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Abstract

Background: Analyses of molecular high-throughput data often lack in robustness, i.e. results are very sensitive to
the addition or removal of a single observation. Therefore, the identification of extreme observations is an important
step of quality control before doing further data analysis. Standard outlier detection methods for univariate data are
however not applicable, since the considered data are high-dimensional, i.e. multiple hundreds or thousands of
features are observed in small samples. Usually, outliers in high-dimensional data are solely detected by visual
inspection of a graphical representation of the data by the analyst. Typical graphical representation for
high-dimensional data are hierarchical cluster tree or principal component plots. Pure visual approaches depend,
however, on the individual judgement of the analyst and are hard to automate. Existing methods for automated
outlier detection are only dedicated to data of a single experimental groups.

Results: In this work we propose to use bagplots, the 2-dimensional extension of the boxplot, to automatically
identify outliers in the subspace of the first two principal components of the data. Furthermore, we present for the
first time the gemplot, the 3-dimensional extension of boxplot and bagplot, which can be used in the subspace of the
first three principal components. Bagplot and gemplot surround the regular observations with convex hulls and
observations outside these hulls are regarded as outliers. The convex hulls are determined separately for the
observations of each experimental group while the observations of all groups can be displayed in the same subspace
of principal components. We demonstrate the usefulness of this approach on multiple sets of artificial data as well as
one set of gene expression data from a next-generation sequencing experiment, and compare the new method to
other common approaches. Furthermore, we provide an implementation of the gemplot in the package ‘gemPlot’ for
the R programming environment.

Conclusions: Bagplots and gemplots in subspaces of principal components are useful for automated and objective
outlier identification in high-dimensional data from molecular high-throughput experiments. A clear advantage over
other methods is that multiple experimental groups can be displayed in the same figure although outlier detection is
performed for each individual group.
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Background
Modern molecular biology produces high-dimensional
data en masse where the number of features is much
larger than the sample size of the study or the experiment.
Some typical examples are (metric) gene and protein
expression data observed with DNA microarrays [1, 2],
next-generation sequencing (NGS) [3] or proteomics
techniques such as mass spectrometry [4, 5] or 2-D
gel electrophoresis [6]. In the case of microarray and
proteomics experiments, expression data are generally
continuous fluorescence or intensity values [7, 8], while
NGS produces expression data as read counts [9] or also
as continuous quantities [10]. Other examples of high-
dimensional data in molecular biology are methylation
levels that can also be observed with microarrays [11] and
NGS [12], or data from binding experiments such as chro-
matin immunoprecipitation (ChIP) [13] in combination
with microarrays or NGS, or affinity purification mass
spectrometry (AP/MS) [14].
Typical questions analyzed in high-dimensional data

focus on the correlation of expression levels with exper-
imental factors or with patient data. For example gene
expression data is usually analyzed to detect differen-
tially expressed genes between two levels of an experi-
mental factor (e.g. treatment versus control) or between
two patient groups [15–17]. Moreover, high-dimensional
expression data is often used to train classifier and
regression models to predict therapy outcome [18] or
survival [19, 20].
Throughout this work, the term ‘observation’ is used to

specify the measured data of one experimental unit (e.g.
one patient), and the term ‘sample’ means a set of exper-
imental units. Statistical and bioinformatics analyses of
the above questions are usually very sensitive to a sin-
gle observation, i.e. its addition or removal can seriously
affect the results. For example when searching for dif-
ferentially expressed genes or training a classifier model,
individual observations can have a strong impact on the
ranking of genes or the estimates of the classifier’s per-
formance. Therefore, quality control of the raw data often
involves their inspection with respect to extreme observa-
tions. An extreme observation in an experimental group
could either be a) regular but just extreme observation,
b) a mislabeled observation or c) the consequence of an
incorrect measurement. In the first case robust methods
can help to decrease or downweigh the outlier’s impact
[21–23]. If the last case becomes obvious, the observation
can be removed from data analysis. In the case of a mis-
labeled observation this can be corrected. In either case,
the identification of outliers can help to continue with a
correct analysis.
The most widely used tools for outlier detection in

molecular high-throughput data are hierarchical clus-
tering [24] and principal component analysis [25]. In

