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Abstract

Background: Dystrophinopathy is one of the most common human monogenic diseases which results in Duchenne
muscular dystrophy (DMD) and Becker muscular dystrophy (BMD). Mutations in the dystrophin gene are responsible
for both DMD and BMD. However, the clinical phenotypes and treatments are quite different in these two
muscular dystrophies. Since early diagnosis and treatment results in better clinical outcome in DMD it is
essential to establish accurate early diagnosis of DMD to allow efficient management. Previously, the reading-frame rule
was used to predict DMD versus BMD. However, there are limitations using this traditional tool. Here, we report a novel
molecular method to improve the accuracy of predicting clinical phenotypes in dystrophinopathy. We utilized several
additional molecular genetic rules or patterns such as “ambush hypothesis”, “hidden stop codons” and “exonic splicing
enhancer (ESE)” to predict the expressed clinical phenotypes as DMD versus BMD.

Results: A computer software “DMDtoolkit” was developed to visualize the structure and to predict the functional
changes of mutated dystrophin protein. It also assists statistical prediction for clinical phenotypes. Using the
DMDtoolkit we showed that the accuracy of predicting DMD versus BMD raised about 3% in all types of
dystrophin mutations when compared with previous methods. We performed statistical analyses using correlation
coefficients, regression coefficients, pedigree graphs, histograms, scatter plots with trend lines, and stem and leaf plots.

Conclusions: We present a novel DMDtoolkit, to improve the accuracy of clinical diagnosis for DMD/BMD. This
computer program allows automatic and comprehensive identification of clinical risk and allowing them the
benefit of early medication treatments. DMDtoolkit is implemented in Perl and R under the GNU license. This
resource is freely available at http://github.com/zhoujp111/DMDtoolkit, and http://www.dmd-registry.com.

Keywords: Duchenne muscular dystrophy (DMD), Becker muscular dystrophy (BMD), Assisted diagnosis,
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Background
Duchenne muscular dystrophy (DMD) is an X-linked
recessive disorder caused by dystrophin gene muta-
tions [1]. It occurs in boys with an incidence rate of
1/3500 [2, 3]. DMD patients usually show symptoms
between 3 and 5 years old. They tend to lose ability
to walk by age 12 years and succumb to cardiopulmo-
nary failure from late teens to early 20s. Both DMD

and BMD (a milder phenotype) are caused by muta-
tions in the dystrophin gene. Dystrophin is the largest
gene in human genome, spaning 2.4 Mb and contain-
ing 79 exons. The full-length transcript expressed in
human skeletal muscle encodes a protein of 3685
amino acids, which gives rise to a 427 kDa dystrophin
protein (Dp427m) that links cytoskeletal actin to the
extracellular matrix via the sarcolemmal dystrophin-
associated glycoprotein complex (DGC). Dp427m is
composed of four domains: an amino-terminal actin-
binding domain (ABD), a central rod domain that contains
spectrin-like repeats, a cysteine-rich domain, and a unique
carboxy-terminal domain.
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The theory currently used to predict whether a mutation
will result in a DMD or BMD phenotype is the reading-
frame rule (Monaco rule): “Adjacent exons that can main-
tain an open reading frame (ORF) in the spliced mRNA
despite a deletion event would give rise to the less severe
BMD phenotype and predict the production of a lower
molecular weight, semifunctional dystrophin protein. Adja-
cent exons that cannot maintain an ORF because of frame
shifted triplet codons would give rise to the more severe
DMD phenotype due to the production of a truncated,
nonfunctional dystrophin protein [4]”. In-frame mutations,
such as deletion of exons 45-47 whose length is 474 bp (i.e.,
158 codons), would maintain the ORF and usually lead to
BMD. In the case of DMD, the well-known types of
DMD-causing mutations include large mutations
[large deletions (larger than 1 exon), large duplications
(larger than 1 exon)], small mutations [small deletions
(less than 1 exon), small insertions (less than 1 exon)],
splice site mutations (less than 10 bp from exon), point
mutations (nonsense, missense), and mid-intronic muta-
tions. Large deletions, such as deletion of exon 45 whose
length is 176 bp (causing frameshift), are the most
commonly observed and account for about 68% of the
total mutations. The second common mutation is large
duplications, such as duplication of exon 2, that account
for about 11% [5]. Large deletions usually occur in the rod
domain while large duplications mostly occur in the
ABD domain.
Currently there are a number of databases reporting

correlation between DMD genotype and phenotype. These
include the Leiden muscular dystrophy pages (http://www.
dmd.nl/) in the Netherlands [6], the UMD-DMD (http://
www.umd.be/DMD/) [7], the eDystrophin (http://edystro
phin.genouest.org/) in France, and the TREAT-NMD DMD
Global database (http://umd.be/TREAT_DMD/) in Belgium
[5]. They offer a web-based query for existing mutations,
showing their effects on the function of dystrophin gene
and protein, and the frequency of each mutation. Although
eDystrophin correlates information between protein
isoforms and structures with pathology phenotypes it
only shows structure of dystrophin protein and pheno-
type distribution for existing in-frame mutations. The
small insertions or deletions to the splice sites of
dystrophin gene appear to follow the reading-frame
rule, but it is sometimes difficult to apply to a novel
mutation or a nonsense mutation or a combination of
multiple mutations. Furthermore, exceptions to the
reading-frame rule have been widely reported. Given
this limitation, we considered the potential underlying
mechanisms of DMD and proposed using several
other rules or patterns such as “ambush hypothesis”
[8], “hidden stop codons” [9] and “exonic splicing
enhancer (ESE)” [10, 11] to distinguish between DMD
and BMD of various types of mutations.

