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Abstract

Background: Gene regulatory interactions are of fundamental importance to various biological functions and
processes. However, only a few previous computational studies have claimed success in revealing genome-wide
regulatory landscapes from temporal gene expression data, especially for complex eukaryotes like human. Moreover,
recent work suggests that these methods still suffer from the curse of dimensionality if a network size increases to 100
or higher.

Results: Here we present a novel scalable algorithm for identifying genome-wide gene regulatory network (GRN)
structures, and we have verified the algorithm performances by extensive simulation studies based on the DREAM
challenge benchmark data. The highlight of our method is that its superior performance does not degenerate even
for a network size on the order of 104, and is thus readily applicable to large-scale complex networks. Such a
breakthrough is achieved by considering both prior biological knowledge and multiple topological properties (i.e.,
sparsity and hub gene structure) of complex networks in the regularized formulation. We also validate and illustrate
the application of our algorithm in practice using the time-course gene expression data from a study on human
respiratory epithelial cells in response to influenza A virus (IAV) infection, as well as the CHIP-seq data from ENCODE on
transcription factor (TF) and target gene interactions. An interesting finding, owing to the proposed algorithm, is that
the biggest hub structures (e.g., top ten) in the GRN all center at some transcription factors in the context of epithelial
cell infection by IAV.

Conclusions: The proposed algorithm is the first scalable method for large complex network structure identification.
The GRN structure identified by our algorithm could reveal possible biological links and help researchers to choose
which gene functions to investigate in a biological event. The algorithm described in this article is implemented in
MATLAB�, and the source code is freely available from https://github.com/Hongyu-Miao/DMI.git.

Keywords: Gene regulatory network, Hub gene structure, Ultra-high dimensional problem, Decomposable
multi-structure identification, Influenza infection

Background
Gene regulatory network (GRN), consisting of multiple
regulators and their targetmolecules, plays critical roles in
numerous biological processes by modulating the expres-
sion levels of RNAs and proteins [1]. While remarkable
successes in dissecting single genes that are responsible
for certain biological functions, behavior or diseases have
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been achieved over the past few decades, it has been
increasingly recognized that elucidating gene functions
and interactions in the context of networks becomes more
and more important to gain novel insight into mech-
anisms, effects and interventions of molecular, cellular
or organ-level biological processes [2–4]. Clearly, one of
the prerequisites for investigators to harvest the bene-
fits of such systematic network approaches is whether the
structures of gene regulatory networks can be accurately
revealed from experimental data.
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Modern high-throughput experimental technologies
such as next generation sequencing [5] can generate time-
course data at a much more affordable cost [6], thus
provide unprecedented opportunities for researchers to
systematically investigate the temporal patterns of gene
expressions and infer gene regulatory relationships. How-
ever, two well-known major obstacles have significantly
hampered our ability to interrogate such data for novel
scientific findings. First, limited by resources or tech-
nical and ethic issues, the sampling frequency of time-
course gene expression profiling data is low (e.g., most of
the time-course GEO datasets [7] have less than 6 time
points), which renders the sample size far less than the
number of unknown parameters in the context of GRN
structure identification. Targeting at such scenarios, it
is of significant importance to borrow information from
additional sources (e.g., previous biological knowledge).
Second, considering the fact that for complex eukary-
otes like human, the number of protein-coding genes
is approximately 19,000 [8] so the problem dimension
is ultra-high (i.e., tens of thousands or even millions
unknown parameters are involved). The development of
novel and more efficient algorithms that can scale to such
high-dimensional networks is still necessary.
A number of modeling and computational approaches

have been developed for gene network structure iden-
tification [9], including information theory method (e.g.
[10]), clustering method (e.g. [11]), Boolean network
[12], Bayesian network (e.g. [13]), state-space model [14],
regression model [15], and differential equation model
(e.g. [16]). The well-known methods for static expression
data include the Pearson correlation coefficient (PCC)
and the mutual information (MI) methods [17, 18], the
ARACNE algorithm [19] based on the data processing
inequality concept [20], the context likelihood of related-
ness (CLR) approach [21] that extends the relevance net-
works method [22], the GENIE3 algorithm [23] that uses
tree-based gene ranking and ensemble, and the TIGRESS
algorithm [24] that combines the least angle regression
with stability selection. However, only a few algorithms
were specifically developed for time-course data. Zoppoli
et al. [25] proposed to calculate the time-delayed depen-
dencies between gene expressions using mutual informa-
tion, and developed and tested the TimeDelay-ARACNE
algoithm on networks with less than 30 genes. Yang et al.
[26] used the S-system (a special form of nonlinear dif-
ferential equations) to model time-course gene expression
data and validated their parameter estimation method
using several small systems with six or less variables. Our
group introduced the concept of background network to
confine the parameter space using prior biological knowl-
edge and built the SITPR pipeline based on a dynamic
Bayesian network (DBN) model regularized by L1 norm
[27]. More recently, Huynh-Thu et al. [28] developed the

Jump3 method by combining the on/off stochastic dif-
ferential equation model with decision trees, where the
marginal likelihood of each node was used as the decision
function.
The DREAM Challenge [29] makes it feasible to gen-

erate authoritative benchmark data for algorithm perfor-
mance evaluation. To the best knowledge of our authors,
none of the algorithms above have been evaluated on
DREAMnetworks of a size greater than 100; actually, their
performances all become unsatisfactory at a network size
of 100, as verified in several previous studies [17, 18, 27].
Therefore, a breakthrough in algorithm development is
necessarily needed to obtain accurate and reliable results
for large-scale GRN inference (e.g., a network size O(104)).
The work of Liu et al. [27] is one of the few studies that sys-
tematically borrow information from previous biological
knowledge to deal with the low sampling frequency and
the high dimensionality issues in GRN inference; however,
even after the incorporation of prior knowledge, the num-
ber of unknown parameters is still on the order of 105
so the high dimensionality issue remains. Since GRNs are
typical complex networks with structural sparsity [30], it
is common to impose sparsity on the inference problem
formulation in previous studies [15, 24, 27]; however, it
turned out that sparsity alone cannot satisfyingly address
the high dimensionality problem [27]. This observation
leads us to the hypothesis that considering additional
structural or topological properties of large-scale com-
plex networks may result in novel scalable algorithms
for GRN inference that are not subject to the curse of
dimensionality.
In this study, we adopt the background network

approach developed in our previous study [27] for param-
eter space confinement, and we modify other selected
state-of-the-art algorithms to take the advantage of the
same background network for fairness of algorithm per-
formance comparison. More importantly, a breakthrough
in algorithm performance is achieved by considering both
structural sparsity and the existence of hub genes, which
is a prominent topological feature of GRNs due to prefer-
ential gene attachment [2]. We describe the mathematical
formulation and computational steps of the novel algo-
rithm in “Methods” section. We evaluate and compare the
performance of our algorithm with other state-of-the-art
approaches using DREAM4 benchmark data that are gen-
erated from networks of a size up to 2 × 104, and we
apply the proposed method to real temporal gene expres-
sion data from an influenza H1N1 virus infection study
to illustrate its usage in practice and further validate the
proposed algorithm using a large number of known inter-
actions. The related computational settings and results
are presented in “Results and discussion” section. Finally,
we discuss the advantages and limitations of this work in
“Conclusions” section.
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Methods
Background regulatory network
For ultra-high dimensional problems considered in this
study, it is important to constrain the parameter space
based on prior biological information to improve comput-
ing efficiency and avoid over-fitting, especially for datasets
with limited sample sizes. For this purpose, the concept
of background regulatory network was introduced in our
previous work [27], and we recently also developed a
curated database called RegNetwork for public use [31].
Here we present the key features of the background net-
work and describe how it is employed in this study for
GRN inference.
First, the background regulatory network is compre-

