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Abstract

Background: Several missing value imputation methods for gene expression data have been proposed in the
literature. In the past few years, researchers have been putting a great deal of effort into presenting systematic
evaluations of the different imputation algorithms. Initially, most algorithms were assessed with an emphasis on the
accuracy of the imputation, using metrics such as the root mean squared error. However, it has become clear that the
success of the estimation of the expression value should be evaluated in more practical terms as well. One can
consider, for example, the ability of the method to preserve the significant genes in the dataset, or its
discriminative/predictive power for classification/clustering purposes.

Results and conclusions: We performed a broad analysis of the impact of five well-known missing value imputation
methods on three clustering and four classification methods, in the context of 12 cancer gene expression datasets.
We employed a statistical framework, for the first time in this field, to assess whether different imputation methods
improve the performance of the clustering/classification methods. Our results suggest that the imputation methods
evaluated have a minor impact on the classification and downstream clustering analyses. Simple methods such as
replacing the missing values by mean or the median values performed as well as more complex strategies. The
datasets analyzed in this study are available at http://costalab.org/Imputation/.
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Background
The expression level of a gene can be regarded as an esti-
mate of the amount of protein it produces in a given cel-
lular state. Different technologies can be used to measure
the expression level of a gene. One of the most important
is microarray technology, which allows the simultaneous
measurement of the expression levels of thousands of
genes [1].
As with many types of experimental data, gene expres-

sion data obtained from microarray experiments often
contain missing values (MVs) [2-5]. This can occur for
several reasons: insufficient resolution, image corruption,
fabrication errors, poor hybridization, or contaminants
due to dust or scratches on the chip. However, many stan-
dard methods for gene expression data analysis, including
some classification and clustering techniques, require a

*Correspondence: marcilio.desouto@univ-orleans.fr
1Univ. Orleans, INSA Centre Val de Loire, LIFO EA 4022, Orleans, France
Full list of author information is available at the end of the article

complete data matrix as input. Thus, in such a context,
methods for handling missing data are needed.
The simplest way of dealing with MVs is to discard the

observations that contain them. However, this method is
practical only when (1) the data contain a relatively small
number of observations containing MVs, or when (2) the
analysis of the complete examples will not lead to a seri-
ous bias during the inference [6,7]. Neither is viable in the
context of microarray data. For example, as pointed out
in [5,8], it is common for gene expression data to have up
to 5% MVs, which could affect up to 90% of the genes.
Thus, in the microarray setting, instead of repeating

the biological experiment (too expensive) or discarding
all observations with missing values (negative impact on
downstream analyses), many MV imputation methods
have been proposed in the literature [4,5]. MV imputation
constitutes an entire class of procedures that aim to supply
the MVs with estimated ones [7].
The simplest imputation algorithms consist of replac-

ing the MVs by zero or by the corresponding row/column
average [9]. However, as discussed in [2], because such
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methods do not take into account the correlation struc-
ture of the data, they tend to perform poorly in terms of
estimation accuracy, i.e., how close the estimated value
is to the missing value. More complex algorithms that
employ gene correlations have been proposed to mini-
mize this problem. These methods include, for example,
the weighted k-nearest neighbor (WKNN) [2], local least
squares (LLS) [10], expectation maximization approach
(EM_array) [11] and Bayesian principal component
analysis (BPCA) [12] procedures.
Indeed, in the past few years, several papers have

presented systematic evaluations of different imputa-
tion algorithms [3-5,13-16]. In general, the validation is
accomplished by calculating various performance indices
about the relation between the imputed and the (known)
original values [16]. Initially, most imputation algorithms
were evaluated with an emphasis on the accuracy of their
imputation (fidelity to the true expression values), using
metrics such as the root mean squared error (RMSE).
However, it can be argued that the success of the expres-

sion value estimation should be evaluated also in more
practical terms [15,16]. For instance, one can consider the
ability of the method to preserve the significant genes
in the dataset, or its discriminative/predictive power for
classification/clustering purposes. In fact, in practical
terms of the downstream objective of the experiment (e.g.,
clustering or classification), if the differences between the
outcomes are biologically insignificant, then it is irrelevant
whether an MVs imputation improvement is statistically
significant or not. Furthermore, in most studies, missing
values inmicroarray data sets are assumed to bemissing at
random. By following this assumption, the great majority
of the aforementioned papers apply imputation methods
considering a uniform distribution of missing values on
genes and microarrays. This, however, is not a realistic
assumption, since missing values tend to arise in a sys-
tematic manner in practice [16]. Therefore, these studies
are not able to model gene- or array-specific artifacts that
induce missing values. Because our analysis is based on an
actual MV distribution, we are not susceptible to biases
introduced by artificial imputation experiments.
Regarding related work, [17] evaluated the impact of