We previously built a Registration Network of Genetic
Diseases database in China (www.dmd-registry.com) with
information of more than 1400 Chinese DMD/BMD
patients. We have now established a collaboration with
the Lilac Garden (www.dxy.cn) according to the upcoming
“One City, One Doctor Project” [12]. Lilac Garden is the
leading online network and service provider in China. Our
doctors and researchers in the field of clinical medicine
and life sciences are establishing close working relation-
ships with patients to improve the established database.
These are important for developing an effective manage-
ment team in the field. Early and accurate diagnosis is key
to an effective treatment.
In the present study, we developed a computer software

DMDtoolkit, which was based on Perl (Practical extraction
and reporting language) and R environment, to provide an
aid to the diagnosis of DMD. We also took into the
consideration of other molecular characteristics such
as mutated protein structure, pedigree of DMD family,
and frequency of mutations. The DMDtoolkit is pro-
vided in the Additional files and can be downloaded
from http://github.com/zhoujp111/DMDtoolkit or http://
www.dmd-registry.com after registration.

Implementation
The DMDtoolkit (including DMDtoolkit.pl, DMDtoolkit.R,
etc.) was designed to Perl and R by the Department of
Neurology in the General Hospital of Chinese People’s
Armed Police Forces. It is a free software for statistical
computing and graphics. DMDtoolkit is a tool for analyzing
the dystrophin mutations, predicting structure and features
of the disordered protein, and visualizing statistical and
genetic test results. It can help the clinicians and patients to
better understand DMD.

Environment
Perl is a scripting language first created by Larry Wall to
be used as a supplement to the programming which is
freely available for download and general use [13]. R is a
language and environment for statistical computing and
graphics, also freely available for download and academic
use [14]. These two platforms can be used jointly to
quickly and effectively analyze and visualize the data. All
codes were designed using ActivePerl version 5.16.2 and
R version 3.0.2 on Windows 10 Professional platform.
We refer the reader to the section ‘Availability and
Requirements’ at the end of this article, which is a
summary of the software involved in this version of
DMDtoolkit.

Data analysis and visualization framework
Smartly screening of incomplete data
We found patients’ medical records are often incomplete
in the clinical indicators for DMD patients. In order to
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maximize the use of existing data, a module of auto-
matic screening was developed. An example is provided
in Table 1.
This DMD child made three visits to the clinic and

four sets of indicators were collected: body mass index
(BMI), left ventricular end-diastolic dimension (LVEDD),
sniff nasal inspiratory pressure (SNIP) and Wechsler
Intelligence Scale for Children (WISC). Due to the non-
linear changes of some indicators, the imputation method
might not be suitable to use [15]. However, the module
named SmartScreen.R was coded with imputation method
based on random forest which was a type of ensemble
machine learning algorithm. In our work, the most in-
formative data could be to select according to weighted
score which is the sum of weight value of all indicators
[16]. The weight for each indicator equals to one by
default and can be changed by parameter settings. One or
more than one indicator of interest can be set indispens-
able, which means that if any of them was missing, the
entire data would be discarded. We used the following for-
mula to calculate the scores:

Score ¼
Xj

i

weighti � indicatori

i is the column number of the first indicator, and j is the
column number of the last indicator; weight vector can
be set via command or be changed in the program.

Assisted diagnosis for DMD/BMD
Reading-frame rule has traditionally been used to distin-
guish between DMD and BMD, which has been shown
to hold true for about 90% of patients [5, 6]. Another
two methods were later developed: the length of mu-
tated protein [8] and the number of potential stop-gains
[9]. The length of mutated protein method was initiated
by ambush hypothesis. Fanin et al. emphasized the thresh-
old effect and estimated that the size of a molecule needed
to ensure the integrity and function of the dystrophin-
associated glycoprotein (DAG) complex should be at least
200 kDa (about 43 exons or 2000 aa) [8]. In this study, the
threshold was identified as 3000 aa, which is explained in
the following paragraphs. Seligmann et al. revealed that
hidden stop codons prevent off-frame gene reading, which

was named potential stop-gains in our research. Thus, the
number of potential stop-gains was associated with harm-
fulness of the mutation [9]. At this work, the transcript
carrying a mutation or multiple mutations was translated
into the mutated protein, and the length of mutated
protein and the number of potential stop-gains were cal-
culated. The cutoff value for the length of mutated protein
was identified in DMD as less than 3000 aa or more than
3685 aa (outside of the length of normal protein). The
cutoff value for the number of potential stop-gains to be
regarded in DMD was ≠1, since normal protein has only
one stop codon. We combined all three rules (the reading
frame rule, the protein length, and the potential stop
gains) to predict a DMD versus BMD. Some other rules
or patterns were also applied. For example, large in-frame
deletions in the central rod domain removing more than
35 exons usually led to DMD [8], and mutations in the
cysteine-rich domain usually resulted in DMD [17, 18].
The effect of exonic splicing enhancer (ESE) was also con-
sidered. A file named “ESE matrices.txt” (in the Additional
file 1 “codes_DMDtoolkit”) which contains the matrices of
serine/arginine-rich (SR) proteins was used to predict the
ESE effect. Cartegni et al. revealed that point mutations
responsible for genetic diseases may cause aberrant
splicing. Such mutations can disrupt splicing by directly
inactivating or creating a splice site, by activating a cryptic
splice site or by interfering with splicing regulatory ele-
ments [19]. A patient would be diagnosed as “DMD” by
the joint predication if any method predicted him as
“DMD”. False positive rate (FPR) and false negative rate
(FNR) were calculated for each method. Here a “false posi-
tive” means that a “BMD” is falsely predicted as a “DMD”,
while a “false negative” means that a “DMD” is falsely
predicted as a “BMD”.
We made several assumptions during the data analysis

