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Abstract

Background: Networks or graphs play an important role in the biological sciences. Protein interaction networks and
metabolic networks support the understanding of basic cellular mechanisms. In the human brain, networks of
functional or structural connectivity model the information-flow between cortex regions. In this context, measures of
network properties are needed. We propose a new measure, Ndim, estimating the complexity of arbitrary networks.
This measure is based on a fractal dimension, which is similar to recently introduced box-covering dimensions.
However, box-covering dimensions are only applicable to fractal networks. The construction of these
network-dimensions relies on concepts proposed to measure fractality or complexity of irregular sets in R

n.

Results: The network measure Ndim grows with the proliferation of increasing network connectivity and is
essentially determined by the cardinality of a maximum k-clique, where k is the characteristic path length of the
network. Numerical applications to lattice-graphs and to fractal and non-fractal graph models, together with formal
proofs show, that Ndim estimates a dimension of complexity for arbitrary graphs. Box-covering dimensions for fractal
graphs rely on a linear log− log plot of minimum numbers of covering subgraph boxes versus the box sizes. We
demonstrate the affinity between Ndim and the fractal box-covering dimensions but also that Ndim extends the
concept of a fractal dimension to networks with non-linear log− log plots. Comparisons of Ndim with topological
measures of complexity (cost and efficiency) show that Ndim has larger informative power. Three different methods
to apply Ndim to weighted networks are finally presented and exemplified by comparisons of functional brain
connectivity of healthy and depressed subjects.

Conclusion: We introduce a new measure of complexity for networks. We show that Ndim has the properties of a
dimension and overcomes several limitations of presently used topological and fractal complexity-measures. It allows
the comparison of the complexity of networks of different type, e.g., between fractal graphs characterized by hub
repulsion and small world graphs with strong hub attraction. The large informative power and a convenient
computational CPU-time for moderately sized networks may make Ndim a valuable tool for the analysis of biological
networks.
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Background
Network or graph theory is of increasing importance for
the analysis of biological systems. This may comprise
protein interaction networks [1], metabolic networks [2]
or neuronal networks in the human brain. Task-induced
and resting state functional magnetic resonance imaging
(fMRI) and diffusion tensor imaging (DTI) established
the analysis of functional and structural connectivity net-
works in the human brain [3, 4]. For quantitative analy-
ses, local and global topological measures are employed;
see [3, 5, 6] for a description and a critical discussion.
We introduce in this paper a new concept, which may
be called a “regional quantity” and which measures the
complexity of networks. The problem how to measure
complexity of a graph has been approached in differ-
ent ways. For example, complexity of a graph has been
defined by the number of its spanning trees [7]. It has
been defined as the number of Boolean operations to con-
struct the graph from generating graphs [8]; this type of
complexity is frequently called computational complexity.
Or, it has been defined by a combination of the number
of vertices, edges and proper paths [9]. Our concept of
complexity is based on the connectivity of a graph. Sim-
ple examples of this type of complexity are the cost or the
efficiency, more involved examples are the box-counting
dimensions [10, 11] introduced recently. Cost and effi-
ciency are easily calculated, however both concepts fail to
discriminate regular grids with different dimensions, see
Ndim andmanifolds. Box counting-dimensions can detect
a novel type of graphs, the fractal graph; however, these
dimensions need NP-complete algorithms and become
unstable if fractality is distorted [12]. In our approach we
try to overcome these shortcomings by a new concept,
which is applicable to any undirected graph. We achieve
with our concept more flexibility and enhanced infor-
mative power, the price however is again a NP-complete
algorithm with high CPU times for some large sized net-
works. Practical applicability of Ndim to such cases will
be demonstrated by the introduction of convenient lower
bounds.
Our concept is based on a definition of a fractal dimen-

sion introduced for sets in R
n by Sandau [13] and Sandau

& Kurz [14]. Fractal analysis in R
n allows the quantifica-

tion of irregularity or complexity of point sets where the
concepts of traditional geometry usually fail. Fractals pos-
sess a fine structure that exhibits details at different scales
of resolution. Fractals appear in numerous disciplines,
e.g., plasma physics, biological systems, or neuroscience
[15–17].
The degree of complexity is measured by a fractal

dimension FD although many non-equivalent definitions
of FDs exist. However, all such concepts of FD satisfy (at
least approximately) the following unifying conditions, see
[13, 15].

C1. Invariance under Euclidean motions;
C2. Invariance under affine transformations;
C3. Monotonicity for set inclusion;
C4. Maximum property for set union;
C5. FDs are extensions of the topological dimension for

smooth manifolds, and
C6. All FDs are equivalent for self-similar fractals.

A picturesque definition of self-similarity is due to Man-
delbrot [18]: A fractal is called self-similar if a subset,
magnified to the size of the whole set, is congruent to the
whole. (See [15] for a formal definition and extensions.)
The numerical calculation of FDs for real data with scale
of resolution > 0 is, in general, nontrivial as the details
of scales tending to zero are important for the charac-
terization of a fractal [17]. In [13, 14] an FD definition,
called x-dim, was proposed that is both applicable to self-
similar and more general fractals. This definition appears
to be numerically more robust than the frequently used
box-counting dimension for self-similar fractals.
Using a procedure similar to the calculation of a box-

counting dimension in R
n, a novel FD for networks or

graphs was introduced by Song et al. [10, 11]. For this
purpose, a covering of the graph by subgraph (“box”) sys-
tems differing in their linear size is proposed. The FD
is finally determined by the slope of a linear log− log
plot, where the minimal number of covering subgraphs is
plotted versus their linear size.
Networks have in general no well defined geometric

patterns that allow the definition of self-similarity. But
self-similarity can be defined by internal properties of the
graph, e.g., by the invariance of the degree distribution
under scale transformations. To obtain graphs on different
length scales, a subgraph covering with fixed linear size
is iterated, blurring the initial graph more and more, thus
increasing the scale; see Song et al. [10, 11]. If the degree
distribution is invariant under the different steps of this
renormalization procedure, the graph is called self-similar
[19, 20]. A similar scaling invariance for edge densities was
discussed by Blagues et al. [21]. Note the following dif-
ference to fractals in R

n: There exist self-similar graphs
which are not fractals, i.e., graphs for which the log− log
plot is nonlinear [11, 20].
Inverting this iterated renormalization procedure allows

the design of models for fractal and non-fractal scale
free graphs [11, 12]. Transitions between both classes
depend on the strength of the module or hub repulsion
which is controlled by themodel parameters; minimal hub
repulsion (attraction) produces a model with small world
properties, maximal hub repulsion a fractal graph [11]. It
is shown in [12], that the addition of noise by adding ran-
dom edges can also initiate the transition from a fractal
to a small world graph. Many real data networks are frac-
tal graphs; examples are the world-wide-web (WWW),
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social networks, protein-protein interaction graphs (PIN),
and cellular networks [10, 11]. More recently, Gallos
et al. [22, 23] detected fractal fMRI networks in the human
brain for high percolation thresholds. An alternative to the
box-covering methods is discussed in [24]; they use a ran-
dom walker through the network, to derive a correlation
dimension using a convenient log− log plot.
In this paper, we propose an extension of Sandau‘s frac-

tal dimension x-dim in R
n to networks or graphs, which

we call Ndim. This new concept is based essentially on
the maximum k-clique cardinality and does not only allow
the quantification of complexity for fractal graphs, but
also for graphs with non-linear log− log plots. We prove
that this concept satisfies the graph-specific modifications
of the conditions C2, C3, and C4; condition C1 is irrel-
evant for graphs. The validity of conditions C5 and C6
is demonstrated numerically by applications of Ndim to
regular lattice or grid graphs and to binary fractal mod-
els. As weighted graphs are frequently used to quantify
functional or structural connectivity, we present three
procedures to apply Ndim to weighted graphs. To evaluate
the complexity Ndim, we compare it with the connec-
tivity measures cost, efficiency, and box-counting dimen-
sions by applications to resting state and task-induced
fMRI data. We find several advantages of our new mea-
sure: compared to cost and efficiency Ndim has stronger
informative power, as complexity differences in fMRI cor-
relation networks between healthy and depressed subjects
are increased for Ndim. In contrast to cost and efficiency
is Ndim a non-global regional metrics. We show that this
feature enables the localization of special hub nodes in
the networks which are characteristic for depressed sub-
jects. Comparing Ndim and some box-counting metrics,
we find a strong similarity as long as the networks are
fractals; applying these concepts to experimental dual task
fMRI networks, which lose fractality by lowering a cor-
relation threshold, we find that Ndim has an essentially
enhanced scope of application compared to box-counting
dimensions. Though the algorithm to calculate Ndim is
NP-complete, we find that CPU time is quite low for mod-
erate network sizes, for large sized networks we discuss
the introduction of lower bound constraints.