hierarchical clustering all observations are plotted in
a tree, where similar observations appear at branches
near to each other and unsimilar observations appear at
branches farther away from each other. Principal compo-
nent analysis (PCA) performs first a dimension reduction
so that the high-dimensional data can be represented in a
two- or three-dimensional plot while a certain proportion
of variance of the original data is maintained. In a PCA
plot similar observations group together and unsimilar
observations appear again farther away from each other.
A useful tool for interactive 3D-visualization of principal
components is given by the R-package ‘GGobi’ [26]. Using
hierarchical cluster plots and PCA plots, outliers can be
identified by visual inspection which is, however, a sub-
jective decision of the researcher.When using hierarchical
clustering, the ‘single linkage’ approach usually performs
best to identify outliers [27].
Besides visual methods, some automated approaches

have been proposed, several of them were reviewed by
Egan and Morgan [28] and Zimek et al. [29]. Meth-
ods for automated outlier detection based on robust
PCA were for example proposed by Model et al. [30],
Hubert et al. [31] as well as Filzmoser and Todorov [32].
These methods focus, however, only on the data of one
experimental group. Because in these approaches, outlier
detection and graphical representation are linked, mul-
tiple experimental groups can not be displayed in the
same plot.
In order to detect outliers individually inmultiple exper-

imental groups but to display the results in the same plot
we propose an approach that is also based on PCA. In par-
ticular, PCA is first performed for the whole data set and
bagplots are then used individually for each experimen-
tal group to identify outliers in the space of the first two
principal components. In addition, we newly present the
‘gemplot’ - the three-dimensional version of the bagplot -
and propose to use this plot for automatically identifica-
tion of outliers in the space of the first three principal
components.
In the methods section, the basic principal of PCA as

well as the concepts of bagplot and gemplot are detailed,
and the example data is described. In the results section
we demonstrate the usefulness of our approach on mul-
tiple data sets of artificially constructed principal com-
ponents and one set of public gene expression data from
a kidney cancer study. We close this work with some
conclusions.

Methods
In this section, we first describe the basic idea of PCA
and detail next the idea of outlier detection by means
of boxplots, bagplots and the new gemplot. Finally, we
present the example data that we use for illustrating our
approach.
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Principal component analysis
Genomic data typically follows a high-dimensional setting
where the number of molecular features d is much larger
than the sample size n. In order to visualize such data,
dimension reduction is usually used, for example by
means of PCA which has been widely used in genomics
data analysis. PCA projects the data into the space of
orthogonal principal components. Each component rep-
resents a certain proportion of variance of the original
data. Thus, in many cases the first two components repre-
sent more than 50% of the variance of the original data and
are sufficient to display the location of the single obser-
vations to each other and to detect extreme observations.
Raychaudhuri et al. [33] show microarray data, where the
first two components present even more than 90% of the
original variance, and Shieh and Hung [34] also point out
that a small number of components is usually needed
to explain most of the variance in high-dimensional set-
tings. Cangelosi and Goriely [35] show several data sets
of gene expression data, where the first three compo-
nents represent 80% of the original variance. Sharov et al.
[36] show gene expression data, where outliers become
obvious when plotting the first three components. More
precisely, the original (n×d) data matrix X is transformed
into d orthogonal components given by the columns of
Z = X · A [37]. It can be shown that the columns of the
(d × d) transformation matrix A are the eigenvectors cor-
responding to the eigenvalues λj (j = 1, . . . , d) of S, where
S is the sample covariance matrix of X. Moreover, the
eigenvalue λj is equal to the variance of the jth principal
component. Hence, Vj = λj/

∑
λj represents the propor-

tion of variance that is explained by the jth component.
For the two- and three-dimensional representation of the
original data one can than use the first two or three com-
ponents, respectively, given by the first three columns of
Z, i.e. z1, z2 and z3.

Boxplot, bagplot and gemplot
The box-and-whiskers-plot, mostly just called boxplot, is
one of the most frequently used graphical tools to dis-
play the quantiles of a metric feature. It consists of a
box whose lower and upper limits represent the 25- and
75%-quantile of the observed data and a bar within the
box represents the median, i.e. the 50%-quantile. Thus
the box includes 50% of the data points. In its standard
version, the whiskers go from the 75%-quantile to the
maximum of the data and from the 25%-quantile to the
minimum of the data, respectively. In order to detect
outliers the whiskers are often limited by the so called
fence, where their maximal length is only allowed to be
1.5 times the interquartile range (the difference between
25- and 75%-quantile). Each observation that is beyond
the fence is drawn as a single dot and is regarded as an
outlier.