on DMD/BMD prediction:

a. For exon splice sites, we assumed that only the
nearby exons would be skipped.

b. For missing the promoter region, we assumed
that it could not create a transcript.

c. For a combination of multiple mutations, the 5′
mutation would be firstly considered. If the
transcript was predicted to stop translating
before another mutation (3′ mutation), the 3′
mutation would be ignored.

d. For some large deletions, several supplementary
rules or patterns [8, 20, 21] for the reading-frame
rule were applied.

The patient data used for this test were selected from
the TREAT-NMD DMD Global database [5], Flanigan’s
DMD patients [19] and DMD patients of GHCPAPF
(General Hospital of Chinese People’s Armed Police

Table 1 An example of incomplete data

ID Visit Age BMI LVEDD SNIP 9 m WISC

1 1 8.5 19.5 37 11.3

1 2 9.2 41 51 20.5

1 3 9.7 25.8 50 85

This table shows an example of incomplete data of a DMD boy with three
visits. BMI body mass index, LVEDD left ventricular end-diastolic dimension,
SNIP sniff nasal inspiratory pressure, WISC Wechsler Intelligence Scale
for Children
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Forces). The data were prepared in plain text format, such
as “Flanigan’s_DMD_patients.txt” in the Additional file 2
“data_DMDtoolkit”. This research was approved by
research ethics committee and medical ethics committee
of General Hospital of Chinese People’s Armed Police
Forces. We clearly confirmed that signed informed con-
sents were obtained from parents of DMD/BMD children
or BMD patients in adult. The mutations which cannot
tell the exact change of nucleotide sequence, such as
c.1335ins680, were filtered since DMDtoolkit conducts
the prediction via translating nucleotide sequence to
protein sequence.

Visualization of mutated protein
We drew the sequence of the mutated protein according to
its mutation, motifs, and potential protein length, then
applied the reading-frame rule. We also analyzed the com-
bination of multiple mutations (such as Large duplication
+ Small deletion, Splice site +Nonsense). RGui was used to
execute the code and display the statistics in the figures
(Fig. 1). More snapshots of GUIs can be found in
“codes_DMDtoolkit/Manual.docx” in the Additional file 1.
Users familiar with R can also use R studio which in-
cludes a code editor, debugging and visualization tools.
We selected some common mutations from TREAT-

NMD database [5] as test data (totally 51 mutation
types in the Additional file 2 “data_DMDtoolkit/data_-
diagnosis/DMDsamples.txt”): large deletions (≥1 exon)
(freq ≥100), large duplications (≥1 exon) (freq ≥10),
small deletions (<1 exon) (freq ≥4), small insertions (<1
exon) (freq ≥3), splice sites (<10 bp from exon) (freq ≥4),
nonsense (freq ≥10). We simulated two combinations of
multiple mutations with common mutations from TREAT-
NMD, i.e., exon56-62dup plus c.9204_9207delCAAA and
c.9563+1G>A plus c.9568C>T. In addition, there were six
combinations of multiple mutations (exon5-19dup plus
exon38-41dup, exon29dup plus exon45dup, exon45-55dup
plus exon65-79dup, exon5-18dup plus exon19-41del plus
exon42dup plus exon43-44del, exon10-16dup plus exon22-
24dup, exon50-60dup plus exon63-79dup) from Flanigan’s
DMD patients, and seven DMD patients from GHCPAPF
(exon1del plus exon2dup plus Dp427cdel, exon31-43dup
plus c.4000G>A p.Gly1334Arg, exon45del plus exon47-
52del, exon50del plus exon52del, c.1898dupA plus c.523
4G>A p.Arg1745His, exon1-12del plus Dp427c-490ntdel,
c.7096C>A p.Gln2366Lys plus c.10101_10103delAGA p.
Glu3367del). Using “c.1898dupA plus c.5234G>A p.Arg17
45His” as an example, we investigated whether the frame-
shift c.1898dupA would change the downstream missense
c.5234G>A to a nonsense. While the reading-frame rule

Fig. 1 A snapshot of RGui. RGui is an interactive GUI to execute the code that displays the statistics and figures. The command plot.trend(3,6)
performed in the R Console creates the figure of trend line which is displayed in the R Graphics
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alone was not able to answer the protein length and stop-
gain number seemed to be able to avoid this problem.

Visualizing distribution of mutations and pedigree
Basic characteristics such as distribution of mutations in
DMD patients and their pedigrees was graphed for easy
understanding with its respective modules. The test data
were selected from DMD patients of GHCPAPF.