Methods
Extended counting method in Euclidean space
For a point set in R

n, the fractal dimension x-dim
is numerically calculated using the extended counting
method [13]; see Fig. 1a, b for an illustration.
In Fig. 1a, b, the point set F (Sierpiński triangle) is cov-

ered by a fine uniform grid with grid scale e1 satisfying
e1 ≥ the resolution of the data points given in Fig. 1a.
An additional large window with size ew = (minimal side
length of the wrapping box of F)/2 is slid along the corner
points of the fine grid to find the maximum intersection

between F and the fine grid within the window; see Fig. 1b.
Denoting the maximum number of intersecting fine boxes
by N, x-dim is then estimated by

x-dim(F) = logN
log(ew/e1)

.

(See [13, 17]). For x-dim estimates of MRI cortex sur-
faces, fMRI time series in the human brain, and fractional
Brownian motion, we refer to [25–27].

Extended countingmethod for networks
For a connected binary network or graph G, we define an
extended counting method similar to that for a point set
in R

n. The fractal dimension Ndim of G is computed in
several steps:

1. Compute the average distance μ of G. The average
(chemical) distance, characteristic path length, or
normalized Wiener index is a natural measure for the
compactness of a graph [28, 29]. It is defined by

μ :=

∑
1≤i<j≤n

d(i, j)
(n
2
) ,

where n denotes the number of vertices and d(i, j)
the chemical distance or shortest path between
vertices i and j.

2. Reduce μ to an integer k := �μ�. Here �·� denotes
the floor function.

3. Compute a vertex set that is defined by a maximum
k-clique of G. A maximum k-clique is a largest set of
vertices with distance ≤ k in G to each other. Such a
clique can be interpreted as a cluster, module, or
cohesive subgroup of vertices [30].

4. We define Ndim for a finite graph G by

Ndim(G) = log |max k-clique|
log(k + 1)

,

where |max k-clique| denotes the cardinality of a
maximum k-clique. Following the convention of
Song et al. [10], we added a +1 to the chemical
distance in the denominator.

5. For infinite graphs G with arbitrary large k, a fractal
dimension Ndim can be defined by

Ndim(G) = lim
k→∞

log |max k-clique|
log(k + 1)

,

provided this limit exists. (1)

The above definition is similar to the definition of
fractal dimensions for sets in R

n where an
infinitesimal process is applied [15]; see Ndim and
manifolds and Applications of Ndim to fractal and
non-fractal models for examples of graphs where the
number of vertices and k go to ∞.
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Fig. 1 Panel a Sierpiński triangle F in the plane. Panel b Extended counting method for F. The scales e1 and ew for the fine grid and the sliding
window (thick frames) are indicated. The window with the maximum number of fine grid boxes intersecting F determines the complexity of the
fractal (x-dim). Panels c and d show a fractal graph G with a submaximum (c) and a maximum (d) highlighted k-clique (thick red). The cardinality of a
maximum k-clique determines the complexity of G (Ndim(G))

See Fig. 1c, d for an illustration of a sub-maximum
and a maximum k-clique in a fractal graph. As will
be shown in later sections, Ndim is a fractal
dimension FD in the sense that it satisfies the
conditions C2 – C6 for graphs given in Background.
For simplicity, the notion of fractal dimension is also
used for Ndim when applied to finite graphs.

The numerically most difficult part in the computa-
tion of Ndim(G) is the calculation of the maximum
k-clique where a scan through G is necessary. This is
a NP-complete problem [30] just as the computation
of box-coverings for the FD of [10]. For the clique
computations, an algorithm by Carraghan & Pardalos
[31] and an algorithm by Tomita et al. [32] applied

in the commercial software package Mathematica are
used. For a comparison, the box-covering dimensions
defined via log− log plots are also computed. We
employ the maximum-excluded-mass-burning (MEMB)
algorithm and a compact-box-burning (bcm) algorithm
as described in [33]. The MEMB algorithm is published
online and can be found at http://www-levich.engr.ccny.
cuny.edu/webpage/hmakse/brain/.

Application of Ndim to weighted graphs
The FD Ndim was introduced for a binary graph. How-
ever, numerous problems in biology or brain research
deal with weighted graphs [34]. (Note that all graphs
considered in this article are undirected and have no self
loops).

http://www-levich.engr.ccny.cuny.edu/webpage/hmakse/brain/
http://www-levich.engr.ccny.cuny.edu/webpage/hmakse/brain/
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In the following, we describe three procedures of how to
apply Ndim to weighted graphs with nonnegative weights.
Elaborate examples for human brain data and the condi-
tions for applicability are discussed in Results. To obtain
a reasonable distance measure d(i, j) for weighted graphs,
the interpretation of the weights w(i, j) in the weighted
adjacency matrix must be considered. For better readabil-
ity, we do not delineate in the following between a graph
and its adjacency matrix.
For “transportation networks,” distances increase with

the weights; for “communication networks,” distances
decrease with increasing weights [35, 36]. For brain
mapping, “communication networks” are frequently
used. Here the weights may be given by w(i, j) =
|correlation(i, j)| for fMRI time series in two different
ROIs i and j [37], or by w(i, j) = connectivity-strength(i, j)
for DTI fiber connection between functional ROIs i and j
[38]. In these cases Ndim can be computed as follows.

1. Transition to a binary adjacency matrix using a cut-
off: A mapping from the weighted adjacency matrix
Wn×n of a graph with n vertices to a binary adjacency
matrix An×n with components a(i, j) is defined by
thresholding of some quantity τ > 0, as follows. If for
an edge w(i, j) > τ , then w(i, j) is replaced by
a(i, j) = 1; otherwise w(i, j) is replaced by a(i, j) = 0.
This implies that for, e.g., |correlation(i, j)| > τ ,
d(i, j) = 1, and for |correlations(i, j)| < τ , d(i, j) > 1,
as the connecting paths are no longer direct links.
If the binary graph A is disconnected then Ndim is
computed for every connected binary component
Akl , where kl is the average distance in component
Al. The list of FDs (Ndim1, Ndim2 . . .) is combined
into a weighted average

Ndim(W , τ) =
∑
l
weight(l) · Ndim(Akl ),

describing the complexity of the disconnected graph.
As weights, we choose weight(l) = (number of nodes
in component Al)/n, where n denotes the size of the
entire graph, which reduces the weight for smaller
components as they carry less information.
Components with only a few nodes should be
excluded from the averaging process but the
normalization

∑
l weight(l) = 1 should be

maintained.
2. A Monte Carlo ensemble method: The weighted

adjacency matrixWn×n is normalized by setting
w̃(i, j) := w(i, j)/max{w(i, j) : i, j = 1, . . . , n} and
these weights are interpreted as probabilities. A
uniform random number generator assigns to each
edge a random number p ∈ (0, 1] and defines a
mapping to a binary random matrix via the following
condition: If p ≤ w̃(i, j) then a(i, j) = 1; else

a(i, j) = 0. By this procedure, an ensemble of binary
random graphs is produced, where for large w̃(i, j)
short distances are frequently randomly generated
and for small w̃(i, j) mainly large distances [39, 40].
For every such binary random graph the FD Ndim
can be computed. In case a random graph is
disconnected, a weighted averaging as in (1) can be
applied.