The two-dimensional extension of the boxplot, the bag-
plot, was first presented in 1999 by Rousseeuw et al. [38].
Instead of a box, a convex hull - called the bag - is con-
tructed so that 50% of the data points in the center of the
two-dimensional point cloud are included in this bag. The
bag is determined by making use of the concepts of half-
space location depths and depth regions. For each point
θ in the two-dimensional space, ldepth(θ , (zi1, z

i
2)) is the

smallest number of data points (zi1, z
i
2), i = 1, . . . , n, con-

tained in any closed halfplane with margins through θ . In
our case, the coordinates of the data points (zi1, z

i
2) are

given by the first two principal components. The depth
region Dk is then given by the set of all θ with ldepth ≥ k.
If we denote the number of data points in Dk by #Dk , we
need to find that k∗ for which #Dk∗ ≤ �n/2� < #Dk∗−1.
The bag can than be found by interpolating between the
setsDk∗ byDk∗−1. As center of the data, the depth median
T is given by that θ with the highest ldepth. If there are
multiple such θ , T is given by their center of gravity. Sim-
ilar to the role of the whiskers in a boxplot a loop is
constructed around the bag, where observations outside
this loop are regarded as outliers. In order to construct
the loop, one first generated the fence by inflating the bag
relative to T by a factor of 3. The loop contains all data
points within the fence that don’t belong to the bag. For
the detailed description of the construction of a bagplot
we refer to the original work of Rousseeuw et al. [38]. An
algorithm for the fast computation of halfspace location
depths is for example given in Miller et al. [39].
Rousseeuw et al. already pointed out that the bag-

plot is, in principle, defined in any dimension. Instead
of halfplanes, halfspaces are then used to determine the
halfspace location depths. Since it is computationally
extreme and also hard to visualize bagplots in higher
dimensions, there was not yet an implementation for
the three-dimensional case. Here, we present this three-
dimensional version for the first time and call it ‘gem-
plot’ due to the similarity of its appearance as gem-
stones. We also provide the software package ‘gemPlot’
for the R programming environment available at https://
github.com/jkruppa/gemPlot. In order to determine the
sets Dk in the three-dimensional space, our implemen-
tation uses a three-dimensional array that lays a three-
dimensional grid across the data points. For each grid
point θ , ldepth(θ , (zi1, z

i
2, z

i
3)) is calculated. Thus, it is also

possible – though time-consuming – to calculate the gem-
plots in more than three dimensions. A special graphical
trick to make the visualization of gemplots possible is the
use of transparent colors. Thus, the depth median and the
bag (‘inner gem’) are still visible when drawing the loop
(‘outer gem’). When the median is not a single point, we
found that it is more appropriate not to display the cen-
ter of gravity but also a further gem which is made up by
another convex hull. In our implementation, the gemplot

https://github.com/jkruppa/gemPlot
https://github.com/jkruppa/gemPlot
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is drawn in an interactive device so that the researcher
can rotate the gemplot with the computer mouse and
can also zoom in and out. Furthermore, our implemen-
tation can also determine outliers in subspaces of more
than three dimensions (without visualization), which is
however computational very expensive.

Data examples
We demonstrate the practicability of bagplots and gem-
plots for outlier detection in high-dimensional data on
two sets of artificially generated principal components,
different data sets of artificial gene expression data, as well
as on a data set originating from an RNA-seq experiment
in a tumor study.

Artificial data examples
In order to make users familiar with our approach and it’s
behavior we generated two simple data sets which directly
represent the values of three principal components. In
both artificial data sets, data for two study groups were
generated. In the first example the first three principal
components, z1, z2 and z3, were drawn from the same
normal distribution within each group. Here, the order to
the three components was defined arbitrarily. For study
group one the principal components were drawn from
N (μ = −3, σ = 1) and from N (μ = 3, σ = 1) for
the second study group. The samples size for each group
was n = 100. Since outliers are more frequent in skewed
distributions, some principal components in the second
example data set were drawn from the exponential distri-
bution. In particular, z2 in one study group and z1 and z3
in the other study group were drawn from Exp(λ = 4).
In order to introduce outliers into both examples, we

changed the coordinates of arbitrarily chosen observa-
tions. In the example with only normally distributed com-
ponents, we changed the coordinates of observation 3 in
the first study group to (−6,−6,−6) and of observation 8