six imputation methods on clustering analyses using eight
yeast cDNA microarray datasets, including both time
series and steady-state experiments. They performed a
cluster analysis on the imputed data using the k-means
algorithm. The partitions generated after imputation were
compared with those obtained originally on the complete
datasets. The authors showed that even when there are
clear differences in the accuracy of imputation, as assessed
using RMSE, such differences could become insignificant
when the methods are evaluated in terms of how well they
reproduce the original gene clusters, or in their biological
interpretations.

With respect to classification, the most closely related
research is that in [13], who applied three imputation algo-
rithms,WKNN, LLS and BPCA, to five different cancer gene
expression datasets. The classification accuracy was esti-
mated using three different types of classifiers: support
vector machine (SVM), k-nearest neighbor (kNN), and
classification and regression tree (CART). They showed
that, except for replacement by zeros, the imputation
algorithmmade little difference in classification.
A limitation of the work in [17] and [13] is that both

were based on a small selection of datasets, and pre-
sented no statistical evidence for their conclusions. In
contrast, we have performed the first systematic com-
parison of classical missing value imputation methods
by following a typical microarray data analysis workflow.
More specifically, we analyzed the impact of five missing
data imputation methods on several clustering and classi-
fication algorithms applied to 12 cancer gene expression
datasets. We followed the preprocessing protocol sug-
gested in [18] to do so; that is, we first discarded the
genes with missing data for more than some particular
number of observations. Next, we replaced the remaining
MVs using each of the five data imputation approaches,
followed by filtering the genes with low variation. More-
over, for the first time in this field, we used a statistical
framework to evaluate whether the differing imputation
methods significantly affected the performances of the
various classification/clustering methods.

Results
Missing value imputation
In the context of gene expression data, MV imputation
methods usually fall into two categories [4]. In the first
category (“local” methods), the expression information of
a missing entry is taken from neighboring genes, where
their closeness is determined by a proximitymeasure (e.g.,
correlation, or the Euclidean distance). For the second
category (“global” methods), dimension reduction tech-
niques are applied to decompose the data matrix and
iteratively reconstruct the missing entries. In this paper
we use two well-known representatives of the former cat-
egory: WKNN [2] and LLS [10]. For the latter, we employed
the well-established BPCA method [12]. We also provide
an additional evaluation of the expectation maximization
approach (EM_Array) [11] (see Additional file 1).
We analyzed the effects of these imputation methods, as

well as the Mean and Median methods, where MVs are
replaced with a simple mean or median, respectively, from
known values. Given these methods we conducted two
classical downstream analyses for cancer gene expression
data: classification and clustering. We used the follow-
ing experimental design to do so. First, we removed all
genes with more than 10% missing values (MV filtering).
Next, we imputed the missing values using each of the
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five methods. Finally, we applied a non-supervised filter
to remove genes with little variation between samples. See
Section Methods for more details.
Tables 1 and 2 illustrate, respectively, the statis-

tics for the original and the resulting datasets after
imputation/non-supervised filtering. An important, ini-
tial observation is that none of the datasets have more
than 8% missing values (the average is 5.04%, see
Table 1). Furthermore, this value drops to an aver-
age of 2.32% after the MV filtering. This can be seen
as indicative of the upper bound values for experi-
mental settings with artificially imputed missing val-
ues. Another interesting observation, as can be seen in
Table 2, is that the number of genes remaining after
the non-supervised filtering step is quite similar with
all the imputation methods. This indicates a minimal
impact of the imputation method on the non-supervised
filtering step.

