’- like
lamella structure [21, 72] parallel to the protrusive edges
of the cell (Fig. 6b, c, e, f), which are believed to be the
zones of contractility generation by myosin II motors.
We therefore first investigated whether the size of the
lamella zone is dependent on micropattern-induced cell
polarity. We compared actin organization in unpolarized
disc pattern and polarized crossbow pattern, plotting the
density of F-actin (coverage ratio of F-actin versus total
cell area) as a function of the distance from cell edge,
using the curved edge of the cell as the spatial frame of
reference. As shown in Fig. 6k-l, F-actin densities peak
at distance ~1 pum behind the cell edge, then monoton-
ously decrease toward the cell interior. A similar pattern
is observed for both unpolarized (disc) and polarized
(crossbow), suggesting that the overall radial organization
of the actin cytoskeleton may be comparable, regardless of
the extent of cell polarization.

We next investigated the orientation distribution of
individual secondary actin stress fibers, as these may be an-
other useful indicator of network organization. We skele-
tonized the network and removed the junction regions to
generate linearized fragments and calculated the orientation
of F-actin for each skeleton pixel using a 15-by-15-pixel
window (Fig. 5e). Our analysis revealed a non-uniform ar-
rangement of actin orientations in polarized cells (cross-
bow) as shown in Fig. 6i relative to non-polarized (disc)
cells (Fig. 6j, p = 8.4 x 10°°, Kolmogorov-Smirnov test). Such
difference in the azimuthal organization of the actin net-
works likely reflects the shape constraint imposed by the
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cell edge, since such secondary actin stress fibers are be-
lieved to arise from the lamellipodial front (i.e. the arc) [73],
and thus may originate uniformly in disc-shaped cells,
but with orientation preference in crossbow-shaped
cells. Thus, while the actin networks exhibit compar-
able radial organization, polarity appears to manifest in
terms of azimuthal organizational bias. Future studies
that systematically vary the dimension or the symmetry
of the pattern may thus be useful in studying how
mechanical constraints are sensed and propagated into
actin organization differences and vice versa.

Finally, we note that while the width of the stress fi-
bers are generally considered to be mechanosensitive,
dependent on factors such as substrate stiffness as well
as myosin-II dependent contractility [1, 23, 60—62], such
relationship is thus far considered to be largely qualita-
tive [23, 62], and a predictive relationship between stress
fiber attributes and cell mechanics has not been estab-
lished. Towards addressing this question, we explored
whether the dimensions of the thick stress fibers are
dependent on the size of non-adhesive regions in micro-
patterns, that is, their lengths. As shown in Fig. 6a, b,
actin filament forms thick bundles spanning the entire
borders of the non-adhesive regions. The average total
length of stress fibers on Y-shaped pattern is ~1.6 times
longer than those on crossbow-shaped pattern (Fig. 6g,
p<2x107, t-test). Interestingly, the width of the stress
fibers on the latter is also ~1.6 times larger than on
the former (Fig. 6h, p<5x10°®, T test) indicative of
an inverse proportional relationship between the
width and length of stress fibers, which may be in-
teresting to investigate further by variation of the
pattern size and in conjunction with pharmacological
perturbations.

Conclusion

We proposed an integrated computational strategy for
the enhancement, detection, and analysis of actin stress
fibers from fluorescence images of F-actin in adherent
tissue culture cells. The associated software package,
SFEX, is an open-source and highly customizable tool
equipped with graphical user interface. We implemented
anisotropic neighborhood-based filtering to enhance
linear features corresponding to the stress fibers relative
to other undesirable structures. This enables efficient
segmentation and skeletonization of stress fibers to yield
the centerline traces. Using a set of geometric criteria, the
stress fiber skeletons were regrouped from piecewise-
linear fragments to reconstruct the entire networks. We
evaluated the robustness of our approach and defined
the parameter range for optimal performance. Using
cells cultured on well-defined micropattern substrates,
we analyzed their stress fiber organization to highlight
their dependence on cell shapes. Our approach can be
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performed with minimal user input and thus should be
amenable for processing large datasets. This could be
useful both for time-lapse movies where the analysis of
large number of frames by self-consistent criteria are
required, or for high-throughput applications whereby
cells are subject to external mechanical or biochemical
perturbations.

Additional files

Additional file 1: Figure S1. Actin stress fibers architectures of U20S
cells on micropatterns. Inverse contrast TIRFM images of F-actin in U20S
cells plated on Y- (top row), disk- (middle row) and crossbow-shaped
(bottom row) micropatterns. Scale bar, 5 um (TIF 4029 kb).

Additional file 2: SupplementarySoftware_SFEX_BINF-D-16-00942. Stress
Fiber Extractor (SFEX) 1.0. This file contains a test image and all the source
code associated with the method proposed in this study (DOCX 6571 kb).

Additional file 3: SupplementarySoftware_SFEX User-Manual-BINF-D-16-
00942. SFEX 1.0 User Manual. This file is a step-by-step introduction about
the usage of SFEX (The software in Additional file 2) (ZIP 633 kb).

Additional file 4: Figure S2. Synthetic images used for assessing
filament reconstruction accuracy. Synthetic ground truth images with
introduced noise at different levels (TIF 6847 kb).

Additional file 5: Figure S3. Sensitivity analysis of filament width
measurement. A) Ground truth image. B, ) 3D visualization of images
with low (B) and high (C) noise. Projected 2D images are shown below
their 3D view. Detected filament contour is highlighted in black. D)
Distance map based on ground truth image (A). Colorbar, distance to the
centerline of ground truth filament. E, F) Enlarged view of regions
highlighted by blue arrows in (B) and (C). Detected filament contour is
highlighted in black. G) Stress fibers in a U20S cell plated on Y-shaped
micropattern. Contours of ventral stress fibers are highlighted in red.
Scale bar, 5 um. H-J) Enlarged views of regions indicated by red arrows in
(G). Scale bar, 1T um (TIF 13861 kb).

Additional file 6: Figure S4. Images for sensitivity analysis of filament
width measurement. A) Synthetic ground truth image. B-G) Synthetic
image with introduced noise at different levels. H) Detected filament
length as a function of image noise (TIF 4838 kb).

Additional file 7: Figure S5. Alignment of cells on micropatterns. A-C)
Overlay of cell contours before alignment for Y, crossbow, and disc
patterns, respectively. Crosses denote the center-of-mass (COM) of the
cell regions. D-F) COM-based overlay of aligned cell contours. n=10 for
each micropattern (TIF 943 kb).
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