in the second group to (6, 6, 6). In the example with non-
normal components, we set the coordinates of observa-
tion 73 and 87 in the first group to (3, 4, 25) and (3, 10, 4),
respectively. Thus, the outlying character of observation
73 manifests itself in the third component, and that of
observation 87 in the second component.
In a further example of artificial data, we wanted to

study how outliers are detected by our approach when
principal components are derived from high-dimensional
expression data. Therefore, we simulated in two different
settings expression data from the multivariate normal dis-
tribution, Nd(μ,�), for d = 1000 genes and n = 100
samples. In both settings we used an (d × d) autoregres-
sive covariance matrix � with entries σij = ρτ ·|i−j| each
representing the covariance between gene i and j (i, j =
1, . . . , d). For i = j, we chose σij = 1 for all genes. Setting 1
included data for one experimental group, and with three
outliers. The construction of the mean vector μ for the
non-outlying observations, and the mean vectors μ1, μ2,
μ3 for the outliers is specified in Table 1. The mean vec-
tors for the outliers were constructed so that each outlier
represents a different group and appears at one direction
of the first three principal components. In setting 2, a
second group is included also with three outlying obser-
vations. Non-outlying observations and outliers for the
second group are constructed by mean vectors κ , κ1, κ2,
κ3, also specified in Table 1. In each setting, we varied the
parameter τ for the generation of the covariance matrix,
as well as the parameter fc (for fold change) that reflects
how far away an outlier is from its group (Table 1).

RNA-seq data of kidney tumors and controls
In the above simulated principal components, no within
group correlation was given. In real data with multiple
experimental groups, it may happen that principal com-
ponents within a study group are correlated, although the
principal components for the whole data are uncorrelated.

Table 1 Contruction of simulation parameters for artificial gene expression data from the multivariate normal distribution

Setting Group 1 Group 2 Outliers Parameter values

1 μ = 0d - μ1 = fc ⊗ Jd fc = 0.5, 0.75

μ2 = (fc,−fc)T ⊗ Jd/2 ρ = 0.75

μ3 = (fc,−fc, fc,−fc)T ⊗ Jd/4 τ = 0.01, 0.05

2 μ = 0d κ = 5 · Jd μ1 = fc ⊗ Jd fc = 1.0, 1.5

μ2 = (fc,−fc)T ⊗ Jd/2 ρ = 0.75

μ3 = (fc,−fc, fc,−fc)T ⊗ Jd/4 τ = 0.05, 0.1., 0.2

κ1 = κ + (fc ⊗ Jd)

κ2 = κ + ((fc,−fc)T ⊗ Jd/2)

κ3 = κ + ((fc,−fc, fc,−fc)T ⊗ Jd/4)

Setting 1 represents data for one group with three outliers. Setting 2 represents data for two group, each with three outliers. The last columns shows the simulation
parameters that are varied. The mean vectors in group 1 and group 2 for regular observations are given by μ and κ , and those mean vectors for outlying observations are
given by μ1, μ2, μ3 and κ1, κ2, κ3. In this notation, JL denotes a vector of ones of length L and ⊗ denotes the symbol for the Kronecker product
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In the simulated data principal components were gen-
erated uncorrelated whithin each group. We therefore
considered also one example of real data from an RNA-
seq experiment. As will be demonstrated in the analysis of
these data, correlation between the components whithin
a group can have a strong impact on the outlier detec-
tion. The related experiment was performed as part of The
Cancer Genome Atlas Project [40] and involved samples
from kidney renal clear cell carcinomas. The data set con-
tains expression data of d = 20531 genes in n = 144 tissue
samples from either non-tumor (control) tissue or tumor
tissue. The total sample divided into 72 observations from
each tissue type. The data is available in the R-package
‘SimSeq’. The experiment was originally conducted to find
pathways and genes which take part in development of
kidney cancer, or renal cell carcinomas (RCC), which are
a common group of hemotherapy-resistant cancer types
and therefore of special interest for the search of gene
mutations [40].

Results
In this section we show the results of outlier detection in
the example data sets and the simulation study. In detail,
we show the different results that bagplots and gemplots
produce and add a comparison with outlier detection by
means of hierarchical clustering.