Influence of imputation on clustering/classification
We employed several classification and clustering tech-
niques with the cancer tissues from each imputed dataset.
Refer to the Methods section for further details on the
methodology. We used SVM, kNN, naive Bayesian classi-
fiers (NB), and decision trees (DT) for the classification
experiments. The classification error rate, after leave-one-
out cross-validation (LOOCV), was used as our evalu-
ation metric (see Table 3). Importantly, the error rates
obtained are all below those of simply predicting the
majority class for each dataset.
We used k-medoids, hierarchical clustering with aver-

age linkage (HC-AL), and hierarchical clustering with
complete linkage (HC-CL) for the clustering experiments.
Partition quality was evaluated with the corrected Rand
(cR) index (see Table 4). All of the partitions generated
have cR values larger than 0 for k-medoids; that is, one
can claim that they are not random partitions with respect
to the ground partition. This also holds true for most of
the partitions generated by HC-AL.
As can be clearly seen in Tables 3 and 4, at least within

the context of the datasets investigated, the different
imputation methods did not have any impact on the per-
formance of the classifiers and the partitions generated.
Nonetheless, we applied a statistical test in both cases, to
further justify our conclusions.
More specifically, we used the Friedman-Nemenyi test

to assess whether there was any statistically significant
difference in using a given imputation method for a
fixed classification/clustering method [19] — see Table 5
for a summary of the p-values. The null hypothesis of
equal ranks was not rejected in any of the cases. That
is, we have no statistical evidence that any of the impu-
tation methods used have a significant impact on the
quality of the classifiers/clustering partitions produced.

These conclusions also hold when the EM_Array imputa-
tion method is considered in our analysis (see Additional
file 1).
In order to evaluate if the missing values filter (MV

filtering) had an impact in our results, we first tried to
run the imputation methods without MV filtering. In this
context, the implementation of the different imputation
methods failed to deal with attributes with 50% or more
of missing data. Then, to successfully run most of the
methods we had to remove the attributes with more than
40% of missing values. After that, we applied the non-
supervised filter. Next, we performed experiments with
SVMs (the classificationmethod that in general presented
the best results) with the resulting datasets. We also run
k-medoids and the hierarchical methods. As for the case
of the BPCA, the implementation that we have available
failed to run for four datasets. In this context, we per-
formed the hypothesis test without considering it. In all
cases, the null hypothesis of equal ranks was not rejected
(see Additional file 1).

Discussion and conclusions
We performed a comprehensive analysis of the impact of
five well-known MV imputation methods on three clus-
tering and four classificationmethods with 12 cancer gene
expression datasets. Moreover, we used, for the first time
in this field, a statistical framework to evaluate whether
distinct imputation methods improve the performance of
the clustering/classification methods. Our experimental
results indicate that the imputation methods evaluated
have a negligible impact on the classification as well as
on downstream clustering analysis. Indeed, methods as
simple as the Mean and Median, performed as well as
more complex strategies such as WKNN and BPCA. As both
Mean and Median methods are simple to implement,
and have low computational requirements, we recom-
mend that they should be preferred over other methods
for classification and clustering tasks with gene expression
microarray data.
To help put our results into perspective, themost similar

work to ours is that reported in [13,17], as mentioned in
the Background section. In [17], the authors compared
different missing value imputation methods by following
a typical microarray data analysis workflow for cluster-
ing. They used the following imputation methods: (1) zero
imputation (Zero), in which the MVs are always replaced
by a zero; (2) Mean; (3) WKNN; (4) LLS; (5) iterated local
least squares (iLLS); (6) support vector regression (SVR);
and (7) BPCA. They used eight yeast cDNA microarray
datasets for their experiments, including both time series
and steady-state trials. They performed a cluster analy-
sis of the imputed data using the k-means algorithm. The
partitions generated after imputation were compared with
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Table 1 Cancer datasetswithmissing values

Original data MV Filtering

Dataset Tissue No. classes Size of classes No. samples No. genes %MV %Genes with MV No. genes %MV %Genes with MV