Key features and functionalities
The functions of DMDtoolkit include:

1) aided diagnosis for DMD/BMD using genetic testing
2) drawing the sequence and motifs of mutated protein
3) drawing pedigree of DMD family
4) smart screening data to maximize the use of

existing data
5) performing statistical analysis for DMD population

and visualizing results.

Results
Assisted diagnosis
DMDtoolkit was used according to four rules: reading-
frame rule, length of potential protein, number of poten-
tial stop-gains, ESE rule, and several patterns on location
of mutations. This created three result files: *.diag, *.diag2
and *.diag3 (in the Additional file 3 “results_DMDtoolkit/
results_diagnosis/”). The differences between the three
files were the extent of application of reading-frame rule
and whether applying patterns or not: *.diag was restricted
to exon deletions/duplications; *.diag2 was expanded to
small deletions/duplications and splice sites; and *.diag3
applied ESE rule to nonsense mutations, and applied size
and location info to in-frame deletions. The following
results were obtained based primarily on the *.diag2 file
(first four columns of statistics in Table 2) and partly on
the *.diag3 file (the last column of statistics in Table 2).
The detailed results can be found in the Additional file 3
“prediction results of DMD patients.xlsx” in the folder
“results_DMDtoolkit/results_diagnosis/”. Based on the
reading-frame rule, the accuracy, FPR (false positive rate)
and FNR (false negative rate), of predicting DMD/BMD
were 91.0%, NA (not applicable), 9.0% (large deletions/du-
plications in 5161/5681 = 90.8% for accuracy, NA for FPR,
520/5681 = 9.2% for FNR; small deletions/duplications in
475/483 = 98.3% for accuracy, NA for FPR, 8/483 = 1.7%
for FNR; splice sites in 155/198 = 78.3% for accuracy, NA
for FPR, 43/198 = 21.7% for FNR) in TREAT-NMD DMD
patients. They were 85.0, 5.8, and 9.2% (large deletions/
duplications in 369/435 = 84.8% for accuracy, 23/435 =
5.3% for FPR, 43/435 = 9.8% for FNR; small deletions/du-
plications in 69/78 = 88.5% for accuracy, 7/78 = 9.0% for
FPR, 2/78 = 2.6% for FNR; splice sites in 17/22 = 77.3% for
accuracy, 1/22 = 4.5% for FPR, 4/22 = 18.2% for FNR) in

Flanigan’s DMD patients. In GHCPAPF patients they were
92.0, 0.4, and 7.6%, (large deletions/duplications in 213/
231 = 92.2% for accuracy, 0/231 = 0% for FPR, 18/231 =
7.8% for FNR; small deletions/duplications in 15/17 =
88.2% for accuracy, 1/17 = 5.9% for FPR, 1/17 = 5.9% for
FNR; splice sites in 1/1 = 100.0% for accuracy, 0/1 = 0% for
FPR, 0/1 = 0% for FNR). According to the length of poten-
tial protein, the accuracy, FPR and FNR were 91.0%, NA,
9.0% (large deletions/duplications in 5283/5681 = 93.0%
for accuracy, NA for FPR, 390/5681 = 7.0% for FNR; small
deletions/duplications in 408/483 = 84.5% for accuracy,
NA for FPR, 75/483 = 15.5% for FNR; splice sites in 99/
198 = 50.0% for accuracy, NA for FPR, 99/198 = 50.0% for
FNR) in TREAT-NMD DMD patients. They were 83.2,
6.7, 10.1% (large deletions/duplications in 374/435 = 86.0%
for accuracy, 31/435 = 7.1% for FPR, 30/435 = 6.9% for
FNR; small deletions/duplications in 59/78 = 75.6% for ac-
curacy, 4/78 = 5.1% for FPR, 15/78 = 19.2% for FNR; splice
sites in 12/22 = 54.5% for accuracy, 1/22 = 4.5% for FPR,
9/22 = 40.9% for FNR) in Flanigan’s DMD patients. In
GAPGH group they were 92.8, 2.4, 4.8% (large deletions/
duplications in 217/231 = 93.9% for accuracy, 5/231 = 2.2%
for FPR, 9/231 = 3.9% for FNR; small deletions/duplica-
tions in 13/17 = 76.5% for accuracy, 1/17 = 5.9% for FPR,
3/17 = 17.6% for FNR; splice sites in 1/1 = 100.0% for
accuracy, 0/1 = 0% for FPR, 0/1 = 0% for FNR). For the
number of potential stop-gains, the accuracy, FPR and
FNR were 91.3%, NA, 8.7% (large deletions/duplications
in 5180/5681 = 91.2% for accuracy, NA for FPR, 501/5681
= 8.8% for FNR; small deletions/duplications in 476/483 =
98.6% for accuracy, NA for FPR, 7/483 = 1.4% for FNR;
splice sites in 155/198 = 78.3% for accuracy, NA for FPR,
43/198 = 21.7% for FNR) in TREAT-NMD DMD patients.
They were 85.2, 6.0, 8.8% (large deletions/duplications in
370/435 = 85.1% for accuracy, 24/435 = 5.5% for FPR, 41/
435 = 9.4% for FNR; small deletions/duplications in 69/78
= 88.5% for accuracy, 7/78 = 9.0% for FPR, 2/78 = 2.6% for
FNR; splice sites in 17/22 = 77.3% for accuracy, 1/22 =
4.5% for FPR, 4/22 = 18.2% for FNR) in Flanigan’s DMD
patients. In the GHCPAPF group they were 93.6, 0.4, 6.0%
(large deletions/duplications in 217/231 = 93.9% for accur-
acy, 0/231 = 0% for FPR, 14/231 = 6.1% for FNR; small de-
letions/duplications in 15/17 = 88.2% for accuracy, 1/17 =
5.9% for FPR, 1/17 = 5.9% for FNR; splice sites in 1/1 =
100.0% for accuracy, 0/1 = 0% for FPR, 0/1 = 0% for FNR).
If we use 2000 aa [8] as the threshold of the length of po-
tential mutated protein, the accuracy, FPR and FNR were
31.3%, NA, 68.7% (large deletions/duplications in 1634/
5681 = 28.8% for accuracy, NA for FPR, 4047/5681 =
71.2% for FNR; small deletions/duplications in 293/483 =
60.7% for accuracy, NA for FPR, 190/483 = 39.3% for
FNR; splice sites in 155/198 = 78.3% for accuracy, NA for
FPR, 43/198 = 21.7% for FNR) in TREAT-NMD DMD
patients. They were 44.9, 5.0, 50.1% (large deletions/
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duplications in 185/435 = 42.5% for accuracy, 23/435 =
5.3% for FPR, 227/435 = 52.2% for FNR; small deletions/
duplications in 49/78 = 62.8% for accuracy, 4/78 = 5.1% for
FPR, 25/78 = 32.1% for FNR; splice sites in 6/22 = 27.3%
for accuracy, 0/22 = 0% for FPR, 16/22 = 72.7% for FNR)
in Flanigan’s DMD patients. In GHCPAPF group they
were 38.4, 1.9, 59.7% (large deletions/duplications in 81/