Analysis artificial principal components
In the first example with normally distributed princi-
pal components, the outlying observations 3 and 8 were
detected in the two-dimensional analysis using a bagplot
for each of the two study groups (Fig. 1). In addition,
another outlier, observation 64, was detected in the first

group. When the analysis if restocked by the third princi-
pal component observation 64 is not charged as an outlier
any more, but a new outlier in the second study group,
observation 49, appeared.
In the second example, where some principal compo-

nents were not normally distributed, the vanishing and
emergence of outliers when switching tomore dimensions
becomes even much clearer. In the first (blue labeled)
study group only observation 87 is detected as outlier in
the bagplot approach (Fig. 2). When turning to the gem-
plot representation, also observation 73 is be detected. In
the second study group (red labeled), observations 65 and
97 are detected as outliers in the bagplot approach but
they vanish when using gemplots.

Simulations with artificial gene expression data
Each of the scenarios was simulated in 1000 runs. Set-
ting 1 represented scenarios with only one study group.
We first simulated expression data with an overall high
correlation between the genes (τ = 0.01, Additional file 1:
Figure S1). Depending on how far away the outliers are
from the regular observations (fc=1 to fc=4), the number
of detected outliers by the different approaches changes.
In general, the boxplot approach (1D) detects more out-
liers than the bagplot approach (2D) which itself detects
more outliers than the gemplot approach (3D). When
using the 1Dmethod, boxplots for the first three principal
components were inspected. For the 2D method, bagplots
for PC1 versus PC2, PC1 versus PC3, and PC2 versus
PC3 were used. Then, the union of detected outliers was
identified for each method. The 3D method included the
first three components anyway. All three approaches only
detect outliers that are sufficiently distant from the regular

Fig. 1 Bagplots and gemplots under normaly distributed prinicipal components. Bagplots (left) and gemplots (right) for identifying outliers in the
space of the first two or three principal components, respectively. The plots consist of inner bags (or inner gemstones) that contain 50% of the
samples and an outer loop (or outer gemstone). Sample outside the loop or gemstones are flagged as outliers. While multiple experimental groups
can be displayed in the same subspace of principal components, outlier detection can be performed separately for each group. Switching from two
to three dimensions, new outliers can be found (sample 49) while other sample disappear as outliers (sample 64)
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Fig. 2 Bagplots and gemplots under non-normaly distributed prinicipal components. In real data, samples are often non-normaly distributed in
some principal components. In the blue labelled group samples follow an exponential distribution on the second and third principal components.
Thus, sample 73 becomes only an evident outlier in the three-dimensional gemplot

observations, where the 2D and the 3D method require
outliers to be more distant than the 1D methods does.
I.e., the boxplot approaches appears to be more sensitive
than the bagplot which is more sensitive than the gem-
plot. On the other hand, boxplot and bagplot produce
more false detections than the gemplot approach does,
i.e. the gemplot outperforms the other tow approaches
with respect to specificity. When the overall correlation
between the genes is rather low (τ = 0.05, Additional
file 1: Figure S2), the sensitivity of all three approaches
increases, while specificity remains nearly the same as
with high correlations. The results for scenarios in set-
ting 2, i.e. with two study groups (Additional file 1: Figures
S3, S4), are similar to those in setting 1. Again, the high-
est sensitivity is observed for the 1D approach, while the
gemplot approach yields the highest specificity. Likewise,

all three methods have a higher sensitivity when the cor-
relation among genes is low and when outliers are clearly
distant from the regular observations. Both factors, show
no strong effect on the specificity. All simulations show
also that the specificity can be improved by the gem-
plot approach, even if the variance declared by the thirst
principal component is less than 10%.

Analysis of RNA-seq data
For outlier detection we first employed the approach of
hierarchical clustering using the single linkage approach
(Fig. 3). Normally, observations on branches that form
individual clusters or that separate from the remaining
cluster tree by an extreme height are subjectively judged
as outliers by visual inspection of the cluster tree. Alterna-
tively to visual inspection, one can transfer the heights of