3. Calculation of Ndim via functional distances: To
calculate statistical measures of weighted connected
communication networksWn×n, a functional
(physical) distance network W̃n×n is often introduced
in order to avoid long pathways for strong
connections [35, 36, 41, 42]. In the following we
adapt this approach for the computation of the
complexity Ndim.

(a) The w(i, j) coefficients (edges of a weighted
graph) are mapped to functional distance
coefficients via, e.g., w̃(i, j) = 1/w(i, j).

(b) The graph W̃n×n is mapped to an
approximating multigraphMn×n with integer
weights by scaling by a large factor c and
rounding [35]:Mn×n = �cW̃n×n�. Finally, the
coefficientsm(i, j) = ∞ are mapped to
m(i, j) = 0; see Results for a numerical
example of scaling. Then compute, for
instance by the Dijkstra algorithm [43], the
distance matrix Dn×n with coefficients d(i, j)
forMn×n, the average distance μ, and the
minimum positive distance m.

(c) Transform the multigraphMn×n to a binary
distance graph Gn×n [44] using the following
condition: If d(i, j) ≤ �μ� set g(i, j) = 1;
otherwise set g(i, j) = 0 (g(i, i) = 0). For this
binary graph calculate a maximum clique if
Gn×n is connected; otherwise compute a
maximum clique in each connected
component and use from these maximum
cliques the one with maximal vertex
cardinality; see an example in the comment
for Fig. 8.

(d) The complexity Ndim forWn×n is finally
estimated by

Ndim(W ) = log |maximum clique|
log[ (�μ� + m)/m]

.

In caseMn×n is a binary graph, Ndim agrees
with the definition given in Extended
counting method for networks.

Data
An application of thresholding and of the Monte Carlo
ensemble method to compare the complexity of weighted
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networks relies on data from [45]: For patients with recur-
rent depression and for healthy controls, a whole brain
functional connectivity network was derived from prepro-
cessed resting-state functional MRI data. By anatomical
parcellation of the whole brain using the Harvard-Oxford
atlas (FSL, Oxford University) 112 regions of interest
(ROIs) or network nodes were defined. Time series of
functional MRI signals were extracted from each voxel
and subsequently averaged within each of the 112 ROIs. A
maximal overlap discrete wavelet transform was applied
to decompose the regional time series into different fre-
quency scales [46]. Absolute wavelet correlation coeffi-
cients at the low-frequency scale (0.060–0.125 Hz) were
used to obtain a 112 × 112 weighted connectivity matrix
representing an individual whole-brain functional correla-
tion network for each subject; a similar procedure is used
in [37].
A second data set from [22, 23] uses visual and auditory

stimuli with four different onset delays to achieve whole-
brain dual-task fMRI time series. The phase of the BOLD
signal was computed for each voxel i and for 40 trials
[47]. The phase-based correlations between different vox-
els i and j were averaged over the trials. This resulted in
a whole-brain correlation matrix representing a weighted
subject-specific functional network. This whole-brain
network was reduced by a mask of ∼60.000 voxels, where
only voxels with high activation probability were kept. The
data are published online at http://www-levich.engr.ccny.
cuny.edu/webpage/hmakse/brain/. The variation of a cor-
relation threshold produces a percolation process: highly
correlated voxels indicate separated modules with strong
functional internal links, for lower thresholds the modules
are merged and the network approaches a small-world
topology.
Seven binary connectivity networks, taken from http://

www.brain-connectivity-toolbox.net/, are tested for com-
putational cost. Autobahn has a connection 1, if two loca-
tions are directly connected by the highway [48]. Air500
summarizes the flight connections between 500 air ports
[49]. Three biological networks are: Celegans describing
neuronal connections [50], Mac95 and Macaque summa-
rizing corticocortical connections [51].

Results
In the next section, we numerically explore howwell Ndim
and a box-covering dimension approximate the dimen-
sions of grid graphs (condition C5). Then, the equivalence
between Ndim and several box-covering dimensions is
explored for models of self-similar fractal graphs (condi-
tion C6). An examination of non-fractal graphs demon-
strates that Ndim is applicable beyond fractality, i.e., to
graphs with non-linear log− log plots for minimum num-
bers of covering boxes versus box size. Three methods
of how to apply Ndim to weighted graphs on the basis

of analyses of functional connectivity in the human brain
are explained. Resting state fMRI data of healthy and
depressed subjects and dual-task fMRI data are involved
to evaluate Ndim.

Ndim andmanifolds
To demonstrate, that the proposed FD Ndim is an exten-
sion of the topological dimension for smooth manifolds
(condition C5 in the introduction), we applied Ndim to
regular one- and two-dimensional finite lattice graphs of
size 100, 1500, 30 × 30, 40 × 40, 80 × 80, and 100 × 100.
For comparison, a box-covering dimension was calculated
applying the method MEMB [33] and the measures cost
(global normalized edge density) and global efficiency,
which are in use as simple measures of complexity. We
refer to Table 1 for the results, which show a convergence
of the FDs to the topological dimensions as size increases.
For cost and efficency we find that they tend to zero for
both grids as their sizes increase.
The log− log plots for MEMB showed a high linear-

ity in all cases. The coefficient of determination R2 was
found to satisfy R2 > 0.99. The box sizes for the log− log
plots were averaged, as proposed by Song et al. [33], thus
increasing the R2 values. To keep computation time within
limits, we did not use adjacency matrices with more than
10,000 nodes. These results show the enhanced informa-
tive power of the fractal dimensions as compared to the
topological measures.

Application of Ndim to fractal and non-fractal models
A model for scale-free fractal networks was introduced
by [11]; it is shown in the Supplement of this paper that
this model is in addition self-similar. An explicit algo-
rithm, calculating the model by inversion of a renormal-
ization process, can be found in [11, 12]. In this algorithm,
the network grows iteratively in size (number of nodes)
whereby the diameter and the degree per node approach
the full model. To explore if Ndim satisfies condition C6
for binary graphs, the network dimensions Ndim, MEMB,
and bcm are compared at different stages of a growing
network. Starting the network construction with a single
node, these dimensions are plotted against the size of the
model f (g, n,m, e) for g = 4, 5, 6, and 7 iterations; see
Fig. 2. The growth factor of the network size is n = 4 per

Table 1 Ndim compared with MEMB, cost and global efficiency
for some one- and two-dimensional grids