231 = 35.1% for accuracy, 4/231 = 1.7% for FPR, 146/231
= 63.2% for FNR; small deletions/duplications in 10/17 =
58.8% for accuracy, 1/17 = 5.9% for FPR, 6/17 = 35.3% for
FNR; splice sites in 1/1 = 100.0% for accuracy, 0/1 = 0% for
FPR, 0/1 = 0% for FNR). Thus, we chose the 3000 aa as
the threshold. The two new methods have a similar
accuracy to the reading-frame method.

Table 2 Accuracy, FPR and FNR of prediction between DMD and BMD in DMD patients of TREAT-NMD, Flanigan’s and GHCPAPF

Population Mutation type Reading-frame
rule

Length of potential
protein

Number of potential
stop-gains

Joint prediction
(Rules)

Joint prediction
(Rules & patterns)

TREAT-NMD
DMD patients

large deletions/
duplications

5161/5681 = 90.8%
NA
520/5681 = 9.2%

5283/5681 = 93.0%
NA
398/5681 = 7.0%

5180/5681 = 91.2%
NA
501/5681 = 8.8%

5419/5681 = 95.4%
NA
262/5681 = 4.6%

5463/5681 = 96.2%
NA
218/5681 = 3.8%

small deletions/
duplications

475/483 = 98.3%
NA
8/483 = 1.7%

408/483 = 84.5%
NA
75/483 = 15.5%

476/483 = 98.6%
NA
7/483 = 1.4%

476/483 = 98.6%
NA
7/483 = 1.4%

476/483 = 98.6%
NA
7/483 = 1.4%

splice sites 155/198 = 78.3%
NA
43/198 = 21.7%

99/198 = 50.0%
NA
99/198 = 50.0%

155/198 = 78.3%
NA
43/198 = 21.7%

155/198 = 78.3%
NA
43/198 = 21.7%

155/198 = 78.3%
NA
43/198 = 21.7%

total 5791/6362 = 91.0%
NA
571/6362 = 9.0%

5790/6362 = 91.0%
NA
572/6362 = 9.0%

5811/6362 = 91.3%
NA
551/6362 = 8.7%

6050/6362 = 95.1%
NA
312/6362 = 4.9%

6094/6362 = 96.8%
NA
268/6362 = 4.2%

nonsense 598/726 = 82.4%
NA
128/726 = 17.6%

725/726 = 99.9%
NA
1/726 = 0.1%

725/726 = 99.9%
NA
1/726 = 0.1%

725/726 = 99.9%
NA
1/726 = 0.1%

Flanigan’s
DMD patients

large deletions/
duplications

369/435 = 84.8%
23/435 = 5.3%
43/435 = 9.8%

374/435 = 86.0%
31/435 = 7.1%
30/435 = 6.9%

370/435 = 85.1%
24/435 = 5.5%
41/435 = 9.4%

386/435 = 88.7%
31/435 = 7.1%
18/435 = 4.1%

389/435 = 89.4%
32/435 = 7.4%
14/435 = 3.2%

small deletions/
duplications

69/78 = 88.5%
7/78 = 9.0%
2/78 = 2.6%

59/78 = 75.6%
4/78 = 5.1%
15/78 = 19.2%

69/78 = 88.5%
7/78 = 9.0%
2/78 = 2.6%

69/78 = 88.5%
7/78 = 9.0%
2/78 = 2.6%

69/78 = 88.5%
7/78 = 9.0%
2/78 = 2.6%

splice sites 17/22 = 77.3%
1/22 = 4.5%
4/22 = 18.2%

12/22 = 54.5%
1/22 = 4.5%
9/22 = 40.9%

17/22 = 77.3%
1/22 = 4.5%
4/22 = 18.2%

17/22 = 77.3%
1/22 = 4.5%
4/22 = 18.2%

17/22 = 77.3%
1/22 = 4.5%
4/22 = 18.2%

total 455/535 = 85.0%
31/535 = 5.8%
49/533 = 9.2%

445/535 = 83.2%
36/535 = 6.7%
54/535 = 10.1%

456/535 = 85.2%
32/535 = 6.0%
47/535 = 8.8%

472/535 = 88.2%
39/535 = 7.3%
24/535 = 4.5%

475/535 = 88.8%
40/535 = 7.5%
20/535 = 3.7%

nonsense 146/206 = 70.9%
31/206 = 15.0%
29/206 = 14.1%

176/206 = 85.4%
0/206 = 0%
30/206 = 14.6%

176/206 = 85.4%
0/206 = 0%
30/206 = 14.6%

176/206 = 85.4%
0/206 = 0%
30/206 = 14.6%

GHCPAPF
DMD patients

large deletions/
duplications

213/231 = 92.2%
0/231 = 0%
18/231 = 7.8%

217/231 = 93.9%
5/231 = 2.2%
9/231 = 3.9%

217/231 = 93.9%
0/231 = 0%
14/231 = 6.1%

218/231 = 94.4%
5/231 = 2.2%
8/231 = 3.5%

218/231 = 94.4%
6/231 = 2.6%
7/231 = 3.0%

small deletions/
duplications

15/17 = 88.2%
1/17 = 5.9%
1/17 = 5.9%

13/17 = 76.5%
1/17 = 5.9%
3/17 = 17.6%

15/17 = 88.2%
1/17 = 5.9%
1/17 = 5.9%

15/17 = 88.2%
1/17 = 5.9%
1/17 = 5.9%

15/17 = 88.2%
1/17 = 5.9%
1/17 = 5.9%

splice sites 1/1 = 100.0%
0/1 = 0%
0/1 = 0%

1/1 = 100.0%
0/1 = 0%
0/1 = 0%

1/1 = 100.0%
0/1 = 0%
0/1 = 0%

1/1 = 100.0%
0/1 = 0%
0/1 = 0%

1/1 = 100.0%
0/1 = 0%
0/1 = 0%

total 229/249 = 92.0%
1/249 = 0.4%
19/249 = 7.6%

231/249 = 92.8%
6/249 = 2.4%
12/249 = 4.8%

233/249 = 93.6%