Fig. 3 Hierarchical cluster trees and outlier detection RNA-seq data from a kidney tumor study. Clustering was performed using the ‘single linkage’
method which is generally recommended to identify outliers. Usually, outliers are selected by subjective judgment of a researcher as samples on
branches that separate locally or by conspicuous height from the remaining branches. To select outliers in a more objective way, boxplots on the
height of the branches can be used. A disadvantage of hierarchical cluster trees is that outlier detection and arrangement of the tree depend on
whether experimental groups are displayed separately or as a whole
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the branches to a boxplot representation to identify out-
liers in a more objective way. With the latter approach
four observations are detected in the control group of the
kidney data and two in the tumor group.
When also using boxplots individually on the first

three principal components, large number of outliers is
detected (Fig. 4). Of these, observation 37 and 73 in
the control group were also detected in the clustering
approach, while there was no overlap of findings in the
tumor group. Here, it becomes also clear that each princi-
pal component can uncover a different set of outliers.
When turning to bagplot and gemplot representations

of the principal components (Fig. 5), observation 73 is
still an outlier in the two-dimensional approach but not
in the three-dimensional one. Again, bagplots were used
to inspect PC1 versus PC2, PC1 versus PC3, and PC2
versus PC3. Looking at the bagplot of the tumor group
the role of correlation between the principal components
in this group becomes clear. Observations 74 and 92 are
very unlikely to be detected as outliers in boxplots on
the first and second principal component. But due to the
within-group correlation between the first two compo-
nents the shape of the bagplot allows for their detection
as outliers. Observation 6 appears not as an outlier in the
boxplot approach but is detected by the bagplot as well
as by the gemplot. Looking at the ‘screeplot’ for the PCA
on these data, i.e. the proportion of declared variance per
principal component, one can see that there is a sharp
bend after PC3 (Additional file 1: Figure S5). According

Fig. 4 Boxplots of the first three principal components of the kidney
data. Group-specific boxplots to detect outliers on the first three
principal components. On each dimensional of the principal
component space different outliers can be detected

to the ‘elbow method’, one would argue that the princi-
pal components behind PC3 don’t provide substantially
more information and that they could be omitted for fur-
ther analysis. Nevertheless, we run the gemplot approach
with the first four components to gain 4% more by adding
PC4. In that analysis, no observation was flagged as an
outlier. Thus, the number of detected outliers reduces in
this example when increasing the number of dimensions
from 2D to 3D or 4D, i.e. when increasing the number
of principal components. The largest number of outliers
was detected by boxplots and smallest number by the
gemplots. Since in this example the proportion of vari-
ance represented was rather small (PC1: 23%, PC2: 13%,
PC3: 5%, PC4: 4%), a final decision on outliers might be
critical, here.
In order to demonstrate the impact of outliers we per-

formed a differential expression analysis between tumor
and control samples using the R-package ‘limma’ [41].
The functionality of this package allows to downweigh
individual observations, and is was shown that this can
improve the power of detecting differentially expressed
genes [22]. We performed the analysis a) without down-
weighing outliers, b) by downweighing the four outliers
detected by the bagplot approach and c) with down-
weighing the single outlier, observation 6, identified
by the gemplot approach. Figure 6 presents smoothed
scatterplots of the log foldchanges resulting from anal-
ysis with versus analysis without downweighing out-
liers as well as scatterplots of FDR-adjusted p-values
(i.e. q-values) of the different approaches. The plots
show that only one outlier can have a clear impact
on the p-values, but only a smaller effect on the fold
changes. With four outliers, the effect is even more
extreme.

Discussion
In this work we present a new approach for objec-
tive and automated outlier detection in molecular high-
throughput data using bagplots and gemplots. The
approach is useful for a wide range of data, e.g. gene and
protein expression data, methylation data, ChIP data or
AP/MS data. All these different data types can first be
visualized after dimension reduction by principal com-
ponent analysis, and bagplots and gemplots can than be
applied separately to the observations of each experimen-
tal or study group.
Our simulations of gene expression data have shown,

that outlier detection with baplots and gemplots on prin-
cipal components is less sensitive than using boxplots,
however, it also reduces significantly the number of false
detections. Although two or three components often rep-
resent a large proportion of the original variance, it is
recommended that researchers explore the variance pro-
portions by scree plots before. A scree plot can help to
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Fig. 5 Bagplots and gemplots for representation of the kidney data. In the control group, observation 73 is detected as outlier by the bagplot
appraoch but not vanishes when using gemplots. In the tumor group, three outliers are detected using a bagplot of which only observation 6
remains as an outlier in the gemplot approach

select an appropriate number of components [35]. In the
case that the first three components do not represent a
large proportion of the original variance, our approach
should be applied with cautiousness.
While we observed in the example of the RNA-seq

data that there is a tendency to find less outliers when
using more dimensions, we would though recommend
to explore the data by at least three principal compo-
nents with gemplots since more of the original variance
is explained than by individual principal components.