100 1500 30 × 30 40 × 40 80 × 80 100 × 100

Ndim 0.99 1 1.77 1.79 1.83 1.84

MEMB 0.99 1 1.63 1.69 1.77 1.81

Cost 0.02 0.0013 0.0043 0.0024 0.0006 0.0004

Efficiency 0.085 0.0092 0.077 0.058 0.03 0.023

http://www-levich.engr.ccny.cuny.edu/webpage/hmakse/brain/
http://www-levich.engr.ccny.cuny.edu/webpage/hmakse/brain/
http://www.brain-connectivity-toolbox.net/
http://www.brain-connectivity-toolbox.net/
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Fig. 2 The fractal dimensions Ndim (blue), MEMB (yellow), and bcm
(red) are plotted against the size of the network for stages
g = 4, 5, 6, 7 (points from left to right). The applied model is
f (g, 4, 2, 0). With increasing g, all fractal dimensions approach FD = 2

iteration, the growth factor of the degree is m = 2, the
probability for hub attraction is e = 0; see [11] and [12] for
a detailed discussion of the parameters. The FD of a full
model (g → ∞) can be calculated by FD = ln(n)/ ln(m).
Figure 2 indicates that all numerically computed dimen-

sions approach the value FD = 2 with increasing g.
For the complexity Ndim, an analogous convergence
behaviour was observed for the fractal models f (g, 6, 2, 0),
f (g, 5, 2, 0), f (g, 3, 2, 0), f (g, 5, 3, 0), and f (g, 6, 3, 0). To
keep computer time within limits the size of the graphs
was restricted to 47 nodes.
Applying the hub attraction parameter 0 < e ≤ 1, we

can construct non-fractal models with nonlinear log− log
plots for box-covering dimensions; increasing e converts
the networkmore andmore to a small world network [19].
Although box-covering dimensions are not well defined
for the entire range of log− log plots, Ndim can still
be applied in these cases to quantify the complexity of
such graphs. The notion of complexity is introduced as
an extension of the notion of fractality; see Discussion
for an in-depth explanation. Depending on the size, the
complexity of a binary network is limited by the complex-
ity of the corresponding complete graph, where Ndim =
log (size)/ log 2. See Fig. 3a, b for the models f (6, 4, 2, 0)
and f (6, 4, 2, 1).
In Fig. 3c, we show log− log plots for the minimum

number of covering boxes N(lB) against the averaged box
sizes lB , calculated by the MEMB algorithm for models
with e = 0, 0.25, 0.5, 0.75, and 1. For e > 0, deviations
from linearity are clearly visible. The computed complex-
ities Ndim of these models are presented in Fig. 3d for
the iterations g = 4, 5, 6, 7. It is shown in [12], that the
addition of small fractions of random edges to the fractal
models (e = 0) produces similar deviations from linearity
in the log− log plots.

Application of Ndim to weighted graphs by thresholding
Abnormal functional brain connectivity is reported for
recurrent depression patients compared to the connectiv-
ity of healthy subjects [45, 52]. We use such connectivity
data to exemplify the informative power of Ndim and to
demonstrate how to apply this measure for weighted net-
works; a detailed clinical study is beyond the scope of this
paper. In this section, for a healthy and a strongly affected
recurrent depression subject after 9 episodes of depres-
sion and a high clinical Hamilton Rating scale HAM-D=23
[45], resting-state fMRI correlation networks of size = 112
as described in Data, are compared. To calculate Ndim
and the frequently used topological complexity measures
cost (global edge density) and normalized global effi-
ciency, the two weighted absolute correlation networks
are transformed to binary graphs by thresholding the
correlations w(i, j), following the procedure outlined in
Methods. This procedure is applied for τ = 0.2, 0.3, and
0.4. For τ = 0.2, the low correlation edges are also filtered
out using the following inverse condition: If w(i, j) < τ ,
then w(i, j) is replaced by a(i, j) = 1; otherwise by a(i, j) =
0 (a(i, i) = 0). The results are shown in Fig. 4, broken
lines belong to the healthy subject, solid lines to the sub-
ject with depression. Cost, efficiency and Ndim increase
for w(i, j) > τ , with decreasing tau; all measures Ndim
are increased for the depressed subject as compared to
the healthy subject. Vice versa, for the low correlation
graphs w(i, j) < 0.2, the network of the healthy subject
is more complex. In general, we find for Ndim, that the
differences are more pronounced than for the two global
measures, indicating larger informative power of Ndim.
For the depressed subject, Ndim decreases from the case
w(i, j) > 0.2 to the casew(i, j) < 0.2, whereas cost and effi-
ciency are increasing. This dependency excludes a simple
correlation or redundancy between Ndim and the topo-
logical measures. See Fig. 5a for binary networks derived
by the condition : w(i, j) > 0.2. The left-hand side shows
the graph of the healthy subject, the right-hand side the
graph of the subject with depression, maximum k-cliques
are indicated in red.

Monte Carlo ensemble method
The same two data sets used in the last section and exten-
sions to groups of 10 healthy controls and 6 depressed
subjects (more than 8 episodes and HAM-D> 15) are
now analyzed for Ndim by the Monte Carlo ensemble
method. To provide a closer comparison with the results
of the thresholding method, the weighted networks are
also thresholded for a given τ before transforming them
to the binary random graphs, as is described in Methods.
Thresholding is performed like follows, in case w(i, j) >

τ , w(i, j) remains unchanged, otherwise w(i, j) = 0;
or, for the low correlation case, if w(i, j) < τ , w(i, j)
remains unchanged, and set otherwise w(i, j) = 0. For
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Fig. 4 Cost (red), efficiency (blue) and Ndim (black) for a healthy
(broken lines) and a depressed (solid lines) subject are presented for
different cut offs indicated. For Ndim, in brackets (k =
Floor[characteristic path length], cardinality[maximum k-Clique]) are
given

a quantitative comparison between the binary ensem-
bles the weighted networks are normalized to proba-
bilities by the total maximum weight collected over all
networks involved in the comparison. In Fig. 5b, sam-
ples of the binary Monte Carlo ensembles after iden-
tical thresholding are presented. The graphs in panel
b increase in complexity from healthy to disease as in
the cases shown in Fig. 5a. A reduction of connectiv-
ity in the Monte Carlo samples compared to panel a,
is due to the fact that this method transforms lower
w(i, j) less frequently into the edges of the binary net-
works. For every weighted network an ensemble of 1,000
binary random networks is calculated and Ndim of a
weighted graph is thus quantified by a distribution of
complexities; see Fig. 5c–h for examples. The blue dis-
tributions belong to the healthy subject, the red ones to
the subject with depression. The afore-mentioned thresh-
olding of the weighted graph is indicated in the Figure.
Panels c), d), e), h) present comparisons of the two sub-
jects, panel f ) a comparison between the control group
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Fig. 5 Panel a depicts the binary graphs for a healthy and a depression subject computed by the thresholding method. Panel b shows binary
samples of the Monte Carlo method. The k-cliques are indicated in red. Panels c, d, e, h represent paired Monte Carlo distributions of complexity
Ndim for a healthy (blue) and a depression subject (red). Panel f represents the distributions for a healthy group (blue) and the depression subject
(red), Panel g for two groups. The thresholding for the weighted networks is indicated

and the depressed subject, and panel g) the group-group
comparison. Statistical subject-subject comparisons may
be helpful in personalized medical analysis. The group
distributions are involved to reduce subjective random
variability, their distributions are computed pooling all
samples of the group members. The one-sided signifi-
cance of the pairwise distribution shifts (blue to red, same
threshold) can be quantified using a nonparametric statis-
tics of Brunner and Munzel [53]. This method is free of
any assumption regarding the shape of the distributions.
For the case with w(i, j) < 0.2 the Ndim distribution of
the healthy subject is significantly shifted to higher com-
plexities compared to the distribution of the depressed
subject. For the other cases (w(i, j) > 0.2, 0.3, 0.4) the
upwards shift is reversed ending at higher Ndim val-
ues for the depressed subject. For the subject-group
and group-group comparisons, panels f ),g), this upwards
shift is weakened, we find for the P-values Psubject-subject <