alizadeh-2000-v1 Blood 2 21, 21 42 4022 3.25 49.30 3678 2.15 44.56

alizadeh-2000-v2 Blood 3 42, 9, 11 62 4022 4.59 66.93 3369 2.75 60.52

alizadeh-2000-v3 Blood 4 21, 21, 9, 11 62 4022 4.59 66.93 3369 2.75 60.52

bredel-2005 Brain 3 31, 14, 5 179 41472 7.57 43.06 19200 3.25 30.56

chen-2002 Liver 2 104, 75 66 24192 6.04 88.46 22336 2.18 85.46

garber-2001 Lung 4 17, 40,4, 5 110 24192 3.87 67.81 36663 2.23 65.14

lapointe-2004-v1 Prostate 3 11, 39, 19 69 42640 4.56 73.57 35265 2.10 69.26

lapointe-2004-v2 Prostate 4 11, 39, 19, 41 110 42640 4.93 67.16 36663 2.23 60.29

liang-2005 Brain 3 28, 6, 3 37 42640 4.56 73.57 22923 0.82 23.16

risinger-2003 Endometrium 4 13, 3, 19, 7 42 24192 7.97 74.33 8366 0.76 20.76

tomlins-2006 Prostate 5 27, 20, 32, 13, 12 104 8872 4.46 89.34 9936 3.27 80.94

tomlins-2006-v2 Prostate 4 27, 20, 32, 13 92 20001 4.04 84.23 10048 3.34 79.72

Mean 23575 5.04 70.39 17651 2.32 56.74
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Table 2 Statistics after non-supervised filtering

No. genes (filtering + imputation) No. MV (filtering + imputation)

Datasets BPCA KNN LSS Mean Median BPCA KNN LLS Mean Median

alizadeh-2000-v1 960 945 962 932 932 1.96 1.91 1.97 1.83 1.83

alizadeh-2000-v2 1075 1050 1081 1030 1030 2.71 2.63 2.72 2.59 2.59

alizadeh-2000-v3 1075 1050 1081 1030 1030 2.71 2.63 2.72 2.59 2.59

bredel-2005 3819 3833 3825 3850 3852 0.81 0.82 0.81 0.84 0.84

chen-2002 2240 2246 2238 2329 2340 2.25 2.24 2.23 2.31 2.32

garber-2001 2563 2540 2578 2584 2603 1.94 1.92 1.95 1.95 1.95

lapointe-2004-v1 4161 4159 4170 4196 4292 1.94 1.92 1.95 1.95 1.95

lapointe-2004-v2 3846 3811 3833 3838 3930 2.50 2.50 2.50 2.53 2.58

liang-2005 2531 2528 2529 2519 2521 2.32 2.29 2.31 2.33 2.37

risinger-2003 942 2074 2078 2073 2073 0.84 0.83 0.84 0.81 0.81

tomlins-2006 2027 2020 2039 2018 2018 2.41 2.40 2.43 2.40 2.40

tomlins-2006-v2 2118 2118 2124 2103 2103 2.37 2.34 2.37 2.34 2.34

Mean 2294 945 2378 2375 2018 2.06 2.04 2.07 2.04 2.05

those obtained originally on the complete datasets using
the average distance between partitions (ADBP).
We employed steady-state cancer gene expression data,

unlike [17], who used time series gene expression data.
Also, in contrast to [17], who performed clustering with
only a partitioning algorithm (k-means), we used two
hierarchical clustering methods, as well as k-medoids.
In [17], the authors claimed that more advanced impu-
tation methods, such as BPCA, should be preferable to
the Zero or Mean imputation methods. However, they
presented no statistical evidence to support these claims.
Indeed, visual inspection of the error bars presented in
their work indicates a clear disadvantage only for the
Zero imputation method.
The work most closely related to ours regarding classi-

fication is that in [13], who investigated the effects of the
WKNN, LLS and BPCA on the classification performance of
SVM, kNN, and CART. According to their results, impu-
tation algorithms, except for substitution by zero, did not
have any demonstrable impact on classification. The work
in [13] was limited to five two-class datasets. We used 12
datasets, with the number of classes varying from two to
five. Moreover, in contrast to [13], we also investigated the
influence of simple imputation methods such the Mean
and the Median in our work.
The fact that gene expression is highly correlated helps

to explain why the imputation of expression values close
to the original missing value is not required for an analy-
sis based on thousands of genes, such as tissue clustering
or classification [20]. This is why our finding that simple
methods, such as the Mean and Median, perform compa-
rably to more complex methods makes sense. That is, out
of a group of co-expressed (correlated) genes, some genes
without missing data could always exist.