1/249 = 0.4%
15/249 = 6.0%

234/249 = 94.0%
6/249 = 2.4%
9/249 = 3.6%

234/249 = 94.0%
7/249 = 2.8%
8/249 = 3.2%

nonsense 18/19 = 94.7%
1/19 = 5.3%
0/19 = 0%

19/19 = 100.0%
0/19 = 0%
0/19 = 0%

19/19 = 100.0%
0/19 = 0%
0/19 = 0%

19/19 = 100.0%
0/19 = 0%
0/19 = 0%

This table shows the statistics for large deletions/duplications, small deletions/duplications, splice sites, as well as nonsense mutations for TREAT-NMD, Flanigan’s
and GHCPAPF data. FPR, false positive rate. FNR, false negative rate. Joint prediction (Rules): the joint prediction used the three rules, i.e., reading-frame rule,
length of potential protein, number of potential stop-gains, and If any one is a positive judgment, the result is positive. Joint prediction (Rules & patterns): the joint
prediction used the three rules and supplemental patterns on location of mutations
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The joint prediction uses all the above three methods.
Two criteria were used to determine the joint judgment.
First, if a positive judgment comes from two of the three
methods, the result is regarded as positive (i.e., DMD/
DMD/BMD will be judged as DMD). By this criterion,
the accuracy, FPR and FNR were 93.9%, NA, 6.1% (large
deletions/duplications in 5341/5681 = 94.0% for accuracy,
NA for FPR, 340/5681 = 6.0% for FNR; small deletions/du-
plications in 476/483 = 98.6% for accuracy, NA for FPR, 7/
483 = 1.4% for FNR; splice sites in 155/198 = 78.3% for ac-
curacy, NA for FPR, 43/198 = 21.7% for FNR) in TREAT-
NMD DMD patients. They were 85.0, 6.0, 9.0% (large de-
letions/duplications in 369/435 = 84.8% for accuracy, 24/
435 = 5.5% for FPR, 42/435 = 9.7% for FNR; small dele-
tions/duplications in 69/78 = 88.5% for accuracy, 7/78 =
9.0% for FPR, 2/78 = 2.6% for FNR; splice sites in 17/22 =
77.3% for accuracy, 1/22 = 4.5% for FPR, 4/22 = 18.2% for
FNR) in Flanigan’s DMD patients. In the GHCPAPF group
they were 93.6, 0.4, and 6.0% (large deletions/duplications
in 217/231 = 93.9% for accuracy, 0/231 = 0% for FPR, 14/
231 = 6.1% for FNR; small deletions/duplications in 15/17
= 88.2% for accuracy, 1/17 = 5.9% for FPR, 1/17 = 5.9% for
FNR; splice sites in 1/1 = 100.0% for accuracy, 0/1 = 0% for
FPR, 0/1 = 0% for FNR). Second, if we get a positive judg-
ment based on one of the three methods, the result is
regarded as positive. The accuracy, FPR and FNR would
increase to 95.1%, NA, and 4.9% (large deletions/duplica-
tions in 5419/5681 = 95.4% for accuracy, NA for FPR,
262/5681 = 4.6% for FNR; small deletions/duplications in
476/483 = 98.6% for accuracy, NA for FPR, 7/483 = 1.4%
for FNR; splice sites in 155/198 = 78.3% for accuracy, NA
for FPR, 43/198 = 21.7% for FNR) in TREAT-NMD DMD
patients. They were 88.2, 7.3, and 4.5% (large deletions/
duplications in 386/435 = 88.7% for accuracy, 31/435 =
7.1% for FPR, 18/435 = 4.1% for FNR; small deletions/du-
plications in 69/78 = 88.5% for accuracy, 7/78 = 9.0% for
FPR, 2/78 = 2.6% for FNR; splice sites in 17/22 = 77.3% for
accuracy, 1/22 = 4.5% for FPR, 4/22 = 18.2% for FNR) in
Flanigan’s DMD patients. In GHCPAPF group they were
94.0, 2.4, 3.6% (large deletions/duplications in 218/231 =
94.4% for accuracy, 5/231 = 2.2% for FPR, 8/231 = 3.5% for
FNR; small deletions/duplications in 15/17 = 88.2% for ac-
curacy, 1/17 = 5.9% for FPR, 1/17 = 5.9% for FNR; splice
sites in 1/1 = 100.0% for accuracy, 0/1 = 0% for FPR, 0/1 =
0% for FNR). We took this result as the “joint prediction
(Rules)” in Table 2.
For nonsense mutations, the accuracy of protein length,