hensive so it contains not only experimentally-observed
regulatory interactions but also physically, chemically or
biologically feasible interactions. For this purpose, infor-
mation from over 20 selected databases or knowledge-
bases (e.g., FANTOM [32], TRANSFAC [33], JASPAR
[34], KEGG [35], and HPRD [36] have been collected
and integrated. In addition, potential interactions between
transcription factors (TFs) and target genes are predicted
based on sequence motifs obtained from Ensembl [37].
In this way, the background network also allows the dis-
covery of novel regulatory relationships that have not
been officially reported or documented. Second, the back-
ground network is not cell type- or condition-specific but
it allows the detection of cell type- or condition-specific
regulatory relationships. The reason is that under dif-
ferent conditions (e.g., different diseases), only certain
regulatory interactions in certain types of cells will be acti-
vated in the background network, and an appropriately
designed algorithm should be able to detect a reason-
able number of activated interactions with the presence
of the inactive ones. Third, the background network is
different from random networks [38] in terms of certain
properties like characteristic path length and node degree
distribution [39]; also, its node degrees are found to satisfy
the power-law distributions so the background network is
scale-free.
Here we use the background regulatory network con-

cept in both the simulation studies and the real data
example. That is, our primary task is to identify the acti-
vated interactions in the confined parameter space speci-
fied by the background network. We recognize that some
existing algorithms under comparison start with the full
network structure; therefore, for fairness, we make nec-
essary efforts to modify their computer codes to take
the background network as the parameter space. Also, it
should be mentioned that the same weight is assigned to
all the edges in the background network in this study for
simplicity. That means, our algorithm will automatically
determine the sparse structure and the hub gene struc-
tures without informing itself the potential location of

such structures beforehand. The algorithm performance
can be further improved if edge weights can be assigned
based on evidence strength in, e.g., literature; however,
even with a simple equal-weight scheme, our algorithm
can already achieve a satisfying performance (see the
“Results” section). Finally, for simulation studies, the back-
ground network is introduced by adding additional ran-
dom edges to the DREAM4 network structures; for real
data example, the background network for human fetched
from the RegNetwork database is used, which contains
23,079 nodes and 372,774 edges.

Model formulation of topological features of GRN
While sparsity of GRNs has been extensively explored in
previous studies, the hub gene structure has rarely been
addressed in existing formulations of GRN inference. This
study suggests that in addition to sparsity, the hub gene
structure is also of significant importance to the devel-
opment of scalable algorithms that are not subject to the
curse of dimensionality.
Throughout this paper, the following notations are used:

• n denotes the total number of nodes in a network;
• xt ∈ R

n denotes the expression level of n genes (and
miRNAs) at time t;

• � denotes the Hadamard product (i.e., the product of
the entries of two matrices at the same position). For
example, [1, 3]�[0, 2]=[0, 6].

• ‖ · ‖F is the Frobenius norm of a matrixM:
‖M‖F =

√∑
i,j M2

ij;
• ‖.‖ is the Spectral norm (i.e., the maximal singular

value of a matrix);
• C·j : jth column of C;
• Ci· : ith row of C.

The dynamic Bayesian network (DBN) model [40] is
considered in this study for GRN inference. It has been
shown by previous studies [40, 41] that under the nor-
mality and Markov assumptions, the DBN model can
be reduced to a vector autoregression (VAR) model as
follows:

xt+1 = Pxt + wt , t = 1, · · · ,T − 1, (1)

where T is the total number of time points, and P ∈ R
n×n

is the coefficient matrix, characterizing the change from
time t to the next time point t + 1. Pij �= 0 indicates the
existence of regulatory relationship between regulator j
and target i. Also, for simplicity and robustness, uneven
time intervals are treated as of equal length. We consider
an equivalent form of Eq. (1):

yt+1,t := xt+1 − xt = Cxt + wt , (2)
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where C = P − I. Our goal is to estimate the coefficient
matrix C (or equivalently P) given the time-course obser-
vations {xt}Tt=1. The objective function can be formulated
as follows

min
C

1
2
‖Y − CX‖2F =

T−1∑
t=1

‖(xt+1 − xt) − Cxt‖2, (3)

where Y :=[x2 − x1, x3 − x2, · · · , xT − xT−1]∈ R
n×(T−1)

and X :=[x1, x2, · · · , xT−1]∈ R
n×(T−1).

Since the total number of distinct time points are usu-
ally small, the solution obtained by directly solving (3)
suffers from the overfitting issue. To overcome this prob-
lem, the commonly used strategy is to confine the model
space using regularizations or constraints; for example,
the �1 norm regularization for imposing model sparsity.
However, in addition to sparsity, there exist other promi-
nent topological characteristics for complex networks like
GRNs [42]. To illustrate this, we use the Yeast gene net-
work as an example. The top left graph in Fig. 1 shows a
typical substructure of the Yeast gene network; the bottom
left figure is the corresponding coefficientmatrixC, where
the blue dots indicate nonzeros (3.6%) and the white areas

indicate zeros (96.4%) in C. Sparsity is thus a clear fea-
ture to tell from Fig. 1, and we also consider the following
network characteristics in our model formulation.

Hub gene structure separation: As suggested in Fig. 1,
there exist a small number of gene nodes with a high
degree, called the “hub” genes. If we define the hub gene
structure as the set of outgoing edges from a hub gene
node to its immediate neighbors, we can separate this
structure from the original GRN such that matrix C can
be decomposed into

C = A + B,

where matrix A corresponds to the hub gene structure
(the upper middle graph in Fig. 1) and matrix B corre-
sponds to the remaining edges (the upper right graph in
Fig. 1).
It can be told from the lower middle plot of Fig. 1 that

matrixA for hub gene structure has a column group sparse
structure (that is, it only contains a few nonzero columns),
while the matrix B for the remaining edges shows a more
uniform sparsity pattern. Therefore, we consider the �2,1

Fig. 1 Illustration of the hub gene structure separation and the corresponding coefficient matrices
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norm convex regularization on A to enforce the group
sparsity structure [43],

‖A‖2,1 :=
∑
j

(∑
i

|Aij|2
) 1

2

,

and consider the commonly used �1 regularization [44] on
B to enforce the uniform sparsity,

‖B‖1 :=
∑
i,j

|Bij|.

Small number of parent nodes: Based on the real GRN
structures previously reported (e.g., Yeast), we find that
while one gene may directly modulate the expressions of
many other genes, a single gene is usually co-regulated by
only a few regulators. That is, in a GRN represented by
a directed acyclic graph, the number of parent nodes of
a node is often small. This observation suggests the non-
zero elements in any row of matrix C should be small
(see the bottom left of Fig. 1). We thus can impose the
following constraint on the rows of matrix C

‖Ci·‖0 ≤ ξi, i = 1, · · · , n,
where ξi is a predefined upper bound of the number of
incoming edges to gene i (e.g., 0.7 times the indegree of a
node in the background network).

Background network: The mask of the background net-
work can be denoted as � ∈ {0, 1}n×n, where �ij = 1
corresponds to the non-existence of any regulatory inter-
action between genes i and j and �ij = 0 corresponds
to the existence of a possible interaction between genes i
and j that needs to be determined from temporal expres-
sion data. Therefore, the background network constraints
imposed on matrix C can be denoted as follows:

P�(C) := C � � = 0.

Combining all the constraints above, the overall GRN
structure identification formulation is given below:

min
A,B,C

1
2
‖(A + B)X − Y‖2F + α‖A‖2,1 + β‖B‖1

s.t. ‖Ci·‖0 ≤ ξi

P�(A) = 0,P�(B) = 0
A + B = C.

(4)

where α and β are two penalty coefficients that balance
the weights on group sparsity and uniform sparsity.

Computing algorithm
Existing solvers cannot deal with the proposed formu-
lation above, so we introduce an efficient optimization
algorithm, called Decomposable Multi-structure Identifi-
cation (DMI) (Algorithm 1), that can handle a network
size greater than 20k on an average computer [45].

We first define the Augmented Lagrangian function:

L(A,B,C,U) = 1
2
‖(A + B)X − Y‖2F + α‖A‖2,1 + β‖B‖1

+ ρ

2
‖A + B − C‖2F + 〈U ,A + B − C〉

+ I‖Ci·‖0≤ξi(C) + IP�(A)=0(A) + IP�(B)=0(B),
(5)

where ρ is a positive real number, Icondition(·) denotes the
function that gives 0 if the argument variable satisfies the
condition and gives positive infinity otherwise, and U is a
dual matrix of the same size as C introduced to solve the
optimization problem.