We would like to point out that, from a practical point
of view, it is common to remove attributes (features) with
more than a certain percentage of missing value. As other
work in the literature, we set the threshold to 10%. Even
in a context of a level of missing values of up to 40%, the
statistical test does not point to any significant difference
between the imputation methods.
Finally, and of large consequence, of the 32 datasets

in the benchmarking cancer gene expression data study
in [21], only 12 of them have MVs: a maximum of 9%
of MVs per dataset and an average of 5%. Our aver-
age number of missing values goes down to 2% after
non-supervised filtering (see Tables 1 and 2). This raises
questions regarding the conclusions from most gene
expression imputation research, which are based on an
artificial imputation of at least 20% of the missing val-
ues [2,4,5,10,12,13,17]. Our opinion is that in the context
of classification and clustering, any conclusions based on
more than 5% missing values are mostly irrelevant to gene
expression analysis. Moreover, the great majority of the
previously mentioned papers apply the imputation meth-
ods assuming a uniform distribution of missing values on
genes and microarrays. By doing so, they are not able to
model gene- or array-specific artifacts inducing missing
values. Because our analysis is based on an actual MV dis-
tribution, we are not susceptible to biases introduced by
artificial imputation experiments.

Methods
Datasets and pre-processing
We used gene expression datasets from the benchmark
study in [21]. More specifically, 12 cDNA datasets that
have MVs were selected. In terms of pre-processing,
we followed the protocol suggested in [18,21]. First, we
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Table 3 Classificationerror for different imputationmethods (columns) and classificaitonmethods (rows)

Datasets Mean Median KNN BPCA LLS

SVM

alizadeh-2000-v1 9.52 9.52 9.52 9.52 11.90

alizadeh-2000-v2 0.00 0.00 0.00 0.00 0.00

alizadeh-2000-v3 6.45 6.45 6.45 6.45 6.45

bredel-2005 16.00 16.00 16.00 16.00 16.00

chen-2002 2.23 2.23 2.23 2.23 1.68

garber-2001 16.67 16.67 18.18 18.18 19.70

lapointe-2004-v1 1.82 1.82 1.82 1.82 1.82

lapointe-2004-v2 17.39 18.84 15.94 17.39 20.29

liang-2005 0.00 0.00 0.00 0.00 0.00

risinger-2003 21.43 19.05 19.05 19.05 19.05

tomlins-2006 6.73 7.69 6.73 5.77 5.77

tomlins-2006-v2 6.52 6.52 6.52 6.52 6.52

KNN

alizadeh-2000-v1 33.33 33.33 33.33 30.95 30.95

alizadeh-2000-v2 0.00 0.00 0.00 0.00 0.00

alizadeh-2000-v3 19.35 19.35 17.74 17.74 17.74

bredel-2005 20.00 20.00 20.00 20.00 20.00

chen-2002 11.73 11.17 12.29 12.29 12.29

garber-2001 16.67 16.67 16.67 16.67 18.18

lapointe-2004-v1 13.64 14.55 14.55 14.55 14.55

lapointe-2004-v2 33.33 36.23 33.33 33.33 34.78

liang-2005 2.70 2.70 2.70 2.70 2.70

risinger-2003 23.81 23.81 23.81 19.05 23.81

tomlins-2006 20.19 20.19 20.19 20.19 20.19

tomlins-2006-v2 21.74 21.74 21.74 21.74 21.74

NB

alizadeh-2000-v1 7.14 7.14 7.14 7.14 7.14

alizadeh-2000-v2 1.61 1.61 1.61 1.61 1.61

alizadeh-2000-v3 8.06 8.06 6.45 6.45 6.45

bredel-2005 14.00 14.00 14.00 14.00 14.00

chen-2002 13.41 12.85 13.41 12.85 13.41

garber-2001 22.73 24.24 22.73 22.73 22.73

lapointe-2004-v1 23.64 23.64 23.64 21.82 22.73

lapointe-2004-v2 31.88 31.88 33.33 33.33 33.33

liang-2005 18.92 18.92 16.22 16.22 18.92

risinger-2003 23.81 23.81 23.81 26.19 23.81

tomlins-2006 15.38 15.38 14.42 14.42 14.42

tomlins-2006-v2 17.39 17.39 17.39 17.39 17.39

DT

alizadeh-2000-v1 28.57 30.95 11.90 23.81 23.81

alizadeh-2000-v2 8.06 8.06 14.52 14.52 14.52

alizadeh-2000-v3 25.81 27.42 25.81 20.97 20.97

bredel-2005 40.00 38.00 44.00 44.00 44.00

chen-2002 6.15 7.82 7.26 6.70 6.70

garber-2001 28.18 21.21 21.21 22.73 19.70

lapointe-2004-v1 23.64 26.36 23.64 22.73 23.64

lapointe-2004-v2 28.99 30.43 36.23 36.23 33.33

liang-2005 8.11 8.11 8.11 8.11 8.11

risinger-2003 45.24 45.24 54.76 50.00 54.76

tomlins-2006 40.38 40.38 34.62 36.54 34.62

tomlins-2006-v2 40.22 40.22 38.04 35.87 34.78
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Table 4 Corrected Rand index for different imputationmethods (columns) and clusteringmethods (rows)