Psubject-group < Pgroup-group < 10−10 . The subject-subject
comparisons are in line with that of the threshold-
ing method, but more instructive, as their statistical
significance can be quantified; see [38] for applications of

this statistical technique to edge distributions of weighted
networks.
The calculation of Ndim is based on the maximum k-

cliques or on the largest sets of nodes with distances ≤ k.
Maximum k-cliques include nodes with high functional
connectivity w(i, j) or with similar resting state fMRI sig-
nals in the corresponding grey matter ROIs. Figuring out
the spatial locations of maximum k-clique ROIs in the
brain, we can deduce localized neural information. This
point is complicated by the fact that several maximum k-
cliques may exist in any binary random realization of the
weighted network. For the cases with w(i, j) > 0.2, we find
that for depressed subjects this multiplicity (median= 11)
increases compared to the multiplicity of healthy subjects
(median = 6), the characteristic path length k (median
= 2) is on the contrary rather stable. This indicates, as
Ndim increases, an increasing connectivity for depression
in some regions of the brain. For further analysis we focus
on nodes which are contained in the intersection of all
maximum k-cliques of a binary random realization and
call these nodes core nodes. A core node is a hub node
with distances ≤ k to all maximum k-clique nodes of a
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binary network. For an ensemble of binary realizations
we can quantify the probability of any node to be a core
node. In Fig. 6a, b this probability is plotted for the healthy
(blue) and the depressed (red) subject of Fig. 5e versus
the node labels 1 to 56. A complete mapping of these
labels to grey matter ROIs can be found in the Supple-
ment of [45], the ROIs are derived from Harvard-Oxford
brain atlas. This labeling is symmetric for the left and
the right hemisphere of the brain. In Fig. 6c, d core node
probabilities are given for the healthy group and for the
group of depressed subjects of Fig. 5g. For nodes with
higher probabilities, the grey matter ROIs for depressed
patients are given in Table 2. Compared to the healthy sub-
ject, the probability of these nodes is strongly increased
for the subject with depression (Fig. 6a, b), some of these
nodes have probabilities ∼1; such nodes play in nearly
all binary realizations the role of a core node or, the cor-
responding weighted network favors these core nodes.
The clusters of core nodes with enhanced probabilities
are nearly symmetric in both hemispheres indicating non-
random (systematic) modifications of connectivity under
depression (Figure 6a, b). For the group-group compari-
son, the patterns of the node probabilities (Fig. 6c, d) are
similar to the subject-subject case, but the probabilities
for the depressed case are weakened. The situation for the
group-subject, see Fig. 5f, core nodes is not shown, but is

quite similar to the subject-subject case, as can be easily
inferred. Summarizing, we find that depression enhances
the number of core nodes and consequently the functional
connectivity between the maximum k-cliques. The grey
matter core ROIs under depression which are active for
all comparisons are : frontal pole (1, left, right), insular
cortex (2, left, right), superior frontal gyrus (3, left), mid-
dle frontal gyrus (4, left), cingulate gyrus, anterior division
(29, left), see Table 2 and Fig. 6.

Applications of functional distances
An application of functional distances is performed on
correlation networks based on dual-task fMRI measure-
ments; see Data. To keep the CPU time within limits, we
reduced the number of voxels in the data mask of a sub-
ject from 60,000 to 1,208 thus eliminating coefficients in
the correlationmatrix. This lowers the percolation thresh-
olds p and the complexity but an essential result in the
work by Gallos et al. [22, 23], where separated fractal
brain modules collapse for lower p into weakly connected
non-fractal components, is still approximately valid. To
compare the complexity Ndim with box-counting dimen-
sions in such a situation, we extended the box counting
algorithm for bcm to be directly applicable to the weighted
network W̃n×n (path length = sum of weighted edges).
Following the procedure of Gallos et al., the correlation

A B

C D

Fig. 6 Probabilities of core nodes versus node labels. Red points are core nodes of depressed patients, blue points of healthy probands. The
horizontal lines indicate probability = 0.5. Panels a, b are based on the brain hemispheres of single subjects, panels c, d are derived from groups
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Table 2 Core ROIs for depressed patients with probabilities as
indicated

Grey matter Subject–subject and Group–group
ROIs (label) group–subject (left, right) (left, right)

probability > 0.8 probability > 0.5

Frontal pole (1) x (l,r) x (l,r)

Insular cortex (2) x (l,r) x (l,r)

Superior frontal gyrus (3) x (l,r) x (l)

Middle frontal gyrus (4) x (l,r) x (l)

Precental gyrus (7) x (l,r)

Superior temporal gyrus, x (l)

anterior division (9)

Superior temporal gyrus, x (l,r)

posterior division (10)

Inferior temporal gyrus, x (l,r)

posterior division (15)

Angular gyrus (21) x (l,r)

Lateral occipital cortex, x (l,r)

superior division (22)

Juxtapositional lobule, x (l,r)

cortex (26)

Cingulate gyrus, x (l)

anterior division (29)

Preconeous cortex (31) x (l)

Central operculum cortex (42) x (l,r)

Planum polare (44) x (l,r)

Heschl’s gyrus (45) x (l,r)

Planum temporale (46) x (l,r)

Amygdala (49) x (l,r)

Putamen (52) x (l,r)

Pallidum (53) x (l,r)

network Wn×n of a subject is thresholded by p in the fol-
lowing way: If w(i, j) < p then w(i, j) := 0. Then we apply
the chain of transformations as described in ‘Methods’.
The scaling factor c is calculated by

c = k
max{w̃(i, j) < ∞ : i, j = 1, . . . n} − min{w̃(i, j) > 0 : i, j = 1, . . . n}

(2)

for k = 102. In order to guarantee that c · min{w̃(i, j) >

0 : i, j = 1, . . . n} ≥ 1 and to obtain an approximating
multigraphMn×n of c W̃n×n, k must satisfy the inequality

k 
 max{w̃(i, j) < ∞ : i, j = 1, . . . n}
min{w̃(i, j) > 0 : i, j = 1, . . . n} − 1.

For the threshold p = 0.885, we find two large con-
nected components of W̃n×n of nearly equal size (size1 =
511 and size2 = 499); see Fig. 7a, b. For p = 0.85,

we find a collapsed large component in W̃n×n of size =
1147; see Fig. 7c. The corresponding binary distance
graphs Gn×n including maximum cliques are shown in
Fig. 7d-f. The complexities ofWn×n are Ndim1 = 1.51 and
Ndim2 = 1.76, respectively. For the large component we
find Ndim = 2.06. The corresponding mean topological
distances of W̃n×n are μ1 = 35, μ2 = 23, and μ = 17.
The log− log plots for bcm (weighted box sizes are aver-
aged as in [33]) are shown in Fig. 7g-i. Their R2-values
are R2 = 0.99, respectively, R2 = 0.98, for bcm1 = 1.43,
respectively, bcm2 ≈ 1.41. For the collapsed component
we obtain R2 = 0.95; the corresponding log− log plot
is too non-linear to estimate a unique FD. These results
indicate that the component of size1 is a fractal, the com-
ponent of size2 may be close to a fractal, and the collapsed
component is a non-fractal graph. Please note that in con-
trast to [22, 23], bcm is calculated by box-covering on the
weighted graph W̃n×n.

Monotonicity and themaximum property
Monotonicity and the maximum property (see C3 and C4
in Background) are essential properties of topological or
fractal dimensions [15, 54, 55]. We show that Ndim satis-
fies both criteria for fractal and non-fractal graphs in an
appropriate way just as x-dim does for sets in R

n [13].
The detailed proofs of both theorems are given in the
next section. We refer to [56] for graph-theoretic defini-
tions and notation, and to [34] for details about weighted
graphs. In the following we add parameters to Ndim in
oder to clarify the interpretation.

Monotonicity: For induced connected subgraphs G1 and
G2 of a binary or weighted connected finite graph G, we
have the following implication.