Algorithm1DecomposableMulti-structure Identification
(DMI)
Require: X, Y , ξi, ρ > 0
Ensure: C

repeat
[A,B]= argminA,B L(A,B,C,U) using Algorithm 2;
C = argminC L(A,B,C,U) to update C using (8);
Update U by U ← U + ρ(A + B − C);

until convergence;
return C.

More specifically, we can break the optimization prob-
lem into minimization w.r.t. A and B, minimization w.r.t.
C, and minization w.r.t. U as follows.

Minimizationw.r.t.A andB. Since some terms in Eq. (5)
such as I‖Ci·‖0≤ξi(C) contain no A or B, the optimization
problem can be simplified:

min
A,B

1
2
‖(A + B)X − Y‖2F + α‖A‖2,1 + β‖B‖1

+ ρ

2
‖A + B − C‖2F + 〈U ,A + B − C〉

+ IP�(A)=0(A) + IP�(B)=0(B),

(6)

which can be solved using the coordinate block descent
method [46]. By taking partial derivatives of the objective
function, we can derive

g =[ (A + B)X − Y ]X
 + ρ(A + B − C) + U ;

and by applying the proximal gradient descent method
[47], the following update rules for A and B at each
iteration can be obtained

A·i = proxγα‖·‖((A − γ gA)·i)

= max
(
0, 1 − γα

‖(A − γ gA)·i‖
)
(A − γ gA)·i,
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and

B = proxγβ‖·‖1(B − γ gB)
= sign(B − γ gB) � max(0, |B − γ gB| − γβ),

where sign(a) = 1 if a > 0, sign(a) = 0 if a = 0,
and otherwise −1. Usually we choose γ = 1

‖X‖2+ρ
as the

safe step length for each update to guarantee the mono-
tonic decreasing of the objective function (6). More details
about the accelerated proximal gradient descent method
are given in Algorithm 2.

Minimization w.r.t. C. Similar to the objective function
(6), some terms in Eq. (5) like IP�(A)=0(A) do not contain
matrix C. Hence, Eq. (5) can be simplified as follows:

min
C

ρ

2
‖A + B − C‖2F + 〈U ,A + B − C〉 + I‖Ci·‖0≤ξi(C),

∝1
2
‖A + B − C + 1

ρ
U‖2F + I‖Ci·‖0≤ξi(C).

(7)

We thus update C by the following rule

C = Pξ (A + B + 1
ρ
U), (8)

where Pξ is a projection of ‖Ci·‖0 ≤ ξi by retaining the
largest ξi elements in the i-th row of C.

Minimization w.r.t. U . Similar to the derivation of the
objective function (7) above, we have

min
U

〈U ,A + B − C〉. (9)

We update U using U = U + ρ(A + B − C) for each
iteration.

Algorithmic complexity
Let |�̄| denote the total number of zeros in the back-
ground network matrix � ∈ R

n×n used in Algorithms 1
and 2. Algorithm 1 is assumed to run J iterations to
converge, and for each iteration of Algorithm 1, we run
Algorithm 2 for K iterations. Therefore, the complexity of
Algorithm 2 is O(|�̄| × T × K), where X,Y ∈ R

n×(T−1),
T � n and |�̄| � n2. Therefore, the complexity of DMI
is O(|�̄| × T × K × J). Note that matrix C is sparse,
the complexity of our method mainly depends on the
number of non-zero edges in the network, and thus indi-
rectly depends on the number of nodes. On a regular PC
(3.0 GHz CPU, 16 GB memory, single thread), the pro-
posed algorithm takes ∼ 1 s, 3 ∼ 5 s, 2 ∼ 3 min, and
∼ 10 hr to finish 1000 iterations for a network size 10,
100, 1000, and 20,000, respectively. In most of the cases,
we found that the DMI algorithm already converged after
100 iterations. See Additional file 1: Text S1 for the sys-
tem requirements to run the proposed algorithm; also,

the guideline for tuning DMI computing parameters is
provided in Additional file 2: Text S2.

Algorithm 2 Accelerated proximal gradient descent
method [48]
Require: n (number of genes in network), γ (step length),

α, β , C, U
Ensure: A, B

Initialize t1 = 1, V1 = A1 = 0,W1 = B1 = 0, ρ = 10;
for k = 1: K do

gk = P�([ (Vk +Wk)X−Y ]X
 +ρ(Vk +Wk −C)+
U);

for i=1 to n do
Ak+1·i = proxγα‖·‖((Vk − γ gk)·i);

Bk+1 = proxγβ‖·‖1(Wk − γ gk);

tk+1 = 1
2 + 1

2

√
1 + 4t2k ;

Vk+1 = Ak+1 +
(
tk−1
tk+1

)
(Ak+1 − Ak);

Wk+1 = Bk+1 +
(
tk−1
tk+1

)
(Bk+1 − Bk);

return A and B.

Results and discussion
In this section, we use both synthetic data and real data
for algorithm performance evaluation, comparison and
validation.

Synthetic data: evaluation and comparison
Network specification and simulated data
To evaluate and compare the proposed method with other
state-of-the-art algorithms, we employ GeneNetWeaver
[29, 49], the official DREAM Challenge tool for time-
course expression data generation. More specifically,
GeneNetWeaver uses the GRNs from Yeast (4441 nodes,
12,873 edges) or E. coli (1565 nodes, 3785 edges) as tem-
plates to generate network structures with typical complex
network properties, of a network size up to ∼ 4400; and
then ordinary differential equation (ODE)models are built
upon the previously generated network structures to pro-
duce time-course gene expression data at pre-specified
time points.
In our simulation studies, we use GeneNetWeaver to

generate the network structures for a given network size
n = 10, 100, 1000, or 20,000, and we treat such networks
as the ground truth. Letm denote the number of edges in
a ground truth network, we then randomly add m addi-
tional edges to the ground truth network to generate the
background network with 2 m edges. Consequently, the
goal of GRN inference algorithms in the simulation stud-
ies is to identify as many ground truth edges as possible
from all the background network edges, with a controlled
false positive rate. It should be stressed that networks
of a size 20,000 cannot be generated from the Yeast or
E. coli templates, so we supply the large-scale GRNs
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from the RegNetwork database [31] to GeneNetWeaver
as templates (e.g., the human GRN in RegNetwork has
∼ 23, 000 nodes and ∼ 370, 000 edges). For each sim-
ulated dataset, one data point is generated at each of 6
distinct time points, respectively, for a pre-specified noise
level to match the observation scheme in the real data
example in Section Real data: validation and findings.

Fairness of comparison and evaluationmetrics
Since the state-of-the-art algorithms under comparison
such as ARACNE [19] start with a full matrix C, for fair-
ness of comparison, the background regulatory network
knowledge is used to confine the outputs of all other
methods (unless it has incorporated such information
beforehand). All metrics (e.g., sensitivity, specificity, and
AUC) have been calculated based on the confined out-
puts. There are several reasons why we cannot completely
re-implement the competing algorithms so they can also
start with the prior network instead of the full network: 1)
it demands prohibitive efforts to do so – essentially new
algorithms need to be developed for the ultra-high dimen-
sional problem, and it is out of the scope of this study; 2)
the current design of the competing algorithms also par-
tially justifies the necessity of appropriately using the prior
network, which is one of the advantages of the proposed
method.
The computing parameters used by existing algorithms

are tuned as suggested in their original manuscripts (see
Additional file 3: Table S1). For our DMI algorithm, we
set α = 0.08, β = 0.16 and ρ = 10 for all the sim-
ulated datasets, where α and β are determined using
cross-validation.
Five commonly-used criteria are considered to measure

algorithm performance, including sensitivity (SN), speci-
ficity (SP), accuracy (ACC), Matthews correlation coeffi-
cient (MCC), and the Area Under ROC Curve (AUC):

SN = TP
TP + FN

,

SP = TN
TN + FP

,

ACC = TP + TN
TP + FP + TN + FN

,

MCC = TP × TN − FP × FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

,

where TP and TN denote the true positive and true neg-
ative, and FP and FN denote the false positive and false
negative, respectively.