Datasets Mean Median KNN BPCA LLS

k-medoids

alizadeh-2000-v1 0.5 0.5 0.5 0.5 0.5

alizadeh-2000-v2 0.89 0.89 0.84 0.89 0.84

alizadeh-2000-v3 0.65 0.65 0.65 0.65 0.65

bredel-2005 0.41 0.41 0.41 0.41 0.41

chen-2002 0.3 0.3 0.3 0.3 0.3

garber-2001 0.55 0.51 0.54 0.49 0.54

lapointe-2004-v1 0.42 0.47 0.47 0.44 0.47

lapointe-2004-v2 0.17 0.17 0.15 0.17 0.15

liang-2005 0.5 0.5 0.5 0.5 0.5

risinger-2003 0.45 0.45 0.45 0.47 0.45

tomlins-2006 0.39 0.39 0.4 0.39 0.4

tomlins-2006 0.51 0.51 0.51 0.51 0.51

HC-CL

alizadeh-2000-v1 0.04 0.04 0.13 0.13 0.13

alizadeh-2000-v2 0.54 0.54 0.52 0.40 0.52

alizadeh-2000-v3 0.38 0.38 0.39 0.47 0.39

bredel-2005 -0.03 0.07 0.03 0.07 0.03

chen-2002 -0.01 -0.01 -0.01 -0.01 -0.01

garber-2001 0.55 0.55 0.55 0.55 0.55

lapointe-2004-v1 -0.01 -0.01 -0.01 -0.01 -0.01

lapointe-2004-v2 0.04 0.04 0.04 0.04 0.04

liang-2005 0.12 0.12 0.12 0.12 0.12

risinger-2003 0.09 0.09 0.10 0.09 0.10

tomlins-2006 0.46 0.46 0.39 0.43 0.39

tomlins-2006 0.39 0.39 0.39 0.39 0.39

HC-AL

alizadeh-2000-v1 0.00 0.00 0.00 0.00 0.00

alizadeh-2000-v2 0.79 0.79 0.79 0.79 0.79

alizadeh-2000-v3 0.40 0.40 0.44 0.44 0.44

bredel-2005 -0.07 -0.08 -0.07 -0.05 -0.07

chen-2002 -0.01 -0.01 -0.01 -0.01 -0.01

garber-2001 0.00 0.00 0.00 0.02 0.00

lapointe-2004-v1 -0.01 -0.01 -0.01 -0.01 -0.01

lapointe-2004-v2 0.04 0.04 0.04 0.04 0.04

liang-2005 0.12 0.12 0.12 0.12 0.12

risinger-2003 0.14 0.14 0.12 0.14 0.12

tomlins-2006 0.44 0.44 0.41 0.41 0.41

tomlins-2006 0.56 0.56 0.56 0.56 0.56

removed all genes that had more than 10%missing entries
for the datasets (MV filtering). Next, we applied the
different imputation methods (see details below). Finally,
we performed a non-supervised filtering to remove genes
with low variation between samples. The datasets ana-
lyzed in this study are available at http://costalab.org/
Imputation/. See Table 1 for (1) dataset names; (2)

tissue types; (3) number of classes (cancer types); (4)
size of classes; (5) number of samples; and (6) number
of genes, in the original data; (7) percentage of miss-
ing values (%MV), in the original data; (8) percentage of
genes with at least one MV, in the original data; and (9)
number of genes, in the dataset after MV filtering;
(10) percentage of missing values (%MV), in the dataset

http://costalab.org/Imputation/
http://costalab.org/Imputation/
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Table 5 Summary of the Friedman p-values for the
classificationand clusteringmethods

Methods Friedman p-value

DT 0.81

KNN 0.88

NB 0.82

SVM 0.99

HCA-CL 0.95

HCA-AL 0.89

k-medoids 0.99

after MV filtering; (11) percentage of genes with
at least one MV, in the dataset after MV filtering.
Table 2 illustrates the number of genes and the per-
centage of MVs after the application of non-supervised
filtering corresponding to the five different imputation
methods.