stop-gain number and the joint prediction for TREAT-
NMD DMD patients was 82.4, 99.9 and 99.9%, re-
spectively; for Flanigan’s DMD patients they were 70.9,
85.4 and 85.4%, respectively. The accuracy for DMD
patients of GHCPAPF was 94.7, 100.0 and 100.0% re-
spectively. The FPR and FNR of protein length, stop-
gain number and the joint prediction were shown in

Table 2. After application of ESE rule [10, 11] the
accuracy of ESE disrupted mutations among DMD patients
in TREAT-NMD, Flanigan and GHCPAPF dropped to 0/
70 = 0%, 6/49 = 12.2% and 0/5 = 0%, respectively. Therefore,
the ESE rule was not used in the DMDtoolkit.
For large deletions, several supplemental patterns to

the reading-frame rule were applied. It was reported that
in-frame deletions within exons 2–8 caused severe BMD,
whereas deletions in the major hotspot generally caused
typical BMD [21, 22]. In-frame deletions removing both
the actin-binding domain and part of the central rod
domain usually cause DMD [8, 20, 23]. Large in-frame de-
letions in the central rod domain removing more than 35
exons usually led to DMD [8], while deletions of no more
than 35 exons likely led to BMD [8, 24, 25]. Mutations in
the cysteine-rich domain usually resulted in DMD [17, 18]
whereas deletions in the syntrophin-binding domain
(exons 71-74) were reported in some BMD patients and
mutations located in exon 74 or behind it were found in
both BMD and DMD patients [17, 26]. Compared to the
joint prediction without conducting the supplementary
patterns, the accuracy, FPR, FNR with application of pat-
terns was 100% (16/16), NA, 0% (0/16) in DMD patients
of TREAT-NMD; was 80.0% (4/5), 20.0% (1/5), 0% (0/5) in
DMD patients of Flanigan. They were 50.0% (1/2), 50.0%
(1/2), 0% (0/2) in DMD patients of GHCPAPF (see sheet
“Supplementary patterns” in Additional file 3 “prediction
results of DMD patients.xlsx” for details).
The accuracy, FPR, FNR of the six and seven combina-

tions of multiple mutations in Flanigan and GHCPAPF
were 83.3% (5/6), 0% (0/6), 16.7% (1/6), and 85.7% (6/7),
0% (0/7), 14.3% (1/7), respectively. While the accuracy,
FPR, FNR of reading-frame rule was 83.3% (5/6), 0% (0/
6), 16.7% (1/6) and 42.9% (3/7), 0% (0/7), 57.1% (4/7) in
Flanigan and GHCPAPF, respectively. Please see the
sheet “Multiple mutations” in Additional file 3 “predic-
tion results of DMD patients.xlsx” for details.

Visualization
DMDtoolkit can draw the sequence of a mutant pro-
tein and turn the document into a pdf file (Fig. 2).
For protein with multiple mutations resulting in more
than two frameshifts, it is difficult to apply the
reading-frame rule to predict the mutant protein be-
cause the stop-gain may happen before the second
frameshift, or the upstream frameshift may change
the downstream missense to nonsense. Visualization
is an easy way to show the change of a mutated pro-
tein, such as c.9563+1G>A plus c.9568C>T (Fig. 2).
The Additional file 3 “results_DMDtoolkit/results_-
diagnosis/*.pdf”, such as “case7-1 (combination of
multiple mutations).pdf”, showed examples of the
seven mutation types. DMDtoolkit expanded the R
package “kinship” [27] to draw multiple pedigrees at
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once (Fig. 3). DMDtoolkit can also draw the top N
mutations’ distribution (N can be set via command
parameter) (Fig. 4).