Performance evaluation
The first set of experiments are conducted to compare
our DMI algorithm with nine representative algorithms,
including PCC, ARACNE [19], CLR [21], MINET (the
maximum relevance minimum redundancy method) [50],

GENIE3 [23], TimeDelay-ARACNE [25], TIGRESS [24],
SITPR [27], and Jump3 [28]. Specifically, SITPR [27] is
a multi-step pipeline with the �1 norm penalty incorpo-
rated; to avoid manual intervention needed by certain
SITPR steps, we simply compare the constrained LASSO
step in SITPR with DMI. In the simulated data, the noise
level is fixed at 10%, and the networks size ranges from
10 to 1000 because other competing algorithms cannot
handle a network size of 20,000.
For the second set of experiments, the noise level is

increased from 10 to 30% to evaluate the robustness of
our DMI algorithm against noise. The network size in the
corresponding simulated data is 10, 100, 1000 or 20,000.
The two sets of experiment results are summarized

in Tables 1 and 2, respectively. From Table 1, it can be
clearly told that for network size ranging from 10 to 1000,
our method significantly outperform other state-of-the-
art methods; e.g., the AUCs of our method remain 0.8 or
higher for all cases, but the AUCs of all other methods are
0.6 or less and they drop to 0.36 ∼ 0.50 for n = 1, 000.
From Table 2, one can tell that our DMI algorithm is
robust against noise because its performancemeasured by
AUC is still greater than 0.73 as the noise level increases
to 30% for a network size of 20,000. Additional experiment
results can be found in Additional file 4: Table S2.

Real data: validation and findings
Data description and previous work
The real data example for illustrating the use of
DMI in practice is from the recent study of Loveday
et al. [51], where human A549 cells were infected with
influenza H1N1 virus (A/Mexico/InDRE4487/2009). Illu-
mina HumanHT-12 v3 BeadChips and Febit miRBase 14
Geniom miRNA Biochips were employed to measure the
mRNA and miRNA samples, respectively. Six replicates
of the expression levels were collected at each of six time
points (0, 4, 8, 24, 48, and 72 h post infection), but one
sample at hour 4 was excluded due to degradation. The
within-sample normalized dataset is available from NCBI
GEO (GSE36553 and GSE36461). We further conducted
between-sample normalization on the data across the six
time points.
The original analyses in [51] did not use all the time

points; instead, a small number of regulatory relation-
ships between functional miRNAs and gene targets were
inferred based on data on hr 0 and hr 8 only. The genome-
wide regulatory landscape has not been revealed based
on the entire dataset although Liu et al. [27] made an
attempt to investigate the subnetwork structures of a size
from 2 to 300. In this study, 1,572 genes and 14 non-
coding RNAs were identified to be differentially expressed
(Fig. 2a) using the FPCA method [52] for a false discov-
ery rate controlled at 0.05. Using the human background
network in the RegNetwork database, the DMI algorithm
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Table 1 Performance evaluation of DMI and other competing algorithms on a network size 10, 100, or 1,000 at a 10% noise level,
based on the arithmetic average over 10 simulation runs

Methods Size SN SP ACC MCC AUC

DMI 10 0.7600±0.2119 0.9143±0.1380 0.8235±0.1301 0.6837±0.2180 0.8371±0.1187

100 0.7321±0.1818 0.8807±0.0401 0.8069±0.0825 0.6264±0.1460 0.8064±0.0831

1000 0.8119±0.0472 0.9023±0.0147 0.8564±0.0245 0.7171±0.0460 0.8571±0.0242

CLR 10 0.5900±0.1776 0.4143±0.3125 0.5176±0.1331 0.0043±0.3125 0.5457±0.1331

100 0.4854±0.0200 0.4916±0.0400 0.4885±0.0202 -0.0231±0.04 0.4768±0.0202

1000 0.5063±0.0134 0.4908±0.0269 0.4987±0.0135 -0.0029±0.0269 0.4292±0.0135

PCC 10 0.5600±0.0938 0.3714±0.1698 0.4824±0.0719 -0.0686±0.1698 0.5386±0.0719

100 0.5244±0.0268 0.5301±0.0536 0.5273±0.0268 0.0545±0.0536 0.5148±0.0268

1000 0.5061±0.0172 0.4907±0.0344 0.4985±0.0173 -0.0032±0.0344 0.4290±0.0173

MINET 10 0.5500±0.0834 0.5571±0.1745 0.5529±0.0915 0.1076±0.1745 0.5871±0.0915

100 0.3378±0.0319 0.6988±0.0351 0.5194±0.0183 0.0391±0.0351 0.5073±0.0183

1000 0.2464±0.0164 0.7801±0.0196 0.5092±0.0096 0.0313±0.0196 0.4224±0.0096

TIGRESS 10 0.5700±0.0949 0.3857±0.1355 0.4941±0.1116 -0.0443±0.2304 0.5171±0.0865

100 0.3154±0.0239 0.6904±0.0405 0.5040±0.0276 0.0067±0.0595 0.4898±0.0281

1000 0.0062±0.0007 0.9941±0.0014 0.4926±0.0006 0.0024±0.0077 0.3630±0.0008

ARACNE 10 0.2800±0.1200 0.7286±0.1966 0.4647±0.0962 0.0074±0.1966 0.6043±0.0962

100 0.0598±0.0325 0.9514±0.0357 0.5083±0.0103 0.0225±0.0357 0.4860±0.0103

1000 0.0188±0.0094 0.9820±0.0246 0.4930±0.0040 0.0023±0.0246 0.3670±0.0040

TimeDelay-ARACNE 10 0.0500±0.1214 0.9571±0.2029 0.4235±0.0744 0.0222±0.2029 0.6386±0.0744

100 0.0118±0.0250 0.9912±0.0596 0.5044±0.0073 0.0000±0.0596 0.4793±0.0073

1000 0.0034±0.0028 0.9968±0.0179 0.4924±0.0015 0.0011±0.0179 0.3622±0.0015

GENIE3 10 0.5600±0.0138 0.3714±0.0419 0.4824±0.0098 -0.0686±0.0419 0.5400±0.0098

100 0.5093±0.0009 0.5153±0.0035 0.5123±0.0010 0.0246±0.0035 0.5007±0.0010

1000 0.5075±0.0001 0.4922±0.0003 0.5000±0.0001 -0.0003±0.0003 0.4304±0.0001

Jump3 10 0.6400±0.1095 0.4857±0.2048 0.5765±0.1094 0.1257±0.2048 0.6000±0.1094

100 0.2606±0.0431 0.8390±0.0474 0.5515±0.0245 0.1217±0.0474 0.5471±0.0245

1000 0.0384±0.0074 0.9843±0.0192 0.5040±0.0035 0.0694±0.0192 0.3823±0.0035

SITPR 10 0.4900±0.1197 0.7143±0.2020 0.5824±0.0757 0.2172±0.1819 0.6021±0.0862

100 0.1610±0.0794 0.8253±0.0656 0.4952±0.0255 -0.0212±0.0733 0.4931±0.0257

1000 0.2382±0.0509 0.7599±0.0381 0.4950±0.0118 -0.0032±0.0279 0.4990±0.0114

was applied (α = 0.08 and β = 0.22) to identify 1926 reg-
ulatory interactions between the differentially expressed
genes or miRNAs, as shown in Fig. 2b.