G1 ⊆ G2 ⇒ Ndim(G1,μ,m) ≤ Ndim(G2,μ,m),

where μ is the average and m is the minimum positive
distance. The parameters μ and m may be derived from
G or from Gi. (The proofs in the next section do not
depend on a specific choice of μ and m). This relation is
an approximate version of Condition C3.
For infinite graphs G1 and G2 with μ1 < μ2 and

μ1,μ2 → ∞, the exact version of Condition 3 reads as
follows:

G1 ⊆ G2 ⇒ lim
μ1→∞Ndim(G1,μ1,m1)

≤ lim
μ2→∞Ndim(G2,μ2,m2) (3)

as

lim
μ→∞Ndim(Gi,μ,m)= lim

μi→∞Ndim(Gi,μi,mi), i = 1, 2.
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Fig. 7 Panels a-c show the largest connected components of the W̃n×n graph (n = 1, 208) of different size according to the thresholds p = 0.885
and p = 0.85. Panels d-f depict the corresponding binary distance graphs Gn×n and maximum cliques. Panels g-i present the log− log plots of
minimum numbers of boxes NB(lw) versus averaged weighted box sizes lw . The R2 coefficients are also indicated. For the purposes of comparison,
some estimates of the linear regressions are included

Here it was assumed that all limits exist.
Maximum property: For induced connected subgraphs
G1 and G2 of a binary or weighted finite connected graph
G and for

G1 � G2 := (V (G1) ∪ V (G2),E(G1) ∪ E(G2) ∪ E(G;G1,G2)) ,
(4)

where E(G;G1,G2) denotes the set of all edges of G
directly connecting vertices V ofG1 andG2, we obtain the
following estimates:

Ndim(G1 � G2,μ,m)− 1
lb((�μ� + m)/m)

≤ max{Ndim(G1,μ,m), Ndim(G2,μ,m)}
≤ Ndim(G1 � G2,μ,m),

for fixed μ andm. Here we set lb := log2.
The above relation for Ndim is also called the quasi

maximum property in [13], implying that the complex-
ity Ndim of a finite graph is determined approximately by
a subgraph with maximum clique cardinality. The error
of this approximation reduces as the average distance μ

increases, thus approaching the exact maximum property
(C4) for infinite graphsG1,G2,G1�G2 whenμ1,μ2 → ∞:

lim
μ12→∞Ndim(G1 � G2,μ12,m12)

=max
{

lim
μ1→∞Ndim(G1,μ1,m1), lim

μ2→∞Ndim(G2,μ2,m2)

}
.

The existence of all limits was assumed.

Proofs
In this section, we proof the monotonicity and maxi-
mum properties of Ndim for binary and weighted con-
nected finite graphs W. We use the transformation W →
multigraphM → distance graphD → binary distance
graph G, as described in Application of Ndim to weighted
graphs/3, and present the proofs for the maximum cliques
clmax(G). The complexity Ndim forW is finally estimated
by

Ndim(W ) = log | clmax(G)|
log [(�μ� + m)/m]

,

whereμ denotes the average distance andm theminimum
positive distance derived from D. For graph theoretic
definitions and notation, see [34, 56].
Monotonicity: For induced subgraphs G1 and G2 of G,

we have the implication:

G1 ⊆ G2 =⇒ | clmax(G1)| ≤ | clmax(G2)|, (5)

for connected as well as disconnected subgraphs G1 and
G2.

Proof. If G1 = G2, the identity is true. If, w.l.o.g.,
G1 ⊂ G2, then the vertex cardinality | clmax(G1)| is a lower
bound for | clmax(G2)| implying the right-hand side of (5).
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Assume now that the induced connected subgraphs
Wi ⊆ W have the property thatW1 ⊆ W2. They are trans-
formed to induced subgraphs Gi in the distance graph G
with G1 ⊆ G2. By (5), we have Ndim(W1) ≤ Ndim(W2),
for fixed μ andm based onW.

To clarify the understanding of the proof of the max-
imum property, a binary graph (A) with k = �μ� = 2
and its binary distance graph (B) are shown in Fig. 8. The
maximum 2-clique in (A) and the corresponding maxi-
mum clique in (B) have identical vertex cardinality and
are indicated in red. If the weight m(11, 10) = 1 in
(A) is modified to m(11, 10) = 3, we still have k = 2
and the binary distance graph (B) becomes disconnected.
Edge eliminating cuts (green and blue lines) are indi-
cated in (A) and (B). Any cut separates a graph G into
a pair of disjoined induced subgraphs G1 and G2 with
G = G1 � G2. Note that in a graph G several max-
imum cliques with identical vertex cardinalities | clmax |
may exist. Due to their distance dependence, k-cliques
of subgraphs Gi may involve paths outside of Gi, as see
by the green cut in (A). If the distances in (A) are arti-
ficially restricted to Gi, statement b) in the following
Lemma may not be fulfilled: Apply, e.g., the modification
m(11, 10) = 3 and the green cut. Then (| clmax(G)| =

10)>(| clmax(G1)| = 2)+ (| clmax(G2)| = 7)) in (B), where
clmax(G2) = {2, 3, 4, 6, 7, 9, 13}.
Maximumproperty: For induced connected subgraphs

W1 andW2 of a binary or weighted finite connected graph
W and for

W1 � W2 := (V (W1) ∪ V (W2),E(W1) ∪ E(W2) ∪ E(W ;W1,W2)) ,

where E(W ;W1,W2) denotes the set of all edges of W
directly connecting vertices V of W1 and W2, we obtain
the following estimates:

Ndim (W1 � W2) − 1
lb((�μ� + m)/m)

≤ max {Ndim(W1), Ndim(W2)}
≤ Ndim(W1 � W2),

for fixed μ andm. Here we set lb := log2.
We prove the maximum property in several steps.

Lemma. Assume that G1 and G2 are induced connected
subgraphs of a finite binary distance graph G. If G1 ∩G2 =
∅ and G1 � G2 is connected, then we have for the vertex-
cardinalities | · | the following estimates:

(a) max {| clmax(G1)|, | clmax(G2)|} ≤ | clmax(G1 � G2)|;
(b) | clmax(G1 � G2)| ≤ | clmax(G1)| + | clmax(G2)|.

A

B

Fig. 8 Panel a represents a binary graph overlaid with the maximum 2-clique (red). Panel b represents its binary distance graph for distances ≤ 2
and the maximum clique (red). Separating edge cuts are indicated by the green and blue lines



Hahn et al. BMC Bioinformatics  (2016) 17:87 Page 14 of 18

Proof of (a): Applying the operation � to G1 and G2
implies that Gi ⊆ G1 � G2, for i = 1, 2; see Fig. 8
for an illustration. By monotonicity, this set containment
yields that | clmax(Gi)| ≤ | clmax(G1 � G2)|, which gives
statement (a).

Proof of (b):

1) Assume that no eliminated edge connecting G1 and
G2 is contained in any of the n ≥ 1maximum cliques
of G1 � G2. Then, (b) holds as an inequality; see the
green cut in Fig. 8.

2a) Assume that only one maximum clique
clmax(G1 � G2) exists and that eliminated edges
connecting G1 and G2 are contained in this
maximum clique clmax(G1 � G2); see blue cut in
Fig. 8. Using the notation clmax,i := clmax(G1 � G2)
restricted to Gi, we have | clmax(G1 � G2)| = | clmax,1
| + | clmax,2 | and (b) holds as an identity in case
| clmax,i | = | clmax(Gi)|, for i = 1, 2. On the other
hand, (b) is satisfied as an inequality if
| clmax,i | < | clmax(Gi)|, for i = 1 or i = 2. If | clmax,i |
contains only a single vertex then | clmax,i | = 1.

2b) First assume that we have n > 1maximum
cliques clmax(G1 � G2). For a cut that eliminates
edges of m (m < n) maximum cliques
clmax(G1 � G2), the inequality is true, as there
exists at least one maximum clique
clmax(G1 � G2) ⊆ Gi for i = 1 or i = 2. If the edges
of all n maximum cliques clmax(G1 � G2) are
removed, then we have for every maximum clique
clmax(G1 � G2) the identity
| clmax(G1 � G2)| = | clmax,1 | + | clmax,2 |. Suppose
now that there exists a maximum clique
clmax(G1 � G2) with | clmax,1 | = | clmax(G1)|.
Then, | clmax(G2)| ≥ | clmax,2 | which yields (b). On
the contrary, if we assume that for all n maximum
cliques | clmax,1 | < | clmax(G1)|, then inequality holds
in (b). �

Now overlapping subgraphs are analyzed. Two cuts are
involved to separate G1 and G2.