Discussion
According to the first criterion, the joint prediction
method was 1.9, 0 and 1.6% higher than the reading-
frame rule on accuracy of DMD patients from TREAT-
NMD, Flanigan’s and GHCPAPF groups respectively. Ac-
cording to the second criterion, the joint prediction was
4.1, 3.2 and 2.0% more than the reading-frame rule on
accuracy of DMD patients from TREAT-NMD, Flanigan’s
and GHCPAPF, respectively. The improvement of

accuracy mainly originated from the decrease of FNR in
DMD patients with large deletions/duplications, and it
benefited from the length of potential protein method.
For large deletions, the application of the supplemental

patterns improved the total accuracy of joint prediction
method without patterns (i.e., “joint prediction (Rules)”
in Table 2) up by 1.7, 0.3, 0% and up to 96.8, 88.8 and
94.0% in DMD patients of TREAT-NMD, Flanigan and
GHCPAPF, respectively. The improvement was due to
the identification of in-frame deletions removing both
the actin-binding domain and part of the central rod
domain which usually cause DMD.
Future plans for development include the integration

of data on pathways and protein-protein interaction
(PPI) networks [28]. These will allow more comprehen-
sive analyses on the biological processes of dystrophin
and its interactive genes. An automated machine learn-
ing approach [29] will also be exploited to quantitatively
predict the procession of disease using all available risk/
benefit indicators as well as the probability of BMD/
IMD/DMD.

Conclusions
DMDtoolkit is a unique computer software specifically
developed to provide an easy way to analyze the mutant
dystrophin protein in order to predict the diagnosis of
DMD/BMD. This is achieved by combining genomic
analysis with a bioinformatic approach. As for the predic-
tion of DMD/BMD, DMDtoolkit provides a unique advan-
tage when compared with previous predictions solely

Fig. 2 An example of combination of mutations. The mutations include a splice site mutation nearby exon 65 (c.9563+1G>A) and a nonsense
mutation in exon 66 (c.9568C>T), both of which are common mutation types in TREAT-NMD database. However, the exon-skipping of exon 65
will change the nonsense mutation to a missense mutation

1
—

2
exon45−47del / —

12
—

11
exon45−47del / —

13
exon45−47del

14
— / —

21
exon45−47del

22
—

23
exon48−52del

Fig. 3 A pedigree of BMD father and DMD son. The family has inherited
a disease-causing mutation, i.e., Exon45-47del, which led to BMD.
Individual 13 was the proband, the BMD father. Individual 23 was
his DMD son with a novo mutation of exon48-52del

Zhou et al. BMC Bioinformatics  (2017) 18:87 Page 8 of 10



based on the reading-frame rule. It can automatically and
rapidly predict clinical phenotypes even in the presence of
multiple mutations. The accuracy of the current joint
method is about 3% more than that of reading-frame rule
alone. Its advantage is due to the bioinformatics approach
combining the three different methods for prediction.
Basic statistics include calculation of summary, cor-

relation coefficient, regression coefficient, and t test
(in the Additional file 3 “supplement1.docx” in the
folder “results_DMDtoolkit/results_statistics & graph/
”). Basic graphs include pedigree, histogram, scatter
plot with trend line, stem and leaf plot, and cluster
dendrogram (in the Additional file 3 “supplement2.-
docx” in the folder “results_DMDtoolkit/results_statis-
tics & graph/”). These results can help patients and
clinicians more easily understand the disease and de-
tect risk/benefit indicators.

Availability of data and materials
Project name: DMDtoolkit.
Project home page: https://github.com/zhoujp111/DM
Dtoolkit or http://www.dmd-registry.com/xzzq/index.jhtml.
Archived version: 1.0.
Operating system(s): Platform independent.
Programming language: R and Perl.
Other requirements: R 3.0 or higher, ActivePerl 5.16

or higher.
License: GNU GPL.
Any restrictions to use by non-academics: licence

needed.

Additional files

Additional file 1: codes_DMDtoolkit. This folder includes all the codes,
manual (“Manual.docx”) and required databases/annotations of DMDtoolkit.
For example, “ESE matrices.txt” contains the matrices of serine/arginine-rich
(SR) proteins. (RAR 2602 kb)

Additional file 2: data_DMDtoolkit. This folder includes all the data used
in the present manuscript, such as “Flanigan’s_DMD_patients.txt” for aided
diagnosis for DMD/BMD, “DMDsamples.txt” for drawing mutated protein,
and “pedigree.txt” for drawing pedigree of DMD family. (RAR 28 kb)

Additional file 3: results_DMDtoolkit. This folder includes all the results
produced by DMDtoolkit, such as “prediction results of DMD patients.xlsx”
which contains the original prediction results of DMD patients from
TREAT-NMD, Flanigan’s and GHCPAPF, “case7-1 (combination of multiple
mutations).pdf” which is a vector illustration of a combination of multiple
mutations. “supplement1.docx”. Examples of basic statistics includes
calculation of summary, correlation coefficient, regression coefficient,
and t test. “supplement2.docx”. Examples of basic graphs include
pedigree, histogram, scatter plot with trend line, stem and leaf plot,
and cluster dendrogram. (RAR 5435 kb)
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