Network analysis
We conducted comprehensive network analyses on the
topological structure and found that the A549 GRN
in response to influenza H1N1 infection is a typi-
cal complex network, evidenced by, e.g., its power law
degree distribution and a large clustering coefficient (see
Additional file 5: Figure S1 and Additional file 6: Table
S3 for details). A close examination of the inferred GRN
by the DMI algorithm suggests consistency between the
findings in this study and those in literature. For instance,

‘CEBPB’ (CCAAT/Enhancer-Binding Protein Beta) is a
transcription factor (TF) that plays an important role
in immune and inflammatory responses [53], and the
subnetwork structure centered at ‘CEBPB’ has been
previously reported in [27]. Our study also revealed
a similar subnetwork structure around ‘CEBPB’ (e.g.,
interactions between ‘CEBPB’ and ‘NCS1’, ‘ISG20’, or
‘ABCG1’. See Additional file 7: Figure S2); however,
some experimentally-verified interactions (e.g., between
‘CEBPB’ and ‘NOLC1’ in HPRD) were successfully identi-
fied in this study, but were missing in the work of Liu et al.
[27]. More interestingly, we found a number of hub gene
structures, e.g., centered at the Activating Transcription
Factor genes (‘ATF2’ and ‘ATF4’) or the E2F Transcription
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Table 2 Evaluation of DMI at a noise level from 10 to 30% for a network size 10, 100, 1,000 or 20,000, based on the arithmetic average
over 10 simulation runs

Noise level Size SN SP ACC MCC AUC

10% noise 10 0.9333 ± 0.0573 0.9000 ± 0.0860 0.9200 ± 0.0688 0.8333 ± 0.1434 0.9166 ± 0.0717

100 0.7687 ± 0.0379 0.8253 ± 0.0407 0.7984 ± 0.0283 0.5965 ± 0.0571 0.7970 ± 0.0282

1000 0.8273 ± 0.0244 0.8305 ± 0.0131 0.8289 ± 0.0182 0.6579 ± 0.0363 0.8289 ± 0.0182

20k 0.7748 ± 0.0041 0.7753 ± 0.0041 0.7751 ± 0.0041 0.5502 ± 0.0083 0.7751 ± 0.0041

20% noise 10 0.8000 ± 0.1365 0.7000 ± 0.2048 0.7600 ± 0.1639 0.5000 ± 0.3414 0.7500 ± 0.1707

100 0.7312 ± 0.0440 0.7569 ± 0.0398 0.7447 ± 0.0418 0.4881 ± 0.0838 0.7440 ± 0.0419

1000 0.8056 ± 0.0133 0.8006 ± 0.0137 0.8031 ± 0.0135 0.6063 ± 0.0271 0.8031 ± 0.0135

20k 0.7452 ± 0.0045 0.7457 ± 0.0045 0.7454 ± 0.0045 0.4909 ± 0.0091 0.7454 ± 0.0045

30% noise 10 0.7333 ± 0.1194 0.6000 ± 0.1791 0.6800 ± 0.1433 0.3333 ± 0.2986 0.6667 ± 0.1493

100 0.7005 ± 0.0320 0.7291 ± 0.0289 0.7155 ± 0.0304 0.4297 ± 0.0610 0.7148 ± 0.0305

1000 0.7829 ± 0.0080 0.7774 ± 0.0082 0.7802 ± 0.0081 0.5603 ± 0.0162 0.7801 ± 0.0081

20k 0.7339 ± 0.0048 0.7344 ± 0.0048 0.7342 ± 0.0048 0.4684 ± 0.0096 0.7342 ± 0.0048

Factor genes (‘E2F6’ and ‘E2F7’). More specifically, ‘ATF2’
encodes a DNA binding protein of the leucine zipper
family that can perform distinct functions via different
mechanisms. For example, it can form heterodimers with
c-Jun, both of which are activating protein-1 (AP-1) family
transcription factors. AP-1 is known to activate antiviral
cytokines in cells as a defensive response against infec-
tion caused by influenza virus and other viruses [54, 55].
Therefore, our results reflect the known biological events.
Also, our results showed that ‘ATF2’ interacts with
more than 130 other genes, including ‘CEBPB’ (Fig. 2c).
Although it has been previously reported that influenza
A viral RNA molecules can indirectly activate transcrip-
tion factors like ATF2 [56], the importance of ATF2 in the
context of influenza infection has not been fully appre-
ciated by previous experimental studies, considering the

large number of target genes associated with ATF2 in
the hub gene structure. The proposed DMI algorithm
thus provides us not only an opportunity to investigate
the genome-wide regulatory landscapes but also a way to
identify interesting subnetworks like hub gene structures.
We defer the discussions on hub structures to the next
section.

Validation and findings
Although the ENCODE database [57] is not used when
constructing the background network, 102 TFs, 723 miR-
NAs and 13,607 target genes in the background network
can also be found in ENCODE. Therefore, we used the
TF-gene interactions verified by the ENCODE CHIP-seq
data as the ground truth for validating our analysis results,
as suggested in [28]. It is impossible to list all the hub

a b c

Fig. 2 Application of the DMI algorithm to the expression data from human A549 cells in response to influenza H1N1 virus infection. a Example of
differentially expressed genes, where the color bar values are the normalized gene expression levels; b Overall GRN structure (the full details can be
found on GitHub); c ‘ATF2’ hub gene structure
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structures here, so we selected the 5 biggest hubs from
the GRN structure identified from real data by DMI if the
centers of these hubs (i.e., hub genes) are also included
in ENCODE. The first interesting finding we noticed is
that all the five hub nodes are transcription factors, i.e.,
‘ATF2’, ‘CEBPB’, ‘CUX1’, ‘E2F6’ and ‘EBF1’. Since DMI is
designed to identify genuine regulator-target interactions,
such an observation is expected. Second, 97, 52, 40, 85,
and 47 TF-gene interactions were found in ENCODE for
the five TFs above, respectively. That is, a large set of
known interactions (321 in total) were considered here for
result validation. Third, according to Table 1, the top three
algorithms are DMI, GENIE3 and SITPR (ranked based
on their AUCs for a network size 1,000) so we compared
their performances here. As shown in Table 3, DMI’s per-
formance is superior or comparable to that of GENIE3
and SITPR for all the five sets of known interactions. For
instance, out of 97 ENCODE interactions associated with
‘ATF2’, DMI identified 74 interactions and thus achieved
a precision

(
� # of predicted interactions

# of known interactions

)
of 0.7629, which is

the same as that of GENIE3; however, for ‘E2F6’, DMI
identified 79 ENCODE interactions while GENIE3 only
identified 52. We thus believe the proposed algorithm can
more accurately identify the activated interactions than
other competing algorithms.
Motivated by the finding above, We further exam-

ined the top 10 hub structures and found that tran-
scription factors are the center nodes of all such hubs;
i.e., ‘ATF2’, ‘E2F6’, ‘E2F7’, ‘ATF4’, ‘CUX1’, ‘CEBPB’, ‘EBF1’,
‘XBP1’, ‘NFIL3’, and ‘FOXO4’. Therefore, besides the roles
of ‘ATF2’ discussed in the previous section, it is also
interesting to understand the roles of the rest hub TFs
in the context of virus infection. For example, ‘CEBPB’
also has a leucine zipper structure to interact with DNA.
It is capable of forming homodimers or heterodimers
with ATF4, and previous studies showed that ‘CEBPB’
is essential in immune responses due to its involvement
in inducing macrophagic functions during inflammation
[53, 58]. The work by Granberg et al. [59] demonstrated
that ‘CEBPB’ has antiviral properties in the presence of
adenovirus infection. However, further investigations are
required to verify whether ‘CEBPB’ retains these prop-
erties facing H1N1 infection. ‘CUX1’ is a homeodomain
family DNA-binding protein, and it has been shown to
regulate cell cycle, and previously identified as a tumor

suppressor [60]. One study reported that ‘CUX1’ is capa-
ble of repressing human cytomegalovirus infection by
regulating the viral major immediate early (MIE) gene
expression [61]. ‘E2F6’ is a member of the well-known E2F
transcription factor family that regulates cell cycle. Over-
expression of ‘E2F6’ has been shown to stall cell cycle in
S-phase by interacting with E2F target genes and reduc-
ing their expressions. The study by Zhang et al. [62] shows
that ‘E2F6’ has abnormal expression in Epstein-Barr virus
(EBV)-associated nasopharyngeal carcinoma. Early B cell
factor 1 (‘EBF1’) is a transcription factor that is criti-
cal for specifying B cell identity and lineage maintenance
[63]. And in turn, B cells produce antibodies that can
help fight-off viral infection. Although there is not much
known link between ’EBF1’ and influenza viral infection,
one study claimed that ‘EBF1’ has the function to regulate
Epstein-Barr virus latent membrane protein 1 (‘LMP1’)
expression so that tumorigenesis can be prevented [64].
The roles of ‘XBP1’, ‘NFIL3’, and ‘FOXO4’ have also been
reported before (see, e.g., [65]), but their contributions to
immune responses against influenza virus infection need
to be elucidated by further experiments. In short, one can
hypothesize that these hub TFs may show the same antivi-
ral activities facing H1N1 as they do for other viruses,
and the GRN identified by our DMI algorithm could be
a useful guide to biomedical researchers when they are
choosing which gene functions in a biological process to
validate by bench work.
We also found that a number of big hub structures

centered at non-coding RNAs such as ‘hsa-miR-30a’, ‘hsa-
miR-30c-5p’, ‘hsa-miR-30d-tp’, ‘hsa-miR-543’, and ‘hsa-
miR-26a’. Even though studies on microRNAs are rapidly
expanding, functions of these dynamic molecules are
hard to enumerate. Therefore, discussing the relationship
between these microRNAs and influenza is beyond the
scope of this article.