Remark 1. Statements (a) and (b) in the Lemma also
hold when G1 ∩ G2 �= ∅ for connected subgraphs G1 and
G2.

Proof of (a): Follows the same arguments as those given
in the proof of the lemma.

Proof of (b): Assume w. l. o. g. that G̃1 := (G1 � G2) −
G2 is connected, where G̃1 ⊂ G1, G̃1 ∩ G2 = ∅, and
G̃1 � G2 = G1 � G2. Then statement (b) in the Lemma
holds. By monotonicity, (b) is then also true for the sub-
graphs G1 and G2. If G̃1 is not connected, we follow the

same argumentation applying the definition of a maxi-
mum clique for disconnected binary graphs as given in
Application of Ndim to weighted graphs/3c. �

Remark 2. Both statements in the Lemma are also valid
if G1 and G2 are connected, G1 ∩ G2 = ∅, and G1 � G2 is
disconnected.

Proof. Statements (a) and (b) hold trivially as an equality,
respectively, an inequality.

Remark 3. If the induced subgraphs G1 and G2 are dis-
connected, then statements (a) and (b) in the Lemma are
valid.

Proof. Apply the argumentation given in the above
proofs with trivial modifications.

Remark 4. Statement (b) in the Lemma and Remarks 1,
2, or 3 imply that

(b′) | clmax(G1�G2)| ≤ 2 max{| clmax(G1)|, | clmax(G2)|}.
Combining (a) and (b′) and taking the logarithm to base 2
yields the maximum property.

Discussion
We introduced in this paper a newmeasure of complexity,
Ndim, for binary and weighted graphs. Numerical appli-
cations to grids, fractal and non-fractal models, and to
human brain data are complemented by the proofs of
some general mathematical properties of Ndim. The term
complexity can be understood in a picturesque manner
if we regard complete graphs with finite size and con-
stant weights w(i, j) = c > 0. In this case, Ndim =
log(size)/ log 2. Such graphs combinemaximum complex-
ity with maximum cost thus indicating that for a fixed
size increasing complexity may be due to a proliferation
of increasing network connectivity. The concept Ndim
is closely related to box-covering dimensions for fractal
graphs derived from log− log plots [10, 11]. Although
Ndim, if applied to fractal graphs, can be interpreted as a
fractal dimension, Ndim does not rely on log− log plots,
which quickly become uninformative losing linearity by
hub attraction or noise.
The construction of Ndim is motivated by the extended

counting method, proposed by Sandau and Kurz, see
[13, 14], to calculate a fractal dimension for point sets in
R
n, and relies for graphs essentially on the computation

of maximum k-cliques in binary or multi-graphs. The use
of distance-based k-cliques to count the maximum ver-
tex cardinality of “tightly knit vertex groups” is somewhat
arbitrary; diameter-based k-clubs [30] might also be rea-
sonable candidates but would require substantially longer
CPU times for some of our applications. For the measure
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of cohesion we used k = �average distance�, where the
average distance of a graph is a measure for its compact-
ness. The alternative k = �diameter/2�, which is closer
to Sandau’s original proposal was also numerically tested.
We found that for graphs with small distances, Ndim com-
puted by using k = �diameter/2� lost robustness when
short path graphs were added randomly.
Fractal dimensions FD should satisfy (at least approx-

imately) a list of conditions given in Background. For
graphs, the following conditions are relevant: FDs are
invariant to multiplicative factors, FDs are extensions of
topological dimensions, different FDs for self-similar frac-
tal graphs are equivalent, and the monotonicity and max-
imum properties are satisfied (C2–C6). According to the
definitions of Ndim for binary and weighted graphs, Ndim
satisfies factor invariance (C2). In Ndim andmanifolds, we
showed that Ndim approaches the topological dimensions
of grid graphs (C5) as their size increases. In addition,
we quantified that Ndim converges faster than the box-
covering dimension MEMB to the topological dimension
of a grid. Applying cost and global efficiency to the reg-
ular latices, we find that both topological measures of
complexity tend to zero as the size increases losing com-
plexity information; see Table 1. Models of self-similar
fractal binary graphs are explored with Ndim and the box-
covering dimensions MEMB and bcm, in order to study
the agreement between FDs for self-similar fractal graphs
(C6). These models are iteratively generated and increase
in size, diameter, and node degree, for an increasing gen-
eration parameter g. In the limit g → ∞, a box-covering
dimension of the model can be calculated analytically.
We found that with increasing parameter g the quantities
Ndim, MEMB, and bcm approach the model dimension
(see Fig. 2). CPU-time limitations prevented the investi-
gation for graphs of size > 47. Different degrees of hub
attraction or noise destroy the fractality of a graph. The
box-covering dimensions are no longer well defined in
such cases in contrast to Ndim which is applicable beyond
fractality. (See Fig. 3 for an exploration of non-fractal
models with hub attraction).
The iteration of the graph models applies an inverted

renormalization process; the growth of the parameter g
reduces the length scale and increases the resolution of
a graph. Accordingly, the iteration process can be inter-
preted as an increased network parcellation. We see in
Fig. 3 that Ndim is for e > 0.25 not scale invariant, espe-
cially for small-world graphs (e = 1); however, for fractal
graphs or for graphs close to fractality (e ≤ 0.25) Ndim
is quite stable for g > 5, see also Fig. 2. Studying the
effect of different spatial parcellations of the human brain
on graph metrics is an important clinical issue [57], it
relates to the problem of comparability of studies with
different brain parcellations. It is shown in [57] that topo-
logical metrics of resting state fMRI networks vary with

the spatial parcellation scales; however, some qualitative
properties, like small-worldness or scale-freeness are sta-
ble. This differs from our results, where the metric Ndim
is increasingly stable for fractal graphs. Fractal graphs
were detected in the human brain by Gallos et al. [22, 23]
for dual task fMRI data and convenient thresholding (see
Application of functional distances); see also Fig. 7. For
two different spatial brain parcellations the results were
similar, see Supplement of [22]. A systematic investigation
of the dependence of their findings on spatial brain par-
cellations was to our knowledge however not performed.
Studying the dependence of complexity Ndim for real data
on different brain parcellations is beyond the scope of the
present paper and may be a topic of future research. At
present we can only say that scale invariance of Ndim
can be achieved if the spatial brain parcellation induces a
network parcellation of a fractal network.
The conditions monotonicity and maximum property

(C3, C4) are outlined and proven in Proofs. Monotonic-
ity asserts that the complexity Ndim cannot decrease for
graphs G1, G2 with G1 ⊆ G2. The maximum prop-
erty claims that the complexity Ndim of a graph G can
be estimated by the complexity of a subgraph of G. We
showed that for binary and weighted, fractal and non-
fractal graphs monotonicity is approximately satisfied for
finite graphs. The same conclusion holds for the max-
imum property. These approximations improve as the
average distance increases. In the limit, as the average
distance approaches infinity, conditions C3 and C4 hold
exactly. Conditions C3, C4 are essential properties of any
concept of dimension [15, 54, 55], may it be topologi-
cal or fractal. As Ndim satisfies conditions C2-C6 at least
approximately, we may interpret Ndim when applied to
fractal graphs as a FD, similar to MEMB or bcm. More
generally, without restricting to fractal graphs, we may
interpret Ndim as a dimension measuring complexity.
Bio-medical networks are frequently modeled by