In particular, our simulations have shown that even if
a principal component declares less than 10% of vari-
ance, it can contribute to reduce false detections. We
observed also in other than the presented data, that gem-
plots detect less outliers than bagplots or boxplots but
this is hard to formalize and depends very much on the
shape of the total scatterplot. Thus, an outlier detected
by a boxplot of an individual principal component can
be fetched back to the set of data points within the
fence when adding another principal component. This

Fig. 6 Fold changes and p-values with and without outlier weighting. Comparison of fold changes and FDR-adjusted p-values from a differential
expression analysis between tumor and control samples of the kidney data. Axes show the result with and without weighting of outliers. The upper
plots show the effect of only one outlier, the lower plots show the effect of four outliers
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effect is mainly observed when principal components
show a within group correlation in a multiple group set-
ting. One could then argue that principal components
don’t represent the correct directions of the largest vari-
ances for that group. Analyzing each group individu-
ally by PCA would be more appropriate then. On the
other hand, one could argue that a simultaneous anal-
ysis of all study groups better reflects the variation of
gene expression or other high-dimensional measurements
in a biological system as a whole, e.g. the variation of
different subtypes in a particular cancer disease. A multi-
group PCA would for example be more appropriate if
outliers come from intermediate subtypes. In any case,
researchers should carefully consider whether a single
group or multigroup analysis is more appropriate for
their data.
Basically, our R-package ‘gemplot’ can calculate out-

lier detection in more than three dimensions, which
becomes, however, very slow for more than four com-
ponents. In contrast to other approaches that are only
based on the individual judgement of the researcher, our
approach is more objective and provides an automated
detection of outliers. A series of experiments can thus be
analysed with the same fix criteria for outlier detection.
While some other approaches also provide an auto-
mated selection of outliers ([30, 31]), these approaches
can only cope with one study group since out-
lier detection and graphical representation are linked.
Thus, our approach is specifically useful when mul-
tiple experimental groups are to be analyzed in the
same space of principal components. In general, the
approach can also be used in other subspaces of
the data obtained by dimension reduction, e.g. sub-
spaces derived by multidimensional scaling [42] or factor
analysis [43].
As pointed out by Lee et al. [44] and by Ma [45], stan-

dard PCA can fail to yield consistent estimators of the
loading matrix A in high-dimensional settings. There-
fore, their approaches for estimating the loadings should
also be considered before further exploring the data by
bagplots or gemplots.
We also have demonstrated the impact of a small

number of outliers on the selection of differentially
expressed genes. Similar effects can be assumed for
other types of analyses with high-throughput expres-
sion data, such as gene set analysis [46–48], classification
problems [18–20], and in consequence also for data
integration methods of multi-omics data [49, 50].
The concrete handling of outliers detected by our
approach depends of course on the specific meth-
ods for subsequent analysis. In this regard, another
advantage of our approach is that it can be used
independently of the methods intended for further
analysis.

Conclusion
We present the gemplot as the three-dimensional version
of boxplot and bagplot, respectively. We have demon-
strated the usability of the gemplot for outlier detection
in molecular, high-dimensional data. In contrast to other
methods, our approach allows for simultaneous outlier
identification in multiple experimental groups. The pre-
sented method is less sensitive than other methods –
depending on how extreme the outlying data are – but it
produces also less false positives.

Additional file

Additional file 1: Supplementary Figures Mean numbers of correct
detected outliers and incorrect detected outliers in a simulation with
artificial gene expression data. Figure S1. Scenario with one study group.
The four plots show results when the overall correlation between most
genes is high (τ = 0.01). Figure S2. Scenario with one study group. The
four plots show results when the overall correlation between most genes is
low (τ = 0.05). Figure S3. Scenario with two study groups. The four plots
show results when the overall correlation between most genes is high
(τ = 0.05) or low (τ = 0.2) with different fold changes (fc = 1.00 or
fc = 1.50). Figure S4. Scenario with two study groups. Continuation of
Figure S3 for scenarios where outliers are clearly distant from the regular
observations (fc = 2.00). Figure S5. Screeplot for the principal component
analysis of the kidney RNAseq data. (PDF 150 kb)
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