Conclusions
We proposed a novel scalable algorithm called DMI for
large-scale GRN inference from temporal gene expres-
sion data in this study. Extensive simulation studies and
real data application suggest the superiority of the DMI
algorithm over other state-of-the-art approaches, and
the success mainly relies on the incorporation of multi-
ple topological characteristics of GRNs like sparsity and

Table 3 Prediction performance based on ENCODE data

ATF2 CEBPB CUX1 E2F6 EBF1

#TP Precision #TP Precision #TP Precision #TP Precision #TP Precision

DMI 74 0.7629 49 0.9423 24 0.6000 79 0.9294 42 0.8936

GENIE3 74 0.7629 38 0.7308 22 0.5500 52 0.6118 35 0.7447

SITPR 37 0.3814 32 0.6154 24 0.6000 50 0.5882 35 0.7447
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hub gene structures into our model formulation. Using
the gene expression data generated from IAV infected
human respiratory epithelial cells, our algorithm found
that the top ten hub structure are all TFs. This finding
is biologically reasonable, considering TFs’ central roles
in regulating gene expression. Some of these TFs have
known association with virus infection but not with IAV.
Therefore, the GRN produced by our algorithm could
reveal previously unidentified biological links, and guide
researchers to choose target genes to investigate.
We also recognize several limitations of the current

study: 1) DMI’s performance can be further improved
if the background network edges can be appropriately
weighted; 2) Prediction of previously unseen interactions
heavily depends on the background network preparation
so further efforts need to be invested to the development
of public knowledgebases like RegNetwork; 3) This work
mainly focuses on solving the ultra-high dimensional
inference problems, and data heterogeneity and integra-
tion issues have not been tackled; 4) Our real data analysis
is based on only one data set, and more data is needed to
establish more solid GRN. We believe that it is necessary
to address the aforementioned limitations in separate arti-
cles, and this study provides a solid basis for such future
investigations.

Additional files

Additional file 1: Text S1. System requirements for running DMI.
(PDF 52.0 kb)

Additional file 2: Text S2. Parameter tuning guideline for DMI.
(PDF 64.4 kb)

Additional file 3: Table S1. Computational settings for the competing
methods under comparison. (PDF 56.5 kb)

Additional file 4: Table S2. Additional experiment results of algorithm
performance evaluation of DMI on a real background network with 2768
nodes. We retrieved the UCSC background network for human from the
RegNetwork database (http://www.regnetworkweb.org/), and then
selected the highly confident interactions as the activated edges
(RegNetwork provides the tool to select edges of different levels of
confidence). The number of such activated edges is about 1/6 of the total
number of edges. In this way, we avoid introducing or removing any
random edge into the background network. (PDF 59.7 kb)

Additional file 5: Figure S1. In-degree distribution of the A549 GRN. The
power-law model fitting result is labelled in red. (PDF 65.6 kb)

Additional file 6: Table S3. Basic network statistics of the A549 GRN.
(PDF 138 kb)

Additional file 7: Figure S2. Subnetwork structure centered at ‘CEBPB’.
The subnetwork structure is identified using the DMI algorithm based on
the time-course expression data from human A549 cells in response to IAV
infection. Blue arrows stand for negative regulatory relationships, and
yellow arrows stand for positive regulatory relationships. (PDF 130 kb)

Abbreviations
CLR: Context likelihood of relatedness; DMI: Decomposable multi-structure
identification; GRN: Gene regulatory network; IAV: Influenza A virus; MI: Mutual
information; ODE: Ordinary differential equation; PCC: Pearson correlation
coefficient; SITPR: Systematic identification of transcriptional and
post-transcriptional regulation; TF: Transcription factor

Acknowledgements
We thank Dr. Zhiping Liu (Shandong University, China) and Dr. Hulin Wu
(UTSPH) for developing the RegNetwork database.

Funding
This work was partially supported by NIH/NEI grants R01EY022356,
R01EY018571, and R01EY020540 (RC), NSF grant CNS-1548078 (JL), and NSF
grant DMS-1620957 (HM).

Availability of data andmaterials
All the data sets used in this study are from public databases, including
RegNetwork, GEO, and ENCODE.

Authors’ contributions
SG implemented the algorithm, conducted experiments, and wrote the
manuscript. AR, RC and LW contributed to result interpretation and biological
findings. JL and HM proposed the idea, oversaw the study and wrote the
manuscript. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Author details
1Department of Computer Science, University of Rochester, 14620 Rochester,
NY, USA. 2Department of Molecular Virology and Microbiology, Baylor College
of Medicine,77030 Houston, TX, USA. 3Department of Molecular and Human
Genetics, Baylor College of Medicine, 77030 Houston, TX, USA. 4Department of
Biostatistics, University of Texas Health Science Center, 77030 Houston, TX,
USA. 5Goergen Institute for Data Science, University of Rochester, 14620
Rochester, NY, USA.

Received: 22 October 2016 Accepted: 20 January 2017

References
1. Karlebach G, Shamir R. Modelling and analysis of gene regulatory

networks. Nat Rev Mol Cell Biol. 2008;9(10):770–80.
2. Barabasi AL, Oltvai ZN. Network biology: Understanding the cell’s

functional organization. Nat Rev Genet. 2004;5:101–13.
3. Barabasi AL, Culbahce N, Loscalzo J. Network medicine: a network-based

approach to human disease. Nat Rev Genet. 2011;12:56–68.
4. Kidd BA, Peters LA, Schadt EE, Dudley JT. Unifying immunology with

informatics and multiscale biology. Nat Immunol. 2014;15(2):118–27.
5. Metzker ML. Sequencing technologies - the next generation. Nat Rev

Genet. 2010;11(1):31–46.
6. Chen R, Snyder M. Promise of personalized omics to precision

medicine. Wiley Interdiscip Rev Syst Biol Med. 2013;5(1):73–82.
doi:10.1002/wsbm .1198.

7. Edgar R, Domrachev M, Lash AE. Gene expression omnibus: Ncbi gene
expression and hybridization array data repository. Nucleic Acids Res.
2002;30(1):207–10.

8. Ezkurdia I, Juan D, Rodriguez JM, Frankish A, Diekhans M, Harrow J,
Vazquez J, Valencia A, Tress ML. Multiple evidence strands suggest that
there may be as few as 19 000 human protein-coding genes. Hum Mol
Genet. 2014. doi:10.1093/hmg/ddu309. http://hmg.oxfordjournals.org/
content/early/2014/07/01/hmg.ddu309.full.pdf+html.

9. Marbach D, Costello JC, Kuffner R, Vega NM, Prill RJ, Camacho DM,
Allison KR, Consortium D, Kellis M, Collins JJ, Stolovitzky G. Wisdom of
crowds for robust gene network inference. Nat Methods. 2012;9(8):
796–804. doi:10.1038/nmeth.2016.

10. Opgen-Rhein R, Strimmer K. From correlation to causation networks: a
simple approximate learning algorithm and its application to
high-dimensional plant gene expression data. BMC Syst Biol. 2007;1:37.
doi:10.1186/1752-0509-1-37.