weighted graphs. Methods to apply Ndim to weighted
graphs were presented in Application of Ndim to weighted
graphs. All three methods mapped the weighted graph to
convenient binary graphs, where a maximum k-clique was
computed. Thresholding proved to be the fastest method,
but simplifies any weight w(i, j) > 0 to a yes-no edge
a(i, j) = 1 or 0. Comparing with cost and efficiency,
we find that Ndim has enhanced power to differentiate
connectivity in a healthy and a depressed subject; see
Fig. 4. More information about the weights is maintained
in the Monte Carlo method, where w(i, j) is mapped to
an ensemble of binary edges; the higher w(i, j) the more
frequently a(i, j) = 1 is sampled. Mapping a weighted
graph to an ensemble of binary random graphs implies
that the complexity of the weighted graph is described by
a distribution of complexities Ndim of the correspond-
ing binary graphs; see Fig. 5. Therefore, the difference
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of the complexity between two weighted graphs can be
made statistically relevant by significance testing, analyz-
ing the shift in the two Ndim distributions [53]. This may
be of importance for a personalized clinical analysis of the
abnormal functional connectivity under depression. As
Ndim is a regional measure, core nodes within the max-
imum k-cliques can be detected to localize ROIs which
act as communication centers or hubs. Our analysis shows
that the probability for such hubs is increased for subjects
under depression; see Fig. 6.
In a third approach, using functional distances, the

weighted graph was transformed to a binary k-distance
graph and Ndim was calculated via the cardinality of its
maximum 1-clique.We applied this method to a dual-task
fMRI data set [22, 23] and compared Ndim with the box-
covering dimension bcm that was modified for a direct
application to weighted graphs. For a high percolation
threshold (p = 0.885) we found, similar to Gallos et al.
[22, 23], large connected components which are at least
close to a fractal with rather low complexities Ndim and
bcm. For a lower threshold (p = 0.85), the components
collapse into a non-fractal network with lower average dis-
tance and higher complexity Ndim. Due to the non-linear
log− log plot for p = 0.85, bcm can no longer be cal-
culated reliably over the entire range of box sizes. This
demonstrates the advantage of Ndim, which can quantify
complexity beyond fractality. The limited applicability of
the box-covering dimension bcm is apparent already for
R2 coefficients with R2 < 0.98; see Fig. 7.
The weights of a network can be altered by the appli-

cation of thresholding techniques or by noise. Direct
thresholding is applied in Figs. 4, 5 and 7. In all cases cor-
relation thresholding modifies the network complexity, in
Fig. 7 even the type – it separates strongly connected frac-
tal subgraphs from a mixed compound. This influence of
the threshold on complexity is intuitively clear: Different
correlation thresholds in, e.g., fMRI data, focus on sig-
nals with a different degree of similarity; the lower the
threshold, the higher the complexity due to monotonic-
ity (See Fig. 4). In some studies correlation thresholding
is additionally constrained by the condition of identical
cost for the pair to be compared. We reparametrized the
results of Fig. 4 and achieved for cost= 0.1, 0.2, 0.3, 0.4 for
efficiency and Ndim smaller differences between healthy
and depressed patients compared to direct correlation
thresholding; all differences of efficiency were < 0.01, the
differences of Ndim were 0.08, 0.1, 0.5, 0.58, respectively.
We still find that Ndim has more informative power than
efficiency. Next we look at robustness or noise sensitiv-
ity of Ndim. To test this, the weights of the correlation
graph for Fig. 4 (threshold> 0.2) were modified by adding
uniformly distributed noise. For w(i, j) → w(i, j) + ε(i, j),
ε(i, j) ∈[−w(i, j)·α,w(i, j)·α], where α ∈ {0.1, 0.2, 0.3, 0.5},
we obtained Ndim = 3.7 → Ndim = 3.7, 3.6, 3.6,

and 3.3, respectively. Under the influence of such noise,
Ndim is quite robust. Different is the effect of noise on
binary graphs by adding randomly connections =1; e.g.
complexity Ndim of the fractal model e = 0, g = 6
of Fig. 3 increases by 10, 20, 30% if only 1, 2, 3 % random
connections are added, see also [12].
Computational cost (CPU time) for large networks is a

problem for any NP complete algorithm [30]. In our calcu-
lations of Ndim for the synthetic networks of Fig. 3 CPU
times depend on the type characterized by parameter e
and on the generation parameter g or size. We find for
any type monotonicity of Ndimwith size. This agrees with
intuitive expectation, as renormalization (transition g →
g − 1) induces blurring reducing vertices and low distance
connectivities; if renormalization produces a subgraph
(g − 1) of the graph (g) monotonicity of Ndim could be
proven formally. The worst case (g = 7, size = 16.384)
CPU times for the graphs with e = 1, 0.75, 0.5 are CPU =
86, 69, 590 sec, for g = 5 (size = 1.024) CPU ∼ 1
sec in all cases. Critical are the cases e = 0.25 and
0. We find, e.g., for the case e = 0.25 and g = 7 a
CPU time of more than 6 hours, for g = 4, 5, 6, a CPU
time of only 1, 1, 10 sec. The mentioned CPU times are
calculated without any constraints on the clique cardinal-
ities; especially constraining the lower bound can improve
speed [31]. Monotonicity enables a simple rule to esti-
mate this lower bound exp(Ndim(g − 1) · log(k(g)+ 1)) =
lower bound of|max k-clique(g)|. If we incorporate this
information as a constraint in our calculations we find the
following CPU times: for e = 0.25 and g = 7 CPU = 1650
sec, for e = 0 (fractals) and g = 5, 6, 7 CPU = 1, 30, 1560
sec. For fractal networks based on real data, as used in
Fig. 7a,b, we needed only CPU∼ 2 sec without constraint.
This may be due to inherent type mixing or noise in real
data networks. We tested computational cost for seven
additional connectivity networks taken from the brain-
connectivity-toolbox, see Data. We had to symmetrize
some of the adjacency matrices, as Ndim is defined for
undirected networks only, using the triangle above the
diagonal of the matrix. In some cases the graphs were
disconnected, in such cases the largest connected com-
ponent was used. For these 7 networks complexity was
calculated without constraints, CPU time was in all cases
moderate, see Table 3. All CPU times were produced by a
single processor (2.8 GHz) applied to the commercial soft-
ware Mathematica 9 (constraining is implemented) and
should be regarded only as rough estimate which may
be improved by faster hard ware equipment or software.
A more basic improvement is possible by application of
parallel computing as was demonstrated in [58], where
fast algorithms for the calculation of the maximum clique
were developed and tested; we showed in Application of
Ndim to weighted graphs that Ndim can always be cal-
culated by a maximum clique (k = 1). Applying 128
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Table 3 Binary networks from the brain-connectivity-toolbox

Name Size CPU (sec) Ndim

Autobahn 1158 377 2.12

Air500 500 6 4.95

Celegans277 261 < 1 3.37

Celegans131 125 < 1 2.84

Mac95 92 < 1 4.4

Macaque71 71 < 1 3.06

Macaque47 47 < 1 2.81

processors to the maximum clique calculation for a net-
work a speeding up factor of ∼20 could be achieved.
Implementation of this involved method was beyond our
scope.

Conclusion
We presented a newmeasure, Ndim, to quantify complex-
ity originating by the proliferation of edge-connectivity
in binary or weighted networks. Ndim is essentially
determined by the cardinality of a maximum k-clique
of the graph and fulfills the conditions of a dimension.
These dimensional properties guarantee a large informa-
tive power of Ndim, compared to cost and efficiency.
In addition, for a fractal graph Ndim estimates its frac-
tal dimension, like the recently proposed box-covering
dimensions. But, box-covering dimensions cannot be cal-
culated uniquely for fractals perturbed by noise caused
by the addition of random edges or for graphs with hub
attraction like small world graphs. For Ndim however,
there is no such limitation; comparisons of complexity
between all types of finite graphs can be performed. These
features were demonstrated for model calculations and by
comparisons of functional brain connectivity for healthy
and depressed subjects. Due to this informative power and
flexibility, Ndim may become a useful tool in biomedi-
cal studies performing comparisons of complexity of finite
networks.
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