Imputationmethods
This section presents the five imputation methods we
evaluated. In what follows, let n be the size of the dataset
(the number of samples) and p be the number of attributes
(variables) of each instance.

• WKNN was proposed in [2]. For a given gene with a
missing entry, the method is based on finding the k
closest neighbors. The MV is replaced by the
weighted average of the k-neighbors, where the
weights are proportional to the similarity between
samples. WKNN uses Euclidean distances as its
similarity measure. In our experiments, following the
guidelines in [2], we set the number of neighbors k to
20. This method has a computational complexity of
O(npk).

• LLS is based on finding the k-nearest genes and
estimating the missing values by performing a linear
regression on the variable with MVs [10]. In this
paper, as in [10], we used the (inverse of) the Pearson
correlation coefficient as the similarity measure, and
k = 300. Such a method has a computational
complexity ofO(npk).

• BPCA combines a principal component regression
with a Bayesian expectation maximization method to
estimate the missing values [12]. The method has one
important parameter, the number of principal
components, to consider. In this paper, as in other
papers, we set it to five. The method has a
computational complexity ofO((p+ n)c+ 2nc) and
a memory complexity ofO(np2), where c is the
number of components.

Besides these three “advanced” imputation methods, we
also applied two very simple ones: Mean and Median,
which are based on assigning the mean (or median) value
of the gene to the respective missing entries [2]. This is
the standard approach in machine learning [7]. They also
have a very straightforward implementation, and a com-
putational complexity of O(np). In the context of gene
expression data, these simple methods have often been
reported to produce very poor results [2,4,17]. All meth-
ods were implemented in R or obtained from the Biocon-
ductor packages impute and pcaMethods. In addition
to these five methods we also considered the EM_Array
using the implementation provided in [11]. The results
concerning this particular method are presented in the
Additional file 1.

Classification and clusteringmethods
We explored the impacts of several commonly used data
imputation methods on the performance of different clas-
sification and clustering algorithms by using 12 actual
cDNA datasets in this study. More precisely, in terms of
classification, we performed an empirical comparison by
using four classical supervised learning algorithms [22]:
(1) DT, a rule-based system; (2) kNN; (3) NB; and (4) SVM.
All of these learning methods were obtained from

the WEKA machine learning package [23]. The classi-
fiers were generated and evaluated using a traditional
LOOCV [22] procedure. We used the default parameter
values for creating the classifiers (e.g., a linear kernel for
the SVMs, kNN with k=1 and Euclidean distance, and a
DT with pruning) in the current experiments, based on
our previous research [24].
We performed our cluster analysis evaluation employ-

ing three clustering algorithms widely applied in the
literature of gene expression data: hierarchical cluster-
ing with both complete and average linkage [25], and
k-medoids [26]. We used the inverse of the Pearson corre-
lation coefficient as the similaritymeasure in all cases. The
number of clusters was set to the number of known classes
in the corresponding datasets. The ability to recover the
actual structure of the data was used as the performance
criterion. This was accomplished using the well-known
corrected Rand (cR) index [27]. To do so, the cR index
compares the actual classes (true partition) of the tissue
samples (e.g., cancer types/subtypes) with their cluster
assignments.
Finally, all results were statistically compared with the

Friedman statistical test for multiple comparisons and the
Nemenyi post-test, at the 95% confidence level, accord-
ing to the procedures described in [19], for both the
classification and clustering evaluations. In the case of
classification tasks, we used the rate of classification error
produced by the LOOCV. For the cluster analysis, we
employed the result of the cR.
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Additional file

Additional file 1: A table formatted for Excel with supplementary
results. The table contains (Table S1) the statistics of all datasets after each
filtering and imputation step; (Table S2 and Table S3) the classification error
rates for the different classifiers generated for the datasets after 10% (and
40%) of filtering of genes with missing values and missing value
imputation; (Table S4 and Table S5) the corrected Rand Index for all
clustering methods applied for the datasets after 10% (and 40%) of filtering
of genes with missing values and missing value imputation; and (Table S6)
p-value of the Friedmann-Nemenyi test for experiments, including also the
results of the imputation method EM_Array.
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