11. Langfelder P, Horvath S. Wgcna: an r package for weighted correlation
network analysis. BMC Bioinforma. 2008;9(1):559.

http://dx.doi.org/10.1186/s12859-017-1489-z
http://dx.doi.org/10.1186/s12859-017-1489-z
http://dx.doi.org/10.1186/s12859-017-1489-z
http://dx.doi.org/10.1186/s12859-017-1489-z
http://dx.doi.org/10.1186/s12859-017-1489-z
http://dx.doi.org/10.1186/s12859-017-1489-z
http://dx.doi.org/10.1186/s12859-017-1489-z
http://dx.doi.org/10.1186/s12859-017-1489-z
http://www.regnetworkweb.org/
http://dx.doi.org/10.1186/s12859-017-1489-z
http://dx.doi.org/10.1186/s12859-017-1489-z
http://dx.doi.org/10.1186/s12859-017-1489-z
http://dx.doi.org/10.1186/s12859-017-1489-z
http://dx.doi.org/10.1186/s12859-017-1489-z
http://dx.doi.org/10.1186/s12859-017-1489-z
http://dx.doi.org/10.1002/wsbm.1198
http://dx.doi.org/10.1002/wsbm.1198
http://dx.doi.org/10.1093/hmg/ddu309
http://hmg.oxfordjournals.org/content/early/2014/07/01/hmg.ddu309.full.pdf+html
http://hmg.oxfordjournals.org/content/early/2014/07/01/hmg.ddu309.full.pdf+html
http://dx.doi.org/10.1038/nmeth.2016
http://dx.doi.org/10.1186/1752-0509-1-37


Gui et al. BMC Bioinformatics  (2017) 18:74 Page 12 of 13

12. Shmulevich I, Dougherty ER, Kim S, Zhang W. Probabilistic boolean
networks: a rule-based uncertainty model for gene regulatory networks.
Bioinformatics. 2002;18(2):261–74.

13. Hartemink A. In: Do K-A, Muller P, Vannucci M, editors, editors. Bayesian
networks and informative priors: Transcriptional regulatory network
models. Cambridge: Cambridge University Press; 2006, pp. 401–24.

14. Hirose O, Yoshida R, Imoto S, Yamaguchi R, Higuchi T, Charnock-Jones
DS, Print C, Miyano S. Statistical inference of transcriptional
module-based gene networks from time course gene expression profiles
by using state space models. Bioinformatics. 2008;24(7):932–42.
doi:10.1093/bioinformatics/btm639.

15. Yeung MK, Tegner J, Collins JJ. Reverse engineering gene networks
using singular value decomposition and robust regression. Proc Natl
Acad Sci U S A. 2002;99(9):6163–8. doi:10.1073/pnas.092576199.

16. De Jong H. Modeling and simulation of genetic regulatory systems:
A literature review. J Comput Biol. 2002;9(1):67–103.

17. Bansal M, Belcastro V, Ambesi-Impiombato A, di Bernardo D. How to
infer gene networks from expression profiles. Mol Syst Biol. 2007;3:78.
doi:10.1038/msb4100120.

18. Marbach D, Prill RJ, Schaffter T, Mattiussi C, Floreano D, Stolovitzky G.
Revealing strengths and weaknesses of methods for gene network
inference. Proc Natl Acad Sci U S A. 2010;107(14):6286–91.
doi:10.1073/pnas.0913357107.

19. Margolin AA, Nemenman I, Basso K, Wiggins C, Stolovitzky G, Favera
RD, Califano A. Aracne: an algorithm for the reconstruction of gene
regulatory networks in a mammalian cellular context. BMC Bioinforma.
2006;7(Suppl 1):7.

20. Cover TM, Thomas JA. Elements of Information Theory. New York: Wiley;
1991.

21. Faith JJ, Hayete B, Thaden JT, Mogno I, Wierzbowski J, Cottarel G, Kasif
S, Collins JJ, Gardner TS. Large-scale mapping and validation of
escherichia coli transcriptional regulation from a compendium of
expression profiles. PLoS Biol. 2007;5(1):8.

22. Butte AJ, Kohane IS. Mutual information relevance networks: functional
genomic clustering using pairwise entropy measurements. Pac Symp
Biocomput. 2000;5:418–29.

23. Huynh-Thu VA, Irrthum A, Wehenkel L, Geurts P. Inferring regulatory
networks from expression data using tree-based methods. PLoS ONE.
2010;9(5). doi:10.1371/journal.pone.0012776.

24. Haury AC, Mordelet F, Vera-Licona P, Vert JP. Tigress: Trustful inference
of gene regulation using stability selection. BMC Syst Biol. 2012;6:145.
doi:10.1186/1752-0509-6-145.

25. Zoppoli P, Morganella S, Ceccarelli M. Timedelay-aracne: Reverse
engineering of gene networks from time-course data by an information
theoretic approach. BMC Bioinforma. 2010;11(1):1–15.
doi:10.1186/1471-2105-11-154.

26. Yang X, Dent JE, Nardini C. An s-system parameter estimation method
(spem) for biological networks. J Comput Biol. 2012;19(2):175–87.

27. Liu ZP, Wu H, Zhu J, Miao H. Systematic identification of transcriptional
and post-transcriptional regulations in human respiratory epithelial cells
during influenza a virus infection. BMC Bioinforma. 2014;15(1):1.

28. Huynh-Thu VA, Sanguinetti G. Combining tree-based and dynamical
systems for the inference of gene regulatory networks. Bioinformatics.
2015;31(10):1614–22. doi:10.1093/bioinformatics/btu863.

29. Schaffter T, Marbach D, Floreano D. GeneNetWeaver: In silico benchmark
generation and performance profiling of network inference methods.
Bioinformatics. 2011;27(16):2263–70. doi:10.1093/bioinformatics/btr373.
wingx.

30. Leclerc RD. Survival of the sparsest: robust gene networks are
parsimonious. Mol Syst Biol. 2008;4(1):213. doi:10.1038/msb.2008.52.

31. Liu ZP, Wu C, Miao H, Wu H. Regnetwork: an integrated database of
transcriptional and post-transcriptional regulatory networks in human
and mouse. Database. 2015;2015:095.

32. Ravasi T, Suzuki H, Cannistraci CV, et al. An atlas of combinatorial
transcriptional regulation in mouse and man. Cell. 2010;140(5):744–52.

33. Matys V, Kel-Margoulis OV, Fricke E, Liebich I, Land S, Barre-Dirrie A,
Reuter I, Chekmenev D, Krull M, Hornischer K, Voss N, Stegmaier P,
Lewicki-Potapov B, Saxel H, Kel AE, Wingender E. Transfac and its
module transcompel: transcriptional gene regulation in eukaryotes.
Nucleic Acids Res. 2006;34(Database issue):108–10.

34. Bryne JC, Valen E, Tang MH, Marstrand T, Winther O, da Piedade I,
Krogh A, Lenhard B, Sandelin A. Jaspar, the open access database of

transcription factor-binding profiles: new content and tools in the 2008
update. Nucleic Acids Res. 2008;36(Database issue):102–6.

35. Kanehisa M, Goto S. Kegg: kyoto encyclopedia of genes and genomes.
Nucleic Acids Res. 2000;28(1):27–30.

36. Mishra GR, Suresh M, Kumaran K, et al. Human protein reference
database–2006 update. Nucleic Acids Res. 2006;34(Database issue):411–4.

37. Flicek P, Amode MR, Barrell D, et al. Ensembl 2012. Nucleic Acids Res.
2012;40(Database issue):84–90. doi:10.1093/nar/gkr991.

38. Barabasi AL, Albert R. Emergence of scaling in random networks. Science.
1999;286(5439):50912. doi:7898.

39. Albert R. Scale-free networks in cell biology. J Cell Sci. 2005;118(Pt 21):
4947–57. doi:10.1242/jcs.02714.

40. Zou M, Conzen SD. A new dynamic bayesian network (dbn) approach for
identifying gene regulatory networks from time course microarray data.
Bioinformatics. 2005;21(1):71–9. doi:10.1093/bioinformatics/bth463.
http://bioinformatics.oxfordjournals.org/content/21/1/71.full.pdf+html.

41. Kim SY, Imoto S, Miyano S. Inferring gene networks from time series
microarray data using dynamic bayesian networks. Brief Bioinform.
2003;4(3):228–35. doi:10.1093/bib/4.3.228. http://bib.oxfordjournals.org/
content/4/3/228.full.pdf+html.

42. Costa LF, Rodrigues FA, Travieso G, Boas PRV. Characterization of
complex networks: A survey of measurements. Adv Phys. 2007;56(1):
167–242. doi:10.1080/00018730601170527.

43. Huang J, Zhang T, et al. The benefit of group sparsity. Ann Stat.
2010;38(4):1978–2004.

44. Candes E, Romberg J. l1-magic: Recovery of sparse signals via convex
programming. 2005;4:46. www.acm.caltech.edu/l1magic/downloads/
l1magic.pdf.

45. Boyd S, Parikh N, Chu E, Peleato B, Eckstein J. Distributed optimization
and statistical learning via the alternating direction method of multipliers.
Foundations Trends�Mach Learn. 2011;3(1):1–122.

46. Tseng P. Convergence of a block coordinate descent method for
nondifferentiable minimization. J Optim Theory Appl. 2001;109(3):475–94.

47. Nesterov Y. Smooth minimization of non-smooth functions. Math
Program. 2005;103(1):127–52.

48. Nesterov Y. A method of solving a convex programming problem with
convergence rate o (1/k2). Soviet Math Doklady. 1983;27(2):372–6.

49. Marbach D, Schaffter T, Mattiussi C, Floreano D. Generating realistic in
silico gene networks for performance assessment of reverse engineering
methods. J Comput Biol. 2009;16(2):229–39. doi:10.1089/cmb.2008.09TT.
WingX.

50. Meyer PE, Lafitte F, Bontempi G. minet: A r/bioconductor package for
inferring large transcriptional networks using mutual information. BMC
Bioinforma. 2008;9(1):1–10. doi:10.1186/1471-2105-9-461.

51. Loveday EK, Svinti V, Diederich S, Pasick J, Jean F. Temporal- and
strain-specific host microrna molecular signatures associated with
swine-origin h1n1 and avian-origin h7n7 influenza a virus infection.
J Virol. 2012;86(11):6109–122. doi:10.1128/JVI.06892-11.

52. Wu S, Wu H. More powerful significant testing for time course gene
expression data using functional principal component analysis
approaches. BMC Bioinforma. 2013;14(1):1–13.
doi:10.1186/1471-2105-14-6.

53. Rebhan M, Chalifa-Caspi V, Prilusky J, Lancet D. Genecards: a novel
functional genomics compendium with automated data mining and
query reformulation support. Bioinformatics. 1998;14(8):656–64.

54. Wang X, Li M, Zheng H, Muster T, Palese P, Beg AA, Garcıa-Sastre A.
Influenza a virus ns1 protein prevents activation of nf-κb and induction of
alpha/beta interferon. J Virol. 2000;74(24):11566–73.

55. Ludwig S, Ehrhardt C, Neumeier ER, Kracht M, Rapp UR, Pleschka S.
Influenza virus-induced ap-1-dependent gene expression requires
activation of the jnk signaling pathway. J Biol Chem. 2001;276(14):
10990–8.

56. Kochs G, García-Sastre A, Martínez-Sobrido L. Multiple anti-interferon
actions of the influenza a virus ns1 protein. J Virol. 2007;81(13):7011–21.

57. Gerstein MB, Kundaje A, Hariharan M, et al. Architecture of the human
regulatory network derived from encode data. Nature. 2012;489(7414):
91–100. doi:10.1038/nature11245.

58. Poli V. The role of c/ebp isoforms in the control of inflammatory and
native immunity functions. J Biol Chem. 1998;273(45):29279–82.

59. Granberg F, Svensson C, Pettersson U, Zhao H. Adenovirus-induced
alterations in host cell gene expression prior to the onset of viral gene
expression. Virology. 2006;353(1):1–5.

http://dx.doi.org/10.1093/bioinformatics/btm639
http://dx.doi.org/10.1073/pnas.092576199
http://dx.doi.org/10.1038/msb4100120
http://dx.doi.org/10.1073/pnas.0913357107
http://dx.doi.org/10.1371/journal.pone.0012776
http://dx.doi.org/10.1186/1752-0509-6-145
http://dx.doi.org/10.1186/1471-2105-11-154
http://dx.doi.org/10.1093/bioinformatics/btu863
http://dx.doi.org/10.1093/bioinformatics/btr373
http://dx.doi.org/10.1038/msb.2008.52
http://dx.doi.org/10.1093/nar/gkr991
http://dx.doi.org/7898
http://dx.doi.org/10.1242/jcs.02714
http://dx.doi.org/10.1093/bioinformatics/bth463
http://bioinformatics.oxfordjournals.org/content/21/1/71.full.pdf+html
http://dx.doi.org/10.1093/bib/4.3.228
http://bib.oxfordjournals.org/content/4/3/228.full.pdf+html
http://bib.oxfordjournals.org/content/4/3/228.full.pdf+html
http://dx.doi.org/10.1080/00018730601170527
www.acm.caltech.edu/l1magic/downloads/l1magic.pdf
www.acm.caltech.edu/l1magic/downloads/l1magic.pdf
http://dx.doi.org/10.1089/cmb.2008.09TT
http://dx.doi.org/10.1186/1471-2105-9-461
http://dx.doi.org/10.1128/JVI.06892-11
http://dx.doi.org/10.1186/1471-2105-14-6
http://dx.doi.org/10.1038/nature11245


Gui et al. BMC Bioinformatics  (2017) 18:74 Page 13 of 13

60. Ramdzan ZM, Nepveu A. Cux1, a haploinsufficient tumour suppressor
gene overexpressed in advanced cancers. Nat Rev Cancer. 2014;14(10):
673–82.

61. Stern JL, Cao JZ, Xu J, Mocarski ES, Slobedman B. Repression of human
cytomegalovirus major immediate early gene expression by the cellular
transcription factor ccaat displacement protein. Virology. 2008;378(2):
214–25.

62. Zhang W, Zeng Z, Zhou Y, Xiong W, Fan S, Xiao L, Huang D, Li Z, Li D,
Wu M, et al. Identification of aberrant cell cycle regulation in epstein–barr
virus-associated nasopharyngeal carcinoma by cdna microarray and gene
set enrichment analysis. Acta Biochim Biophys Sin. 2009;41(5):414–428.

63. Nechanitzky R, Akbas D, Scherer S, Györy I, Hoyler T, Ramamoorthy S,
Diefenbach A, Grosschedl R. Transcription factor ebf1 is essential for the
maintenance of b cell identity and prevention of alternative fates in
committed cells. Nat Immunol. 2013;14(8):867–75.

64. Arvey A, Tempera I, Tsai K, Chen HS, Tikhmyanova N, Klichinsky M,
Leslie C, Lieberman PM. An atlas of the epstein-barr virus transcriptome
and epigenome reveals host-virus regulatory interactions. Cell Host
Microbe. 2012;12(2):233–45.

65. Xu W, Domingues R, Fonseca-Pereira D, Ferreira M, Ribeiro H, Lopez-
Lastra S, Motomura Y, Moreira-Santos L, Bihl F, Braud V, Kee B, Brady H,
Coles M, Vosshenrich C, Kubo M, Di Santo J, Veiga-Fernandes H. NFIL3
orchestrates the emergence of common helper innate lymphoid cell
precursors. Cell Rep. 2015;10(12):2043–54. doi:10.1016/j.celrep.2015.02.057.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

http://dx.doi.org/10.1016/j.celrep.2015.02.057

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Methods
	Background regulatory network
	Model formulation of topological features of GRN
	Hub gene structure separation:
	Small number of parent nodes:
	Background network:


	Computing algorithm
	Minimization w.r.t. A and B.
	Minimization w.r.t. C.
	Minimization w.r.t. U.


	Algorithmic complexity

	Results and discussion
	Synthetic data: evaluation and comparison
	Network specification and simulated data
	Fairness of comparison and evaluation metrics
	Performance evaluation

	Real data: validation and findings
	Data description and previous work
	Network analysis
	Validation and findings


	Conclusions
	Additional files
	Additional file 1
	Additional file 2
	Additional file 3
	Additional file 4
	Additional file 5
	Additional file 6
	Additional file 7

	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors' contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	Author details
	References

